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I. INTRODUCTION

The T -matrix method was initially introduced by Waterman (1965, 1971) as
a technique for computing electromagnetic scattering by single, homogeneous
nonspherical particles based on the Huygens principle (otherwise known as the
extended boundary condition, Schelkunoff equivalent current method, Ewald–
Oseen extinction theorem, and null-field method). However, the meant-to-be
auxiliary concept of expanding the incident and the scattered waves in vector
spherical wave functions (VSWFs) and relating these expansions by means of a
T matrix has proved to be extremely powerful by itself and has dramatically ex-
panded the realm of the T -matrix approach. The latter now includes electromag-
netic, acoustic, and elastodynamic wave scattering by single and compounded
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scatterers, multiple scattering in discrete random media, and scattering by grat-
ings and periodically rough surfaces (Varadan and Varadan, 1980; Tsang et al.,
1985; Varadan et al., 1988).

At present, the T -matrix approach is one of the most powerful and widely
used tools for rigorously computing electromagnetic scattering by single and com-
pounded nonspherical particles. In many applications it compares favorably with
other frequently used techniques in terms of efficiency, accuracy, and size param-
eter range and is the only method that has been used in systematic surveys of
nonspherical scattering based on calculations for thousands of particles in ran-
dom orientation. Recent improvements have made this method applicable to size
parameters exceeding 100 and, therefore, suitable for checking the accuracy of
the geometric optics approximation and its modifications at lower frequencies.

In this chapter, we review the current status of the T -matrix approach and its
various applications. The chapter is composed of seven sections. The following
section introduces the general concept of the T -matrix approach in application
to an arbitrary nonspherical particle, either single or composite. Section III de-
scribes an efficient analytical method for computing orientation-averaged scatter-
ing characteristics for ensembles of nonspherical particles based on exploiting the
rotational properties of VSWFs. In Section IV we consider the standard scheme
for computing the T matrix for single scatterers, either homogeneous or layered,
and discuss special techniques for improving the numerical stability of T -matrix
computations for particles that are much larger than a wavelength and/or have
large aspect ratios. Section V introduces the superposition T -matrix method for
computing electromagnetic scattering by aggregated particles based on the trans-
lation addition theorem for VSWFs. Section VI briefly describes public-domain
T -matrix codes available on the World Wide Web and discusses their ranges of
applicability. The concluding section reviews multiple practical applications of
the T -matrix approach.

II. THE T -MATRIX APPROACH

Consider scattering of a plane electromagnetic wave by a single particle, as
discussed in Section IV of Chapter 1, and expand the incident and scattered fields
in VSWFs as follows:

Einc(R) =
∞∑
n=1

n∑
m=−n

[
amn Rg Mmn(kR)+ bmn Rg Nmn(kR)

]
, (1)

Esca(R) =
∞∑
n=1

n∑
m=−n

[
pmn Mmn(kR)+ qmnNmn(kR)

]
, R > R>, (2)
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Figure 1 Cross section of a general scattering object bounded by a closed surface S.R> is the radius
of the smallest circumscribed sphere and R< is the radius of a concentric inscribed sphere.

where

Mmn(kR) = (−1)mdnh(1)n (kR)Cmn(ϑ) exp(imϕ), (3)

Nmn(kR) = (−1)mdn

{
n(n+ 1)

kR
h(1)n (kR)Pmn(ϑ)

+ 1

kR

[
kRh(1)n (kR)

]′Bmn(ϑ)} exp(imϕ), (4)

Bmn(ϑ) = ϑ
d

dϑ
dn0m(ϑ)+ ϕ

im

sinϑ
dn0m(ϑ), (5)

Cmn(ϑ) = ϑ
im

sinϑ
dn0m(ϑ)− ϕ

d

dϑ
dn0m(ϑ), (6)

Pmn(ϑ) = R
dn0m(ϑ)

R
, (7)

dn =
[

2n+ 1

4πn(n+ 1)

]1/2

, (8)

k = 2π/λ is the wavenumber, λ is the wavelength in the surrounding medium,
R> is the radius of the smallest circumscribing sphere of the scattering particle
centered at the origin of the coordinate system (Fig. 1), and dnlm(ϑ) are Wigner
d functions (Varshalovich et al., 1988) given by

dnlm(ϑ) = Anlm(1 − cosϑ)(l−m)/2(1 + cosϑ)−(l+m)/2

× dn−m

(d cosϑ)n−m
[
(1 − cosϑ)n−l (1 + cosϑ)n+l

]
(9)
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for n ≥ n∗ = max(|l|, |m|) and by dnlm(ϑ) = 0 for n < n∗. In Eq. (9),

Anlm = (−1)n−m

2n

[
(n+m)!

(n− l)!(n+ l)!(n−m)!
]1/2

. (10)

The d functions can be expressed in terms of generalized spherical functions as
follows (Hovenier and van der Mee, 1983):

dnlm(ϑ) = im−lP nlm(cosϑ). (11)

The expressions for the functions Rg Mmn and Rg Nmn can be obtained from
Eqs. (3) and (4) by replacing spherical Hankel functions h(1)n by spherical Bessel
functions jn. Note that the functions Rg Mmn and Rg Nmn are regular at the ori-
gin, while the use of the outgoing functions Mmn and Nmn in the expansion of
Eq. (2) ensures that the scattered field satisfies the radiation condition at infin-
ity (i.e., the transverse component of the scattered electric field decays as 1/R,
whereas the radial component decays faster than 1/R with R → ∞). The re-
quirement R > R> in Eq. (2) means that the scattered field is considered only
outside the smallest circumscribing sphere of the scatterer (Fig. 1). The so-called
Rayleigh hypothesis (e.g., Bates, 1975; Paulick, 1990) assumes that the scattered
field can be expanded in outgoing waves not only in the outside region, but also
in the region between the particle surface and the circumscribing sphere (Fig. 1).
Because the range of applicability of this hypothesis is still unknown and is in fact
questionable, as recent results by Videen et al. (1996) and Ngo et al. (1997) seem
to indicate, the requirement R > R> in Eq. (2) is important in order to make sure
that the Rayleigh hypothesis is not implicitly used (Lewin, 1970).

