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Abstract we consider scattering of electromagnetic waves by a finite discrete random medium
composed of spherical particles. The size of the random medium can range from microscopic sizes of a few
wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the
order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent
backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged
first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles
as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the
mean-free path length of incoherent extinction. In the radiative transfer part, at each absorption and
scattering process, we account for absorption with the help of the single-scattering albedo and peel off
the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then
generate a new scattering direction using the joint probability density for the local polar and azimuthal
scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the
radiative-transfer path and the reciprocal path and utilize the reciprocity of electromagnetic waves to verify
the computation. We illustrate the incoherent volume element scattering characteristics and compare

the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix
method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM for the current
cases of sparse and dense discrete random media studied.

1. Introduction

Multiple electromagnetic scattering in discrete random media of particles constitutes a challenging compu-
tational problem in classical electromagnetics. Whereas wavelength-scale random media can be assessed
accurately using, for example, the Superposition T-Matrix (STMM; e.g., Mackowski & Mishchenko, 2011;
Markkanen & Yuffa, 2017) and volume integral equation methods (e.g., Yl&-Oijala et al., 2014), unsurmount-
able computational difficulties arise for random media much larger than the wavelength. Furthermore,
whereas the classical radiative transfer approximation accompanied with coherent backscattering (RT-CB;
Muinonen, 2004) has been validated for sparse random media with particle volume densities smaller than
~5% (Muinonen et al., 2012), no accurate computational methods are available for dense random media with
high volume densities.

Our scientific motivation for resolving the open computational problem derives from two ubiquitous astro-
physical phenomena observed at small solar phase angles (the Sun-Object-Observer angle) for the Moon,
asteroids, Saturn’s rings, transneptunian objects, and atmosphereless solar system objects at large. First, a
nonlinear increase of brightness, commonly called the opposition effect (e.g., Barabashev, 1922), is observed
toward the zero phase angle in the magnitude scale. Second, the scattered light is observed to be partially
linearly polarized parallel to the Sun-Object-Observer plane, commonly called negative polarization (Lyot,
1929). This is contrary to the common positive polarization perpendicular to the scattering plane arising from
Rayleigh scattering and Fresnel reflection. In 1980s, the coherent backscattering mechanism was suggested
as a partial explanation for the phenomena (Muinonen, 1989; Shkuratov, 1985).

The RT-CB Monte Carlo ray tracing method relies on exponential extinction in a homogeneous scattering
and absorbing medium, where the scatterers are assumed to be in each others’ far-field regimes. Multiple
scattering takes place in the far-field approximation and is fully described by the 2 x 2 Jones scattering ampli-
tude matrices for the incident, fully transversely polarized electromagnetic field. The field representation
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is required due to the tracing of the electromagnetic phase difference between wave components interact-
ing along reciprocal paths. The 4 x 4 Mueller scattering matrices are utilized, for example, in the generation
of new interaction directions and in the numerical integration of the radiative transfer-only (RT-only) signal.

We generalize the RT-CB for dense discrete random media of scattering and absorbing particles by introduc-
ing incoherent first-order interactions among volume elements of particles within the random media (for an
early approach, see Muinonen, Markkanen, Penttild, Vdisanen, et al., 2016; Muinonen, Markkanen, Penttil,
Virkki, et al.,, 2016). In the first-order approximation, the scattered field of a given volume element realization
is the sum of the fields due to the individual spherical particles, accounting for the electromagnetic phase of
the incident field as well as the phase originally due to Green's function. In size, the volume elements must be
of the order of the wavelength or larger but nevertheless smaller than the extinction mean-free path of the
medium. The discrete random medium is considered to be fully packed with the volume elements, that is, the
volume density of the elements is 100%.

