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History

- T-matrix method (TMM) is based on the extended boundary 
  condition method (EBCM) by Waterman (1965-1979)
- Barber and Yeh (1975-1982) actually introduced the name EBCM 
  and made the method more widely used
- the name 'T-matrix formalism' was introduced by Ström (1975)
- in acoustic applications, TMM is known as 'the null-field method' 
- Iskander et al. (1982-1984) introduced an iterative version of 
  TMM to improve the convergence
- Mishchenko (1990-1994) proposed to use of extended precision in 
  order to use TMM for higher size parameters, and also developed 
  an efficient way to use analytical averaging over orientations to 
  speed up computations



Basics of TMM

- TMM can be considered to be an extension of Mie 
  theory to particles without spherical symmetry
- in TMM incident, scattered and internal fields are 
  expanded in vector spherical harmonic functions
- the T-matrix itself transforms the incident field  
  expansion coefficients to the scattered field expansion 
  coefficients
- the main advantage of TMM over volume-based
  methods like DDA is an efficient use of symmetries, 
  better accuracy, and analytical averaging over 
  orientations



Computing the T-matrix

                                                           
 



Computing the T-matrix

Huygens principle is used to establish a relationship 
between the total field and the incident field using the 
integral equation,

where                      is the Green's function.

The surface integrals can be interpreted as surface 
currents that are the sources of the scattered field 
according to the equivalence theorem, but this also 
results in zero total field inside the scatterer.
The object is to solve the surface integrals using the 
incident field expansion and the physical characteristics 
of the scatterer.

{ E tot r 
0 }= E inc r ∇×∫S

n× Eoutsideg kRdS−
1

i0

∇×∇×∫S
n× H outsidegkRdS ,r {outside

inside }
g kR=

eikR

4R



Computing the T-matrix

Incident field:
1. Incident field is expanded in vector spherical 
    harmonic functions

2. The surface integrals are also expanded and the 
    surface currents                             and                     
    are solved using the incident field coefficients

E inc=−∫S
f n× Eoutside ,n× HoutsidedS

E incr =∑
n=1

N max

∑
m=−n

n

[amn Rg M mn k r bmn Rg N mn k r ] ,

n× E outside n× H outside



Computing the T-matrix

Internal field:
3. The internal field is expanded

4. The tangential components                and                

    are solved using the internal field coefficients
5. Using boundary conditions

    and                              a relation between the 
    incident and internal field coefficients is obtained

     in matrix form: 

n× H outside=n× H inside

n× E outside=n× E inside

[ab]=[Q11 Q12

Q21 Q22 ] [cd ]

E i nt r =∑
n=1

N max

∑
m=−n

n

[cmn
M mnmk r dmn

N mnmkr ]

n× E inside n× H inside



Computing the T-matrix

Scattered field:
6. The scattered field is expanded

7. Using the solved internal field coefficients, the 
    tangential components                      and                     
    
    can be obtained, and the scattered field, when 
    substituted into the integral equation

    in matrix form:

8. The T-matrix is: 

[ pq ]=−[RgQ11 Rg Q12

Rg Q21 Rg Q22 ] [cd ]

E sca r =∑
n=1

N max

∑
m=−n

n

[ pmn
M mnk r qmn

Nmn k r ] , rr sph

n× E inside n× H inside

T=−Rg QQ−1



Validity of TMM

- due to the singularity of Green's function, the 
  expansion is only valid for the regions outside the 
  circumscribing sphere (r>rsph)
- according to Rayleigh hypothesis the expansion is 
  valid anywhere outside the boundary, but this has 
  never been proved/disproved
- some investigations (Doicu, 1999) imply that it may 
  not be valid in certain cases
- convex shape is not required in the TMM formulation 
  (proved by Waterman, 1979)



Practical matters

- in practical applications, particle symmetries are used 
  to enhance the computational speed, and codes are 
  used only on certain simple shapes like spheroids, 
  finite circular cylinders etc.
- if the particle has a rotational symmetry with respect 
  to the Z-axis, all surface integrals reduce to single 
  integrals over the polar angle (θ), and the T-matrix 
  becomes symmetric with respect to the azimuth angle 
  (ϕ) 
- the integrals can be easily evaluated with Gauss 
  quadrature or the trapezium rule
- it is also possible to factor out the shape dependence 
  R(θ,ϕ) in the expansions, this allows efficient 
  computation for general star-like shapes, such as 
  Gaussian random spheres