The expansion coefficients of the plane incident wave are given by the follow-
ing simple analytical formulas (Tsang et al., 1985, Chapter 3; Eq. (1) of Chap-
ter 1):

amn = 4π(−1)mindnC∗
mn

(
ϑ inc)Einc

0 exp
(−imϕinc), (12)

bmn = 4π(−1)min−1dnB∗
mn

(
ϑ inc)Einc

0 exp
(−imϕinc), (13)

where an asterisk indicates complex conjugation. Owing to the linearity of
Maxwell’s equations and boundary conditions, the relation between the scattered
field coefficients pmn and qmn on the one hand and the incident field coefficients
amn and bmn on the other hand must be linear and is given by a transition (or
T matrix) T as follows (Waterman, 1971; Tsang et al., 1985, Chapter 3):

pmn =
∞∑
n′=1

n′∑
m′=−n′

[
T 11
mnm′n′am′n′ + T 12

mnm′n′bm′n′
]
, (14)

qmn =
∞∑
n′=1

n′∑
m′=−n′

[
T 21
mnm′n′am′n′ + T 22

mnm′n′bm′n′
]
. (15)
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In compact matrix notation, Eqs. (14) and (15) can be rewritten as[
p
q

]
= T

[
a
b

]
=
[

T11 T12

T21 T22

][
a
b

]
. (16)

Equation (16) forms the basis of the T -matrix approach. Indeed, if the T ma-
trix for a given scatterer is known, Eqs. (14), (15), (12), (13), and (2) give the
scattered field and, thus, the amplitude matrix appearing in Eq. (4) of Chapter 1.
Specifically, making use of the large argument asymptotic for spherical Hankel
functions,

h(1)n (kR) � (−1)n+1 exp(ikR)

kR
, kR � n2, (17)

we easily derive in dyadic notation

S
(
nsca,ninc)
= 4π

k

∑
nmn′m′

in
′−n−1(−1)m+m′

dndn′ exp
[
i
(
mϕsca −m′ϕinc)]

×
{[
T 11
mnm′n′Cmn

(
ϑsca) + T 21

mnm′n′ iBmn
(
ϑsca)]C∗

m′n′
(
ϑ inc)

+ [
T 12
mnm′n′ Cmn

(
ϑsca) + T 22

mnm′n′ iBmn
(
ϑsca)]B∗

m′n′
(
ϑ inc)/i}.

(18)

Knowledge of the amplitude matrix allows one to compute any scattering charac-
teristic introduced in Chapter 1.

A fundamental feature of the T -matrix approach is that the T matrix depends
only on the physical and geometrical characteristics of the scattering particle (re-
fractive index, size, shape, and orientation with respect to the reference frame)
and is completely independent of the incident and scattered fields. This means
that the T matrix need be computed only once and then can be used in calcula-
tions for any directions of incidence and scattering and for any polarization state
of the incident field.

Using Eq. (18) and the reciprocity relation for the amplitude matrix [Eq. (44)
of Chapter 1], we derive the following general symmetry relation for the T -matrix
elements:

T klmnm′n′ = (−1)m+m′
T lk−m′n′−mn, k, l = 1, 2. (19)

Energy conservation leads to another important property of the T matrix:∑
ln1m1

(
T
lp
m1n1mn

)∗
T
lq

m1n1m
′n′ ≤ −1

2

[(
T
qp

m′n′mn
)∗ + T pq

mnm′n′
]
. (20)
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The equality holds only for nonabsorbing particles and is called the unitarity prop-
erty (Tsang et al., 1985, Chapter 3). These relations are helpful in practice for
checking the numerical accuracy of computing the T matrix.

It is useful to note that the VSWFs defined by Eqs. (3) and (4) are not the
only possible class of expansion functions. Other classes of expansion functions
resulting in somewhat different T matrices have been used (e.g., Waterman, 1971;
Barber and Yeh, 1975; Ström and Zheng, 1987). We use the VSWFs defined by
Eqs. (3) and (4) because their convenient analytical properties greatly simplify
mathematical derivations. Note also that Eqs. (5)–(7) are often written in terms of
associated Legendre functionsPmn (cosϑ) = (−1)m[(n+m)!/(n−m)!]1/2dn0m(ϑ)

(e.g., Tsang et al., 1985, Chapter 3). It is well known, however, that the numerical
computation of associated Legendre functions via recurrence formulas becomes
highly unstable for large n and m, whereas recurrence formulas for Wigner d
functions (e.g., Varshalovich et al., 1988) remain quite stable and provide accurate
results.

III. ANALYTICAL AVERAGING
OVER ORIENTATIONS

An essential feature of the T -matrix approach is analyticity of its mathematical
formulation. Indeed, the analytical properties of the special functions involved are
well known and can be used to derive general properties of the T matrix and also
to analytically average scattering characteristics over particle orientations. The
latter feature is particularly important because, in most practical circumstances,
particles are distributed over a range of orientations rather than being perfectly
aligned.

To derive the rotation transformation rule for the T matrix, consider a labora-
tory (L) and a particle (P ) coordinate system having a common origin inside the
scattering particle. Let α, β, and γ be Euler angles of rotation that transform the
laboratory coordinate system into the particle coordinate system (Section III of
Chapter 1) and let (kR, ϑL, ϕL) and (kR, ϑP , ϕP ) be the spherical coordinates of
the same radius vector kR in the two coordinate systems, respectively. We then
have

Mmn(kR, ϑP , ϕP ) =
n∑

m′=−n
Dnm′m(α, β, γ )Mm′n(kR, ϑL, ϕL), (21)

Mmn(kR, ϑL, ϕL) =
n∑

m′=−n

[
Dnmm′ (α, β, γ )

]∗Mm′n(kR, ϑP , ϕP ), (22)
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where

Dnm′m(α, β, γ ) = exp(−im′α)dnm′m(β) exp(−imγ ) (23)

are Wigner D functions (Varshalovich et al., 1988). Analogous expansions hold
for the functions Nmn, Rg Mmn, and Rg Nmn. Let T(P ) and T(L) be the T matri-
ces of the particle with respect to the coordinate systems P and L, respectively.
Taking into account Eqs. (1), (2), (14), (15), (21), and (22), we derive (Varadan,
1980)

T klmnm′n′(L) =
n∑

m1=−n

n′∑
m2=−n′

[
Dn

′
m′m2

(α, β, γ )
]∗
T klm1nm2n

′(P )Dnmm1
(α, β, γ ),

k, l = 1, 2. (24)

If we now assume that the T matrix T(P ) is already known and use the Euler
angles of rotation α, β, and γ to specify the orientation of the particle with respect
to the laboratory coordinate system, then Eq. (24) gives the particle T matrix in
the laboratory coordinate system. Therefore, Eqs. (18) and (24) are ideally suited
for computing orientationally averaged scattering characteristics using a single
precalculated T(P ) matrix (Tsang et al., 1985, Chapter 3).