Our approach has been triggered, first, by the earlier Monte Carlo studies on volume element extinction
in random media of particles with sizes near and within the Rayleigh regime (Lu et al., 1995; Zurk et al.,
1995). Second, earlier studies mostly based on the Percus-Yevick approximation (e.g., Tsang et al., 1985; Tsang
& Ishimaru, 1987) as well as the more recent derivation of the RT equation from the Maxwell equations
for sparse discrete random media (Mishchenko et al., 2006) have encouraged us to search for more pre-
cise RT-related multiple-scattering methods for dense media. In summary, introducing incoherent volume
elements promises to remove shortcomings in classical RT for sparse random media.

In section 2, we present the basic theoretical framework for scattering and absorption by spherical particles.
We then describe multiple scattering in discrete spherical random media with sizes varying from the length
scale of a few wavelengths upward. We introduce the incoherent extinction, scattering, and absorption coef-
ficients of a volume element of particles. Section 3 provides an assessment of the numerical methods for the
computation of the extinction, scattering, and absorption coefficients, as well as the incoherent scattering
matrix elements. We also describe the key points of the Monte Carlo RT-CB method. In section 4, we show
our first results for incoherent volume element scattering characteristics and compare the results to those
obtained using the STMM. In section 5, we close the work with conclusions and future prospects.

2. Scattering Theory

2.1. Spherical Particles

Consider incident electromagnetic plane wave field in free space with wavelength 4 and wave number
k=2x /. For a spherical particle with size parameter x = ka (a is radius) and complex refractive index m iso-
lated in free space, the extinction, scattering, and absorption cross sections (respectively ¢, o,, and ¢,) and
efficiencies (q,, q,, and g,) are (Bohren & Huffman, 1983)

p— ae j— 2 <
Ge=—5=5 ;(2/+ 1)Re(a, + b)),
_ o 2 . 2 2 (1)
9=—5== ;(2/+ Dla,l + 1b,1),
O-a
qd, = 132 =dde — ;-

Here g, and b, are the vector spherical harmonics coefficients of the scattered electromagnetic field:

o my(mx)yr] (x) — w00/ (Mx)
P my(mx)El () — &0y (mx)
 wimx0w] (0 = my 0y (mx)
—y(mx)E(x) — mEOy] (mx)

where y; and ¢, are Riccati-Bessel functions and strictly related to the spherical Bessel and Hankel functions j
and hf”,
v () = Xj,(x),

3
£x) = xhV(x). ®
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The single-scattering albedo is

(o3
o= 4)
qe Ue
The scattering matrix S*™ and the normalized scattering phase matrix P'M for spherical particles are (super-
script LM for Lorenz-Mie)

stM — Ko, pM
4z ’
Sy |||2 +151,12 Sy |||2 — 150,12 0 0
ptM — 2 |15 |||2 — 151,17 ISy |||2 +15., 17 0 0 ’ )
x2q, 0 0 Re(ST,Syp)  Im(SLy Sy )

0 0 —Im(S1 Sy ReGLu3yy)

dQ
/4 @ =1,

where the amplitude scattering matrix elements S, , and S, are

= 2/+1 dP!(cos ) 1
Su=) {a, ! +b mPf (cosO) |,

70+ do
il dP!(cos 6) ©
2041 1 /
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and P} are associated Legendre functions.

2.2. Superposition T-Matrix Method

Consider electromagnetic scattering by a system of multiple nonintersecting spheres in the frequency domain
using the Maxwell equations. The scattering problem can be solved by applying the superposition princi-
ple, that is, the total scattered field E* can be represented as the sum of partially scattered fields E; from
each sphere:

N
E=)E, (7)
i=1

in which N is the number of spheres. The partial fields are expanded with the spherical vector wave functions
M, expressed with respect to the origin of the ith sphere as

E~) am, (8)
v

where g; are the scattering coefficients and v is the multiindex v = {n,m,k} withn=1,...,N, m=—-n, ...,n,
and k = 1, 2. The scattering equations in coefficient space can be expressed as

N
a@=Ta" +T, Y (SIR)a= foralli=1,...,N, 9)
J=1
where T; is the T-matrix of the ith sphere and (S|R){ is the translation matrix that translates the coefficients a}?ca
of the scattered field by sphere j into the incoming coefficients of sphere i (Cruzan, 1962).