Advantages of TMM

- computationally fast for rotationally symmetric particles, 
  O(N6) for computing Q and RgQ matrices, DDA is a 
  magnitude slower O(N7) (N is number of coefficients)
- exact solution for many nonspherical particles, largest 
  simulated cylinder about x=160
- for particles with spherical symmetry, it is the same as Mie 
  theory
- when the T-matrix of a particle in any orientation is known, 
  it can be computed in any other orientation a lot faster than 
  doing the T-matrix computations again
- T-matrix itself is a function of particle shape, size, refractive 
  index, and orientation, but is independent on incident 
  polarization and direction as well as the scattered direction
- orientation averaging can be done analytically using Euler 
  angle rotations, and it can be about a factor of several tens 
  faster than doing the numerical integration



Maximum size for T-matrix computations 
X = 160 

What it means in physical units for a sphere diameter in different 
wavelengths: 
• Near UV 0.1 µm, 5 µm 
• Visible 0.6 µm, 30 µm 
• W-band radar 2.7 mm, 138 mm 
• C-band radar 4 cm, 204 cm 



Limitations of TMM

- for particles with no symmetry, TMM is generally not 
  faster than DDA
- no available TMM codes for general starlike particles
- applicable only for homogeneous particles, but can be 
  extended to a layered structure
- small errors in the Q-matrix can become large errors in 
  Q-1, these errors increase as size or aspect ratio is 
  increased



More limitations for T-matrix method 

• When approaching very large size parameters, the additional memory space 
needed for the analytical orientation may become significant. In those cases the 
fixed orientation version with numerical averaging might be beneficial. 
 

• Recent studies [1] suggest that there are sources of severe numerical instabilities 
in the way the surface integrals are computed numerically in the extended 
boundary condition method. These are independent of the possible errors in the 
Q-matrix inversion. 
 

• With difficult cases, the convergence is sometimes reached, sometimes not, but 
the convergence limit seems arbitrary. 
 

• The T-matrix method is very precise to a certain level when it converges. 
However, it can be difficult to improve the accuracy by introducing more terms 
to the series, due to numerical problems. In DDA the accuracy will improve when 
the size of a single dipole is decreased. 
 

[1] Somerville, Auguie, LeRu (2012). Severe loss of precision in calculations of T-
matrix integrals. JQSRT 113. 



TMM applications

- shapes that can be modeled with the available TMM 
  codes:
   - spheroids
   - finite circular cylinders
   - Chebyshev-polynome shapes
   - finite polyhedral cylinders
   - cluster of spheres (uses the T-matrix formalism)
- in the near future, general star-like geometries will 
  (hopefully) be publicly available



Axisymmetric geometries for T-matrix 

Sphere, Chebyshev particles, spheroids, circular cylinders 



Computer implementation of the T-matrix method 

• Several exists, but probably the most popular are the fixed- and analytical 
orientation codes by Mishchenko 
 

• Written in Fortran 77, publically available. 
+ Well tested, efficient, several shapes 
- No dynamical memory allocation, problem with difficult cases 
- Problematic if difficulties in convergence 
- Input coded inside program, requires compiling for each set of input 

parameters 
 

• Includes possibility to average over size distribution, several possibilities for a size 
distribution. 
 

• Produces: Extinction and scattering cross-sections, asymmetry parameter, 
expansion coefficients and scattering matrix elements as a function of scattering 
angle. 



ksca (scattering coefficient, scattering cross section Csca divided by the volume) as a 
function of sphere diameter with nre running from 1.5 (starting at lowest) to 2 

(starting at highest) and nim as 0.001. The figure on the left is for the exact-sized 
particles, and on the right is the result after convolution with the size distribution. 

Why size distribution is important? 

Perfect shapes (spheres, spheroids etc.) do not exist in nature. Naturally-
occuring particles have always size distribution. Especially sphere, which is 
perfectly symmetric, has strong fluctuations in its scattering behavior, which is 
rarely seen in practice. 



TMM applications: spheroids

 



 

 



 

 



 

 



 

 



 

 



 

 



TMM applications: cylinders 
 



 

 



 

 



 

 



 TMM applications: Chebyshev shapes
 



 

 



 

 



 

 



 TMM applications: Prisms
 



 

 



TMM applications: Bi-spheres  



 



Available TMM codes

- Thomas Wriedt: www.t-matrix.de

- Michael Mishchenko: 
http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html

- Daniel Mackowski:  
http://www.eng.auburn.edu/users/dmckwski/scatcodes/

- Yu-lin Xu: http://www.scattport.org/files/xu/codes.htm

http://www.t-matrix.de/
http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://www.eng.auburn.edu/users/dmckwski/scatcodes/
http://www.scattport.org/files/xu/codes.htm