Note that for particles with special symmetries, a proper choice of the particle
coordinate system can substantially simplify the T -matrix calculations. For ex-
ample, for rotationally symmetric particles, it is convenient to direct the z axis of
the particle coordinate system along the axis of symmetry. In this case, the T(P )
matrix becomes diagonal with respect to azimuthal indices m and m′,

T klmnm′n′(P ) = δmm′T klmnmn′ (P ), (25)

where δmm′ is the Kronecker delta, and also has the property

T klmnmn′ (P ) = (−1)k+lT kl−mn−mn′ (P ). (26)

Other possible symmetries of the T matrix are discussed by Schulz et al. (1999a).
The T matrix becomes especially simple for spherically symmetric particles, in
which case we have for any coordinate system:

T 11
mnm′n′ = −δnn′bn, (27)

T 22
mnm′n′ = −δnn′an, (28)

T 12
mnm′n′ = T 21

mnm′n′ ≡ 0, (29)

where an and bn are the well-known Lorenz–Mie coefficients for homogeneous
spheres or their analogs for radially inhomogeneous spheres (Bohren and Huff-
man, 1983, Chapters 4 and 8). Moreover, in the case of spherically symmetric par-
ticles all formulas of the T -matrix approach become identical to the correspond-
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ing Lorenz–Mie formulas. Therefore, the T -matrix approach can be considered
an extension of the Lorenz–Mie theory to particles without spherical symmetry.

Equation (24) can be used to develop analytical procedures for averaging scat-
tering characteristics over particle orientations. In the practically important case of
randomly oriented particles, all particle orientations are equiprobable, and the ori-
entation distribution function po(α, β, γ ) is equal to (8π2)−1 [Eq. (54) of Chap-
ter 1]. Therefore, using Eq. (24) and the orthogonality property of WignerD func-
tions (Varshalovich et al., 1988),∫ 2π

0
dα

∫ π

0
dβ sinβ

∫ 2π

0
dγDnmm′ (α, β, γ )

[
Dn

′
m1m

′
1
(α, β, γ )

]∗
= 8π2

2n+ 1
δnn′δmm1δm′m′

1
, (30)

we derive for the orientation-averaged T matrix

〈
T klmnm′n′

〉 = 1

8π2

∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ T klmnm′n′(L)

= 1

2n+ 1
δmm′δnn′

n∑
m1=−n

T klm1nm1n
(P ), k, l = 1, 2. (31)

As a result, we obtain the following general formula for the extinction cross sec-
tion of randomly oriented particles (Mishchenko, 1991b):

〈Cext〉 = 2π

k
Im

[〈S11(n,n)〉 + 〈S22(n,n)〉
]

= −2π

k2 Re
∞∑
n=1

n∑
m=−n

2∑
k=1

T kkmnmn(P ). (32)

A similar but less simple formula was derived by Borghese et al. (1984). Because
the choice of the particle coordinate system is arbitrary, we can conclude that the
orientation-averaged extinction cross section is proportional to the real part of the
trace of the T matrix computed in an arbitrary reference frame. An equally sim-
ple formula can be derived for the scattering cross section of randomly oriented
particles (Mishchenko, 1991a; Khlebtsov, 1992):

〈Csca〉 = 2π

k2

∞∑
n=1

∞∑
n′=1

n∑
m=−n

n′∑
m′=−n′

2∑
k=1

2∑
l=1

∣∣T klmnm′n′(P )
∣∣2. (33)

The orientation-averaged extinction and scattering cross sections must be in-
variant with respect to the choice of the coordinate system. And indeed, using
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Eq. (24) and the unitarity property of Wigner D functions (Varshalovich et al.,
1988),

n∑
m′′=−n

[
Dnm′′m(α, β, γ )

]∗
Dnm′′m′(α, β, γ ) = δmm′ , (34)

we derive the following two general invariants:∑
m

T klmnmn(L) =
∑
m

T klmnmn(P ), (35)∑
mm′

∣∣T klmnm′n′(L)
∣∣2 =

∑
mm′

∣∣T klmnm′n′(P )
∣∣2, k, l = 1, 2. (36)

Energy conservation requires that the orientation-averaged extinction cross
section always be larger than or equal to the orientation-averaged scattering cross
section. Therefore, the elements of the T matrix computed in an arbitrary refer-
ence frame must satisfy the partial inequality [cf. Eqs. (32), (33), (35), and (36)]∑

nn′mm′kl

∣∣T klmnm′n′(P )
∣∣2 ≤ −Re

∑
nmk

T kkmnmn(P ), (37)

where the equality holds only for lossless particles. It is easy to show that this
partial inequality is consistent with Eq. (20).

Computation of the elements of the scattering matrix given by Eq. (61) of
Chapter 1 requires orientation averaging of products of amplitude matrix ele-
ments. This problem was addressed by Mishchenko (1991a) for the case of rota-
tionally symmetric particles, that is, when Eqs. (25) and (26) apply. His approach
is based on exploiting the Clebsch–Gordan expansion

dnmm′(β)dn
′
m1m

′
1
(β) =

n+n′∑
n1=|n−n′ |

C
n1m+m1
nmn′m1

C
n1m

′+m′
1

nm′n′m′
1
d
n1
m+m1, m

′+m′
1
(β) (38)

and the orthogonality relation∫ π

0
dβ sinβ dnmm′(β)dn

′
mm′(β) = δnn′

2

2n+ 1
, (39)

where Cijklmn are the well-known Clebsch–Gordan coefficients, which can be ef-
ficiently computed using the recurrence formulas listed by Varshalovich et al.
(1988). Furthermore, instead of directly computing the scattering matrix elements,
Mishchenko (1991a) first computed the expansion coefficients appearing in Eqs.
(72)–(77) of Chapter 1. Because both the expansion coefficients and the T(P )
matrix elements are independent of the directions and polarization states of the
incident and scattered beams, one may expect a direct relationship between these
two sets of quantities that does not involve any angular variables. And indeed,
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Mishchenko (1991a) derived simple analytical formulas directly expressing the
expansion coefficients of Eqs. (72)–(77) of Chapter 1 in the elements of the T(P )
matrix. As a result, the computation of the highly complicated angular structure
of light scattered by a nonspherical particle in a fixed orientation (Section V of
Chapter 2) with further numerical integration over orientations is avoided, thereby
making the analytical averaging method very accurate and fast. The most time-
consuming part in any computations based on the T -matrix method is evaluation
of multiple nested summations, and an important advantage of the analytical ap-
proach is that the maximal order of nested summations involved is only three. This
makes the analytical approach ideally suited to developing an efficient computer
code (Section VI). Direct comparisons of the analytical method and the straight-
forward averaging procedure using numerical angular integrations over particle
orientations (Wiscombe and Mugnai, 1986; Barber and Hill, 1990; Sid’ko et al.,
1990) have shown that the former is faster by a factor of several tens (Mishchenko,
1991a; W. M. F. Wauben, personal communication).

Mackowski and Mishchenko (1996) extended the analytical approach to ran-
domly oriented particles lacking rotational symmetry. Khlebtsov (1992) and Fu-
cile et al. (1993) studied the same problem but did not use the idea of expanding
the scattering matrix elements in generalized spherical functions.