The scattering equation (9) is solved iteratively by the generalized minimum residual method. The matrix-
vector multiplication, required in each iteration step, is accelerated by the fast multipole method (Greengard &
Rokhlin, 1987; Gumerov & Duraiswami, 2005). In our implementation (FaSTMM, Markkanen & Yuffa, 2017), the
so-called rotation — axial translation — inverse rotation technique is used with recursive computations of the
axial translation (Chew, 1992) and rotation coefficients (Choi et al., 1999).

2.3. Scattering by Discrete Random Media

Consider next a finite, spherical medium (radius R, size parameter X = kR) of randomly distributed spherical
particles with a volume density of v (Figure 1). The finite medium is assumed to be located in free space, and
an RT-CB solution is searched for the extinction, scattering, and absorption characteristics of the medium.
It is here postulated that the incoherent extinction, scattering, and absorption characteristics for a volume
element of the medium are needed as input for the numerical method.
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In order to proceed, we utilize the spherical geometry once more: consider
a spherical volume element (radius R, size parameter X, = kR;) completely
within the random medium. We assign a spherical particle to the volume
element if the particle center is located within the element. We envisage
that the volume density is approximately balanced by the omission of par-
ticles intersecting the volume element but with their centers nevertheless
outside the volume element. Furthermore, for the time being, we omit any

Figure 1. Discrete spherical random medium of equal-sized spherical
particles. The phase angle « denotes the angle between the source of

surface effects arising from the volume element intersecting the boundary
of the random medium.

Due to the stochastic nature of the random medium, the number and loca-
tion of the spherical particles within the volume element will vary both as
a function of the element location in the random medium realization and
from one random medium realization to another.

Let us derive the ensemble-averaged incoherent extinction, scatter-
ing, and absorption coefficients of the volume element. We write the
ensemble-averaged first moment of the field scattered by the volume
element (the mean or coherent scattered field) as

n

S,C — S I l S
E(r) = (B(0) = im — 3 E}(n). (10)

i=1

where n is the number of volume element realizations and E; is the scat-

illumination (in the direction —n;,) and the observer (ny,) as seen from the tered field from volume element realization .

object. The scattering angle is = = — a. The size parameters of the random

The incoherent scattered field from volume element realization i is then

medium and particles are kR and ka, respectively. Finally, k = 2z /4 is the

wave number and 4 is the wavelength.

obtained by subtracting the coherent scattered field from the scattered
field of the realization,

E°(r) = EX(r) — E*(r). (11)

Consequently, the first moment of the incoherent scattered field vanishes,
(E(r)) =0, (12)
and the second moment of the incoherent scattered field equals
(IE(0%) = (IEE(N|?) — [E*“(n)|*. (13)
Within the present framework, the second moment of the scattered field thus equals the sum of the second

moment of the incoherent field and the absolute value of the coherent field squared.

In the first-order approximation, the scattered far field of volume element realization i at distance r is the sum
of the free space scattered fields of the N, identical spherical particles with scattering amplitude A® located at
Ki=1,....,N)
Ni
E() =) Er)=
=1
q= ki _ ks,

exp(ikr)
—ikr

Ni
A ) expliq - ),
=

where ki = ke, and k® denote the wave vectors of the incident and scattered fields, respectively.
The coherent scattered far field is thus the ensemble average
n

N:
o exp(ikn) o 1 - )
E*“(r) = WAS lim - Z 2 exp (lq s ) , (15)

n—oo A L
i=1 j=1

where r;i) denotes the location of particle j for the realization i. The incoherent far field of a single realization
follows from equations (11), (14), and (15).
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We can improve the convergence of ensemble averaging with the help of analytical averaging over orienta-
tions. For the coherent scattered field, instead of averaging as in equation (15), we average as follows

o)
ik n N sin ar;
Es<r) = PR s i 1 -,
—ikr nmee NGRS ar; (16)
1
= = 2k sin =0.
lal in 2

Similarly, for the squared scattered far field, we obtain (Debye, 1915; see also the Rayleigh-Gans treatment in
Muinonen, 1996)

n N N; 0 _ (I)
o i N 5|nq|r r|
[ES(n)|? = k2 > |A5 lim - 2

n—oo

. (17)
i=1 j=1 k=1 q|rj(l) (I)|

It now follows that the ensemble-averaged incoherent scattering matrix of the volume element is a pure
Mueller matrix obtained by multiplying the Mie scattering matrix in equation (5) by a function H(9),

S5(6) = H(©)S™"(0),
H(®) = F(6) — G(6),
P NG () ()
o i N 5|nq|rj -r/|
o= LS 3
G(0) =

where F(0) is the well-known form factor. Furthermore, we can assign a diagonal incoherent amplitude
scattering matrix for the volume element

Sf 100) = VH(©O)S ., (0),
(19)
'”C”,O((e) = VH©)S (0.

The ensemble-averaged incoherent scattering cross section of the volume element results from

50 k2 2/ dQS 11(9)’

(20)
and, consequently, the incoherent scattering coefficient is
) O.ic 4
kic= 22y, = LR
s VO 0 30

21

The incoherent absorption cross section of the volume element as well as the incoherent absorption coeffi-
cient follow from the absorption cross section of the spherical particle

0.IlC

. . ’0
ol (Nyog, k= v_ (22)
0
The incoherent extinction cross section and coefficient are
o_ic
ic ic _ _e0
aeo—a +6a0’ Kg = v (23)
0
and the mean-free extinction path length is
‘= K1 . (24)
e, ic
Finally, the single-scattering albedo of the volume element equals
ic
@<= =2 (25)
Ge,o
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As for the scattering and absorption characteristics of the discrete random medium, we denote the scattering
phase matrix by P and the spherical albedo equaling the incoherent single-scattering albedo by A.

3. Numerical Methods

3.1. Average Volume Element Characteristics

The volume element scattering, absorption, and extinction characteristics are computed with the help of
ensemble averaging over realizations of randomly distributed spherical particles in a predefined volume ele-
ment. We generate the sample volume elements as follows. First, we draw the number of particles from the
Poisson distribution with the help of the mean number of particles N, = vX(-;’/x3 in the volume element.
Second, we place the spherical volume element in the center of a cubic cell that is the unit cell of a period-
ically continued random medium of particles. The edge length of the cubic cell is taken to be large enough
(with mean number of particles >16N,) so that no artificial disturbances follow for the particle distribution
within the spherical volume element. Third, we generate particles within the cubic cell until the given number
of particles are obtained within the spherical volume element. Fourth, it is clear that the number of particles
in a spherical volume element containing finite-sized particles does not obey the Poisson distribution. At the
final stage, we repeat the aforedescribed procedure with a realistic particle-number variance that we describe
later in this section.

Consider next the convergence characteristics of ensemble averaging for the functions F(8) and G(0) in
equation (18). The convergence depends strongly on the scattering angle. This is due to the phase factor
exp(iq - r), where g = |q| = 2kssin %9 varies strongly with the scattering angle. For each scattering angle, we
face averaging with a specific apparent wavelength 1/(2 sin %9). This apparent wavelength obtains the value
of /2 in the exact backscattering direction # = 180°, rising to 4 at § = 60°, further to 104 at # ~ 5.73°, and
reaching infinity in the exact forward scattering direction.

It is thus to be expected that, in the backscattering hemisphere, sufficiently accurate results are obtained
for small spherical volume elements from size parameters of roughly kR, = 10 upward. On the contrary, for
0 = 15°,even kR, = 40 does not always suffice. Clearly, a violation of the requirement that the volume element
size must be smaller than the mean-free path length of incoherent extinction can easily result. In the forward
scattering direction, the results nevertheless follow analytically, since the phase factors reduce to unity.