Mishchenko (1991b, 1992a) considered the problem of computing the extinc-
tion matrix for nonspherical particles axially oriented by an external force. An
orientation distribution function symmetric with respect to the z axis of the lab-
oratory reference frame is given by Eq. (55) of Chapter 1, which, along with
Eqs. (24) and (38), leads to a simple formula for the orientationally averaged T
matrix in the laboratory frame:〈
T klmnm′n′(L)

〉
=
∫ 2π

0
dα

∫ π

0
dβ sin β

∫ 2π

0
dγ T klmnm′n′(L;α, β, γ )po(α, β, γ )

= δmm′
M∑

m1=−M

n+n′∑
n1=|n−n′ |

(−1)m+m1pn1C
n10
nmn′−mC

n10
nm1n

′−m1
T klm1nm1n

′(P ), (40)

whereM = min(n, n′) and

pn =
∫ π

0
dβ sinβ p(β)dn00(β) (41)

are coefficients in the expansion of the function p(β) in Legendre polynomials:

p(β) =
∞∑
n=0

2n+ 1

2
pnPn(cosβ). (42)
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Equations (18) and (40) along with the optical theorem, Eqs. (35)–(41) of Chap-
ter 1, provide a fast and accurate method for computing the ensemble-averaged
extinction matrix with respect to the laboratory frame. Equation (40) was later
rederived by Fucile et al. (1995).

The analytical orientation-averaging approach for randomly and axially ori-
ented nonspherical particles was straightforwardly extended by Paramonov
(1995) to arbitrary quadratically integrable orientation distribution functions. Un-
fortunately, the resulting formulas involve highly nested summations, and their
efficient numerical implementation may be problematic. In this case, the stan-
dard averaging approach employing numerical integrations over orientation an-
gles may prove to be more efficient. This approach was described by Wiscombe
and Mugnai (1986), Barber and Hill (1990), and Vivekanandan et al. (1991) and
is based on the equivalence of averaging over particle orientations and averaging
over directions of light incidence and scattering and the fact that knowledge of
the T(P ) matrix enables computations of the amplitude matrix for any direction
of light incidence and scattering with respect to the particle coordinate system,
Eq. (18).

IV. COMPUTATION OF THE T MATRIX FOR
SINGLE PARTICLES

The standard scheme for computing the T matrix for single homogeneous scat-
terers in the particle reference frame is called the extended boundary condition
method (EBCM) and is based on the vector Huygens principle (Waterman, 1971).
The general problem is to find the field scattered by an object bounded by a closed
surface S (Fig. 1). The Huygens principle establishes the following relationship
between the incident field Einc(R), the total external field E(R) (i.e., the sum of
the incident and the scattered fields), and the surface field on the exterior of S:

E(R)

0

}
= Einc(R)+ integral over S, R

{
outside S

inside S,
(43)

where the integral term involves the unknown surface field on the exterior of S.
The gist of the numerical procedure is to find the surface field on the exterior
of S by applying Eq. (43) to points inside S and then to use this surface field to
compute the integral term on the right-hand side of Eq. (43) for points outside S,
that is, the scattered field.

In more technical terms, the incident and the scattered waves are expanded
in regular and outgoing VSWFs, respectively, according to Eqs. (1) and (2). The
convergence of the expansion of Eq. (1) is guaranteed inside an inscribed sphere
with radius R<, whereas Eq. (2) is strictly valid only for points outside the cir-
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cumscribing sphere. The internal field can also be expanded in VSWFs regular at
the origin:

Eint(R) =
∞∑
n=1

n∑
m=−n

[
cmn Rg Mmn(mkR)+ dmn Rg Nmn(mkR)

]
,

R inside S, (44)

where m is the refractive index of the particle relative to that of the surrounding
medium. Via boundary conditions, the surface field on the exterior of S can be
expressed in the surface field on the interior of S. The latter is given by Eq. (44).
As a result, the application of Eqs. (1), (43), and (44) to points withR < R< gives
a matrix equation [

a
b

]
=
[

Q11 Q12

Q21 Q22

][
c
d

]
, (45)

in which the elements of the Q matrix are simple surface integrals of products of
VSWFs that depend only on the particle size, shape, and refractive index. Inver-
sion of this matrix equation expresses the unknown expansion coefficients of the
internal field c and d in the known expansion coefficients of the incident field a
and b. Analogously, the application of boundary conditions and Eq. (44) to the
integral term on the right-hand side of Eq. (43) for points with R > R> and using
Eq. (2) gives the following matrix expression:[

p
q

]
= −

[
Rg Q11 Rg Q12

Rg Q21 Rg Q22

][
c
d

]
, (46)

where the elements of the Rg Q matrix are also given by simple integrals over
the particle surface and depend only on the particle characteristics. By comparing
Eqs. (16), (45), and (46), we obtain

T = −Rg QQ−1. (47)

Finally, Eq. (16) gives the expansion coefficients of the scattered field and, thus,
the scattered field itself.

General formulas for computing the matrices Q and Rg Q for particles of an
arbitrary shape are given by Tsang et al. (1985, Chapter 3). These formulas be-
come much simpler for rotationally symmetric particles provided that the z axis
of the particle coordinate system coincides with the axis of particle symmetry
[pages 187 and 188 of Tsang et al. (1985); cf. Eqs. (25) and (26)]. This sim-
plicity explains why nearly all numerical results computed with EBCM pertain
to bodies of revolution. However, several successful attempts have been made
to apply EBCM to scatterers lacking rotational symmetry such as triaxial ellip-
soids (Schneider and Peden, 1988; Schneider et al., 1991) and cubes (Wriedt and
Doicu, 1998; Wriedt and Comberg, 1998; Laitinen and Lumme, 1998). Peterson
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and Ström (1974) (see also Bringi and Seliga, 1977a; Wang and Barber, 1979) ex-
tended EBCM to layered scatterers, while Lakhtakia et al. (1985b) and Lakhtakia
(1991) applied EBCM to light scattering by chiral particles embedded in an achi-
ral isotropic or chiral host medium.

Alternative derivations and formulations of EBCM are discussed by Ström
(1975), Barber and Yeh (1975), Agarwal (1976), Bates and Wall (1977), and
Morita (1979). The derivation given by Waterman (1979) is especially simple
and makes it quite clear that EBCM is not based on the Rayleigh hypothesis, and
that scattering objects need not be convex and close to spherical in order to ensure
the validity of EBCM. It is interesting that EBCM can in fact be derived from
the Rayleigh hypothesis (Burrows, 1969; Bates, 1975; Chew, 1990, Section 8.5;
Schmidt et al., 1998). This does not mean, however, that EBCM is equivalent to
the Rayleigh hypothesis or requires it to be valid (Lewin, 1970). The equivalence
of the two approaches would follow from a reciprocal derivation of the Rayleigh
hypothesis from EBCM, but this has not been done so far.

A serious practical difficulty with EBCM is the poor numerical stability of cal-
culations for particles with very large real and/or imaginary parts of the refractive
index, large sizes compared with a wavelength, and/or extreme geometries such
as spheroids with large axial ratios. The origin of this problem can be explained
as follows. Although the expansions of Eqs. (1) and (2) are, in general, infinite,
in practical computer calculations they must be truncated to a finite maximum
size. This size depends on the required accuracy of computations and is found by
increasing the size of the Q and Rg Q matrices in unit steps until an accuracy cri-
terion is satisfied. Unfortunately, different elements of the Q matrix can differ by
many orders of magnitude, thus making the numerical calculation of the inverse
matrix Q−1 an ill-conditioned process strongly influenced by round-off errors.
The ill-conditionality means that even small numerical errors in the computed el-
ements of the Q matrix can result in large errors in the elements of the inverse
matrix Q−1. The round-off errors become increasingly significant with increasing
particle size parameter and/or aspect ratio and rapidly accumulate with increasing
size of the Q matrix. As a result, T -matrix computations for large and/or highly
aspherical particles can be slowly convergent or even divergent (Barber, 1977;
Varadan and Varadan, 1980; Wiscombe and Mugnai, 1986).

Efficient approaches for overcoming the numerical instability problem in com-
puting the T matrix for highly elongated particles are the so-called iterative
EBCM (IEBCM) and a closely related multiple multipole EBCM (Iskander et
al., 1983; Lakhtakia et al., 1983; Iskander and Lakhtakia, 1984; Iskander et al.,
1989b; Doicu and Wriedt, 1997a, b; Wriedt and Doicu, 1997, 1998). The main
idea of IEBCM is to represent the internal field by several subdomain spherical
function expansions centered on the major axis of an elongated scatterer. These
subdomain expansions are linked to each other by being explicitly matched in the
appropriate overlapping zones. IEBCM has been used to compute light scattering
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and absorption by highly elongated lossy and low-loss dielectric scatterers with
aspect ratios as large as 17. In some cases the use of IEBCM instead of the regular
EBCM allows one to more than quadruple the maximal convergent size parame-
ter. The disadvantage of IEBCM is that its numerical stability is achieved at the
expense of a considerable increase in computer code complexity and required
central processing unit (CPU) time.

Another approach to deal with the numerical instability of the regular EBCM
exploits the unitarity property of the T matrix for nonabsorbing particles (Wa-
terman, 1973; Lakhtakia et al., 1984, 1985a). This technique is based on iterative
orthogonalization of the T matrix, is simple and computationally efficient, and re-
sults in numerically stable T matrices for elongated and flattened spheroids with
aspect ratios as large as 20. The obvious disadvantage of this approach is that it is
applicable only to perfectly conducting or lossless dielectric scatterers. Wielaard
et al. (1997) demonstrated that a better approach is to invert the Q matrix using a
special form of the lower triangular–upper triangular (LU) factorization method.
This technique is applicable not only to nonabsorbing but also to lossy particles
and increases the maximum convergent size parameter for lossless and low-loss
particles by a factor of several units.

Mishchenko and Travis (1994a) showed that an efficient general method for
ameliorating the numerical instability of inverting the Q matrix is to improve the
accuracy with which this matrix is calculated and inverted. Specifically, they cal-
culated the elements of the Q matrix and performed the matrix inversion using
extended-precision (REAL*16 and COMPLEX*32) instead of double-precision
(REAL*8 and COMPLEX*16) floating-point variables. Extensive checks have
shown that this approach more than doubles the maximum size parameter for
which convergence of T -matrix computations can be achieved. Timing tests per-
formed on IBM RISC workstations show that the use of extended-precision arith-
metic slows computations down by a factor of only 5 to 6. Other key features
of this approach are its simplicity and the fact that little additional programming
effort and negligibly small extra memory are required.

An interesting method for computing the T matrix for spheroids was developed
by Schulz et al. (1998a), who used the separation of variables method to derive the
T matrix in spheroidal coordinates and then converted it into the regular T matrix
in spherical coordinates.

V. AGGREGATED AND COMPOSITE PARTICLES

According to Eqs. (21) and (22), VSWFs in a rotated reference frame can be
expanded in VSWFs in the original reference frame, thereby leading to a simple
rotation transformation rule for the T matrix, Eq. (24). Analogously, VSWFs in
a translated coordinate system can be expressed in VSWFs in the original co-
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ordinate system via the translation addition theorem, resulting in a translation
transformation rule for the T matrix. The latter can be used to develop a T -matrix
scheme to compute light scattering by aggregated particles. This superposition
T -matrix approach was developed by Peterson and Ström (1973) (see also Peter-
son, 1977) for the general case of a cluster composed of an arbitrary number of
nonspherical components.

Consider a cluster consisting of N arbitrarily shaped and arbitrarily oriented
particles illuminated by a plane external electromagnetic wave and assume that
the T matrices of each of the particles are known with respect to their local coor-
dinate systems with origins inside the particles. Assume also that all these local
coordinate systems have the same spatial orientation as the laboratory reference
frame and that the smallest circumscribing spheres of the component particles
centered at the origins of their respective local coordinate systems do not over-
lap. [Note that Peterson (1977) discusses weaker restrictions on possible particle
configurations.] The total electric field scattered by the entire cluster can be repre-
sented as a superposition of individual scattering contributions from each particle:

Esca(R) =
N∑
j=1

Esca
j (R), (48)

where R connects the origin of the laboratory coordinate system and the observa-
tion point. Because of electromagnetic interactions between the component parti-
cles, the individual scattered fields are interdependent and the total electric field
illuminating each particle is the superposition of the external incident field Einc

0
and the sum of the individual fields scattered by all other component particles:

Einc
j (R) = Einc

0 (R)+
∑
l �=j

Esca
l (R), j = 1, . . . , N. (49)

To make use of the information contained in the j th particle T matrix, we must
expand the fields incident on and scattered by this particle in VSWFs centered at
the origin of the particle’s local coordinate system:

Einc
j (R) =

∑
nm

[
a
j
mn Rg Mmn(kRj )+ bjmn Rg Nmn(kRj )

]
=

∑
nm

[(
a
j0
mn +

∑
l �=j
a
jl
mn

)
Rg Mmn(kRj )

+
(
b
j0
mn +

∑
l �=j
b
jl
mn

)
Rg Nmn(kRj )

]
, j = 1, . . . , N,

(50)
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Esca
j (R) =

∑
nm

[
p
j
mnMmn(kRj )+ qjmnNmn(kRj )

]
, Rj > R>j ,

j = 1, . . . , N, (51)

where the Rj connects the origin of the j th particle local coordinate system and
the observation point R,R>j is the radius of the smallest circumscribing sphere of

the j th particle, the expansion coefficients aj0
mn and bj0

mn describe the external in-
cident field, and the expansion coefficients ajlmn and bjlmn describe the contribution
of the lth particle to the field illuminating the j th particle:

Einc
0 (R) =

∑
nm

[
a
j0
mn Rg Mmn(kRj )+ bj0

mn Rg Nmn(kRj )
]
,

j = 1, . . . , N, (52)

Esca
l (R) =

∑
nm

[
a
jl
mn Rg Mmn(kRj )+ bjlmn Rg Nmn(kRj )

]
,

j, l = 1, . . . , N. (53)

The expansion coefficients of the illuminating and scattered fields are related via
the j th particle T matrix Tj :[

pj

qj

]
= Tj

([
aj0

bj0

]
+
∑
l �=j

[
aj l

bj l

])
, j = 1, . . . , N. (54)

The field scattered by the lth particle can also be expanded in VSWFs centered at
the origin of the lth local coordinate system:

Esca
l (R) =

∑
νµ

[
plµνMµν(kRl)+ qlµνNµν(kRl )

]
, Rl > R>l, (55)

where Rl connects the origin of the lth particle coordinate system and the obser-
vation point R. Using the translation addition theorem (Tsang et al., 1985, Chap-
ter 6), the VSWFs in Eq. (55) can be expanded in regular VSWFs originating
inside the j th particle:

Mµν(kRl ) =
∑
nm

[
Amnµν(kRlj )Rg Mmn(kRj )+ Bmnµν(kRlj )Rg Nmn(kRj )

]
,

Rj < Rlj , (56)

Nµν(kRl ) =
∑
nm

[
Bmnµν(kRlj )Rg Mmn(kRj )+Amnµν(kRlj )Rg Nmn(kRj )

]
,

Rj < Rlj , (57)

where the vector Rlj = Rl − Rj connects the origins of the local coordinate sys-
tems of the lth and the j th particles, and the translation coefficients Amnµν(kRlj )
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and Bmnµν(kRlj ) are given by the analytical expressions listed on page 449 of
Tsang et al. (1985). Comparing Eqs. (53)–(57), we finally derive in matrix nota-
tion [

pj

qj

]
= Tj

([
aj0

bj0

]
+
∑
l �=j

[
A(kRlj ) B(kRlj )
B(kRlj ) A(kRlj )

][
pl

ql

])
,

j = 1, . . . , N. (58)

Because the expansion coefficients of the external plane electromagnetic wave
a
j0
mn and bj0

mn and the translation coefficients Amnµν(kRlj ) and Bmnµν(kRlj ) can
be computed via closed-form analytical formulas, Eq. (58) can be considered a
system of linear algebraic equations that can be solved numerically and yields the
expansion coefficients of the individual scattered fields pjmn and qjmn for each of
the cluster components. When these coefficients are known, Eqs. (51) and (48)
give the total field scattered by the cluster.

Equation (58) becomes especially simple for a cluster composed of spherical
particles because in this case the individual particle T matrices are diagonal with
standard Lorenz–Mie coefficients standing along their main diagonal [Eqs. (27)–
(29)]. The resulting equation is identical to that derived using the so-called multi-
sphere superposition formulation or multisphere separation of variables technique
(Bruning and Lo, 1971; Borghese et al., 1979, 1984; Hamid et al., 1990; Fuller,
1991; Mackowski, 1991; Ioannidou et al., 1995). In this regard, the latter can be
considered a particular case of the superposition T -matrix method. Solutions of
Eq. (58) for clusters of spheres have been obtained using different numerical tech-
niques (direct matrix inversion, method of successive orders of scattering, conju-
gate gradients method, method of iterations, recursive method) and have been
extensively reported in the literature (Hamid et al., 1991; Fuller, 1994a, 1995a; de
Daran et al., 1995; Xu, 1995; Tishkovets and Litvinov, 1996; Rannou et al., 1997;
Videen et al., 1998). Fikioris and Uzunoglu (1979), Borghese et al. (1992, 1994),
Fuller (1995b), Mackowski and Jones (1995), and Skaropoulos et al. (1994, 1996)
extended the superposition approach to the case of internal aggregation by solv-
ing the problem of light scattering by spherical particles with eccentric spherical
inclusions, whereas Videen et al. (1995b) considered a more general case of a
sphere with an irregular inclusion. It should be noted that particles with single in-
clusions can also be treated using the standard EBCM for multilayered scatterers
(Peterson and Ström, 1974).

Inversion of Eq. (58) gives (Mackowski, 1994)

[
pj

qj

]
=

N∑
l=1

Tj l
[

al0

bl0

]
, j = 1, . . . , N, (59)
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where the matrix Tj l transforms the expansion coefficients of the incident field
centered at the lth particle into the j th-particle-centered expansion coefficients
of the field scattered by the j th particle. The calculation of the Tj l matrices im-
plies numerical inversion of a large matrix and can be a time-consuming process.
However, these matrices are independent of the incident field and depend only on
the cluster configuration and shapes and orientations of the component particles.
Therefore, they need be computed only once and then can be used in computations
for any direction and polarization state of the incident field.

Furthermore, in the far-field region the scattered-field expansions from the in-
dividual particles can be transformed into a single expansion centered at the origin
of the laboratory reference frame. This single origin can represent the average of
the component particle positions but in general can be arbitrary. The first step is
to expand the incident and total scattered fields in VSWFs centered at the origin
of the laboratory reference frame according to Eqs. (1) and (2). We again employ
the translation addition theorem given by

Rg Mmn(kR) =
∑
νµ

[
RgAµνmn(kR0l)Rg Mµν(kRl)

+ RgBµνmn(kR0l)Rg Nµν(kRl)
]
, (60)

Rg Nmn(kR) =
∑
νµ

[
RgBµνmn(kR0l )Rg Mµν(kRl)

+ RgAµνmn(kR0l)Rg Nµν(kRl )
]

(61)

and by reciprocal formulas

Mmn(kRj ) =
∑
νµ

[
RgAµνmn(kRj0)Mµν(kR)+ RgBµνmn(kRj0)Nµν(kR)

]
,

R > Rj0, (62)

Nmn(kRj ) =
∑
νµ

[
RgBµνmn(kRj0)Mµν(kR)+ RgAµνmn(kRj0)Nµν(kR)

]
,

R > Rj0, (63)

where R0l = R − Rl , Rj0 = Rj − R, and the translation coefficients
RgAµνmn(kR0l) and RgBµνmn(kR0l ) differ fromAµνmn(kR0l) andBµνmn(kR0l )

in that they are based on spherical Bessel functions rather than on spherical Han-
kel functions. We then easily derive[

al0

bl0

]
=

[
Rg A(kR0l) Rg B(kR0l)

Rg B(kR0l) Rg A(kR0l )

][
a
b

]
, l = 1, . . . , N, (64)
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[
p
q

]
=

N∑
j=1

[
Rg A(kRj0) Rg B(kRj0)

Rg B(kRj0) Rg A(kRj0)

] [
pj

qj

]
. (65)

Finally, using Eqs. (1), (2), (59), (64), and (65), we obtain Eq. (16), in which the
cluster T matrix is given by

T =
N∑
j,l=1

[
Rg A(kRj0) Rg B(kRj0)

Rg B(kRj0) Rg A(kRj0)

]
Tj l

[
Rg A(kR0l) Rg B(kR0l )

Rg B(kR0l ) Rg A(kR0l)

]
(66)

(Peterson and Ström, 1973; Mackowski, 1994). This cluster T matrix can be used
in Eq. (18) to compute the amplitude matrix and in the analytical procedure for
averaging over orientations described in Section III (Mishchenko and Mackowski,
1994; Mackowski and Mishchenko, 1996).

It is rather straightforward to derive a translation transformation law for the
T matrix analogous to the rotation transformation law given by Eq. (24). Sup-
pose that the T matrix of an arbitrary (single or clustered) nonspherical particle
is known in coordinate system 1 and we seek the T matrix in a translated coor-
dinate system 2 having the same spatial orientation. After simple manipulations,
we obtain

T(2) =
[

Rg A(−kR21) Rg B(−kR21)

Rg B(−kR21) Rg A(−kR21)

]
T(1)

[
Rg A(kR21) Rg B(kR21)

Rg B(kR21) Rg A(kR21)

]
,

(67)

where the vector R21 originates at the origin of coordinate system 2 and connects
it with the origin of coordinate system 1. Because the extinction and scattering
cross sections averaged over a uniform orientation distribution must be indepen-
dent of the choice of the coordinate system, Eqs. (32) and (33) lead to the follow-
ing invariants with respect to translations of the coordinate system:∑

nmk

T kkmnmn(2) =
∑
nmk

T kkmnmn(1), (68)

∑
nmn′m′kl

∣∣T klmnm′n′(2)
∣∣2 =

∑
nmn′m′kl

∣∣T klmnm′n′(1)
∣∣2. (69)

Different versions of the superposition T -matrix approach were derived by
Chew et al. (1994), Tseng and Fung (1994), and Şahin and Miller (1998). An
important modification of the T -matrix superposition method was developed by
Ström and Zheng (1988), Zheng (1988), and Zheng and Ström (1989, 1991). Sev-
eral alternative expressions for the T matrix of a composite object were derived,
which enabled the authors to avoid the geometrical constraints inherent in the
standard approach. As a result, this technique can be applied to composite par-
ticles with concavo-convex components and can also be used in computations
for particles with extreme geometries, for example, highly elongated or flattened
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spheroids. In this regard, the technique can be considered a supplement to the
methods for suppressing the numerical instability of the regular T -matrix ap-
proach described in the previous section.

VI. PUBLIC-DOMAIN T -MATRIX CODES

Several Fortran T -matrix codes for computing electromagnetic scattering by
rotationally symmetric particles in fixed and random orientations are available on
the World Wide Web at http://www.giss.nasa.gov/~crmim. The codes incorporate
all the latest developments, including the analytical orientation averaging pro-
cedure for randomly oriented scatterers (Mishchenko, 1991a) and an automatic
convergence procedure (Mishchenko, 1993), are extensively documented, have
been thoroughly tested, and provide a reliable and efficient practical instrument.
The codes compute the complete set of scattering characteristics, that is, the am-
plitude matrix for particles in a fixed orientation (Section IV of Chapter 1) and the
optical cross sections, expansion coefficients, and scattering matrix for randomly
oriented particles (Section XI of Chapter 1).

The code for two-sphere clusters with touching and separated components is
based on the superposition T -matrix technique (Mackowski, 1994; Mishchenko
and Mackowski, 1994, 1996). The codes for homogeneous nonspherical particles
are based on EBCM and are provided in two versions. One version utilizes only
double-precision floating-point variables, whereas the other one computes the
T -matrix elements using extended-precision variables. The extended-precision
code is slower than the double-precision code, especially on supercomputers, but
allows computations for significantly larger particles. The EBCM codes have an
option for inverting the Q matrix using either standard Gaussian elimination with
partial pivoting or a special form of the LU factorization (Wielaard et al., 1997).
The latter approach is especially beneficial for nonabsorbing or weakly absorb-
ing scatterers. In the present setting, the EBCM codes are directly applicable to
spheroids, finite circular cylinders, and even-order Chebyshev particles (Fig. 2).
Note that Chebyshev particles are rotationally symmetric bodies obtained by con-
tinuously deforming a sphere by means of a Chebyshev polynomial of degree n
(Wiscombe and Mugnai, 1986). Their shape in the particle coordinate system with
the z axis along the axis of symmetry is given by

r(ϑ, ϕ) = r0
[
1 + ξTn(cosϑ)

]
, |ξ | < 1, (70)

where r0 is the radius of the unperturbed sphere, ξ is the deformation parameter,
and Tn(cosϑ) = cosnϑ is the Chebyshev polynomial of degree n. The codes can
be easily modified to accommodate any rotationally symmetric particle having a
plane of symmetry perpendicular to the axis of rotation. Mishchenko and Travis
(1998) provide a detailed user guide to the EBCM codes.



Figure 2 Types of rotationally symmetric particles that can be accommodated by publicly available T -matrix codes. Tn(ξ) denotes
the nth-degree Chebyshev particle with deformation parameter ξ .
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Figure 3 Scattering matrix elements for randomly oriented circular cylinders with diameter-to-
length ratio 1, surface-equivalent sphere size parameter 180, and refractive index 1.311. Thin curves
show T -matrix computations; thick curves represent ray-tracing results.

As for all exact numerical techniques for computing electromagnetic scatter-
ing by nonspherical particles, the performance of the T -matrix codes in terms of
convergence and memory and CPU time requirements strongly depends on the
options used and such particle characteristics as shape, size parameter (defined
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Figure 4 Scattering matrix elements for a two-sphere cluster in random orientation (thick curves)
and a single sphere (thin curves). The component spheres and the single sphere have the same size
parameter 40 and the same refractive index 1.5 + 0.005i.

here as the wavenumber times the surface-equivalent sphere radius), and refrac-
tive index. For example, the maximal convergent size parameter increases from
12 for oblate spheroids with an aspect ratio of 20 and a refractive index of 1.311 to
more than 160 for composition-equivalent oblate spheroids with an aspect ratio of
1.5. The sensitivity to refractive index is weaker but is also significant. The use of
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extended-precision variables more than doubles the maximal convergent size pa-
rameter, but makes computations slower. The use of the special LU-factorization
scheme in place of standard Gaussian elimination to compute the Q−1 matrix
can more than triple the maximal convergent size parameter for nonabsorbing
or weakly absorbing particles. All these factors should be carefully taken into
account, especially in planning massive computer calculations for large particle
ensembles (Mishchenko and Travis, 1998).

Figures 3 and 4 exemplify the capabilities of the T -matrix codes. Figure 3
compares T -matrix and geometric optics computations for randomly oriented
circular cylinders with diameter-to-length ratio 1, surface-equivalent sphere size
parameter 180, and refractive index 1.311. The small-amplitude oscillations in
the T -matrix curves are a manifestation of the interference structure typical of
monodisperse particles (Section V.A of Chapter 2). For this large size parame-
ter, the T -matrix computations closely reproduce the asymptotic geometric optics
behavior, in particular, such pronounced phase function features as the 46◦ halo
caused by minimum deviation at 90◦ prisms and the strong backscattering peak
caused by double internal reflections from mutually perpendicular facets (Macke
and Mishchenko, 1996). Figure 4 compares scattering matrix elements for a ran-
domly oriented two-sphere cluster with identical touching components and a sin-
gle sphere with size parameter equal to that of the cluster component spheres. It is
obvious that the dominant feature in the cluster scattering is the single scattering
from the component spheres, although this feature is somewhat reduced by co-
operative scattering effects and orientation averaging (Mishchenko et al., 1995).
The only distinct manifestations of the cluster nonsphericity are the departure of
the ratio a2/a1 from unity and the inequality of the ratios a3/a1 and a4/a1 (cf.
Section V.B of Chapter 2).

An older collection of EBCM codes developed by Barber and Hill (1990) is
also available on the World Wide Web (Flatau, 1998). The codes use single-
precision floating-point variables and do not incorporate the most recent devel-
opments.

VII. APPLICATIONS

Because of its high numerical accuracy, the T -matrix method is ideally suited
for producing benchmark results. Benchmark numbers for particles in fixed and
random orientations were reported by Mishchenko (1991a), Kuik et al. (1992),
Mishchenko et al. (1996a), Mishchenko and Mackowski (1996), Hovenier et al.
(1996), and Wielaard et al. (1997). They cover a range of equivalent-sphere size
parameters from a few units to 60 and are given with up to nine correct decimals.

The great computational efficiency of the T -matrix approach has been em-
ployed by many authors to study electromagnetic scattering by representative
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ensembles of nonspherical particles with various shapes and sizes. Systematic
computations for homogeneous and layered spheroids, finite circular cylinders,
Chebyshev particles, and two-sphere clusters in random orientation were reported
and analyzed by Mugnai and Wiscombe (1980, 1986, 1989), Wiscombe and
Mugnai (1986, 1988), Kuik et al. (1994), Mishchenko and Travis (1994b, c),
Mishchenko and Hovenier (1995), Mishchenko et al. (1995, 1996a, b), and
Quirantes (1999).

The T -matrix approach has been used in many practical applications. Warner
and Hizal (1976), Bringi and Seliga (1977b), Yeh et al. (1982), Aydin and
Seliga (1984), Kummerow and Weinman (1988), Vivekanandan et al. (1991),
Sturniolo et al. (1995), Haferman et al. (1997), Bringi et al. (1998), Aydin et
al. (1998), Seow et al. (1998), Czekala (1998), Czekala and Simmer (1998),
Prodi et al. (1998), and Roberti and Kummerow (1999) used T -matrix compu-
tations in remote-sensing studies of precipitation, whereas Toon et al. (1990),
Flesia et al. (1994), Mannoni et al. (1996), and Mishchenko and Sassen (1998)
analyzed depolarization measurements of stratospheric aerosols and contrail par-
ticles. Bantges et al. (1998) computed cirrus cloud radiance spectra in the ther-
mal infrared wavelength region. Mishchenko et al. (1997b) and Mishchenko and
Macke (1998) studied zenith-enhanced lidar backscatter and δ-function transmis-
sion by ice plates. Hill et al. (1984), Iskander et al. (1986), Lacis and Mishchenko
(1995), Khlebtsov and Mel’nikov (1995), Mishchenko et al. (1997a), Kahn et al.
(1997), Liang and Mishchenko (1997), Krotkov et al. (1997, 1999), Pilinis and
Li (1998), and von Hoyningen-Huene (1998) modeled scattering properties of
soil particles and mineral and soot aerosols using size/shape mixtures of ran-
domly oriented spheroids. Carslaw et al. (1998), Tsias et al. (1998), and Traut-
man et al. (1998) applied the T -matrix technique to remote sensing of polar
stratospheric clouds. Kouzoubov et al. (1998) computed the scattering matrix for
nonspherical ocean water particulates. Kolokolova et al. (1997) used T -matrix
computations to model the photometric and polarization properties of nonspheri-
cal cometary dust grains. Khlebtsov et al. (1996) calculated the extinction prop-
erties of colloidal gold sols. Quirantes and Delgado (1995, 1998) and Jalava
et al. (1998) applied the T -matrix method to particle size/shape determination.
Nilsson et al. (1998) analyzed near and far fields originating from light inter-
action with a spheroidal red blood cell. Latimer and Barber (1978), Barber and
Wang (1978), Wang et al. (1979), Goedecke and O’Brien (1988), Iskander et al.
(1989a), Evans and Fournier (1994), Streekstra et al. (1994), Macke et al. (1995),
Peltoniemi (1996), Wielaard et al. (1997), Mishchenko et al. (1997b), Baran et
al. (1998), Mishchenko and Macke (1998), and Liu et al. (1998) used numeri-
cally exact T -matrix computations to check the accuracy of various approximate
and numerical approaches. Lai et al. (1991), Mazumder et al. (1992), Ngo and
Pinnick (1994), and Borghese et al. (1998) analyzed the effect of nonspheric-
ity and inhomogeneity on morphology-dependent resonances in small particles.
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Mishchenko (1996) studied coherent effects in two-sphere clusters. Pitter et al.
(1998) analyzed second-order fluctuations of the polarization state of light scat-
tered by ensembles of randomly positioned spheroidal particles. Ruppin (1998)
studied polariton modes of spheroidal microcrystals of dispersive materials over
a wide range of spheroid sizes and eccentricities. Ho and Allen (1994) and Liu et
al. (1999) analyzed the effect of nonsphericity on numerical solutions of inverse
problems. Other applications of the T -matrix method were reported by Geller et
al. (1985), Hofer and Glatter (1989), Ruppin (1990), Ryde and Matijević (1994),
Xing and Greenberg (1994), Lumme and Rahola (1998), Balzer et al. (1998),
Mishchenko and Macke (1999), Evans et al. (1999), and Petrova (1999).
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