If the incoherent extinction, scattering, and absorption characteristics were independent of the volume
element size, we would be able to move forward to the actual RT-CB computations. There are, however, sig-
nificant differences in the scattering coefficients as well as the scattering matrix element S, obtained using
different volume elements. The differences arise from the challenges in the forward scattering hemisphere
described above.

In order to obtain unambiguous incoherent input characteristics for the RT-CB code, we proceed as follows.
First, we start by defining the size parameters of the spherical particle and the spherical volume element x
and X, as well as the volume density of particles v. Second, we generate sample volume elements of spher-
ical particles as described above. Third, we compute and store the scattered far field and its absolute value
squared from the spherical volume of particles. Here we speed up the convergence with the help of analytical
averaging over orientation for both the scattered far field and its value squared. Fourth, we repeat the afore-
described steps for a large number of realizations of spherical volumes of particles. Fifth, we repeat the entire
computation for a number of volume element size parameters, typically X, = 10, 15, 20, and 40.

Finally, we repeat the entire analysis iteratively with a particle-number variance lowered from the nomi-
nal Poisson value until smooth and convergent, maximally invariant incoherent characteristics are obtained
for the volume elements near the forward scattering direction. This is a regularization procedure, and the
true numbers of particles in the volume elements of an infinite discrete random medium do not neces-
sarily conform to the statistics imposed here. The procedure allows us to define extinction, scattering, and
absorption characteristics as per volume on a range of sizes slightly above the wavelength scale. The pro-
cedure further underscores how critically important is the actual number distribution of particles in the
volume element.

3.2. Radiative Transfer Coherent Backscattering Method
The RT-CB method has been developed originally for homogeneous, finite, and semiinfinite plane-parallel
media of spherical scatterers (Muinonen, 2004). In what follows, we focus on the RT-CB computation

MUINONEN ET AL.
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in a spherical discrete random medium filled with scatterers (Muinonen et al., 2012; Muinonen & Videen, 2012;
Videen & Muinonen, 2015). The spherical geometry is attractive due to several reasons. For example, it has
allowed Videen and Muinonen (2015) to study light-scattering evolution from single particles to a regolith by
gradually increasing the size of the medium toward macroscopic scales. For another example, it has allowed
detailed comparisons between the RT-CB method and the STMM method (Muinonen et al., 2012).

An essential feature of the numerical RT-CB technique is the a priori selection of scattering directions for
updating Stokes parameters during the Monte Carlo radiative transfer computation, thus avoiding the collec-
tion of rays into finite bins. Fixed angles allow for the computation of electromagnetic phase differences and
thus the coherent backscattering effect. In the technique, there are two sets of fixed angles. First, the radiative
transfer set utilizes Gauss-Legendre abscissae and weights for the phase angle (Press et al., 1992) and uniform
spacing for the azimuthal angle. Second, the radiative transfer coherent backscattering set can be chosen to
cover any angular domain desired.

For the RT-CB set, the following angular scheme is incorporated. The azimuthal angle is uniformly spaced
with eight angles: in general, the number must be a multiple of eight in order for the azimuthal angle grid to
be utilized in the symmetry relations making the computation efficient. The phase angle (or backscattering
angle) currently takes on 51 values between a« = 0.0° and « = 180.0° with a concentration of angles near the
backscattering direction.

In the generation of new interaction directions, the scattering angle is generated by using the cumulative dis-
tribution function based on the Mueller element P{)C_H.Then the Kepler equation is solved using the Newton
method for the azimuthal scattering angle. Within the media, due to constant updating of the Stokes param-
eters of scattered light, the generation of directions is coupled with the generation of the path lengths,

confining the subsequent scattering processes into the scattering medium.

Since the original numerical method (Muinonen, 2004), three main changes have been introduced to make
the method more robust and accurate (Muinonen & Videen, 2012; Videen & Muinonen, 2015). First, whereas
the original method makes use of the reciprocity relation of electromagnetic scattering in the computation
of the coherent backscattering contribution in the exact backscattering direction, the present method uti-
lizes scattering amplitude matrices directly and allows for the reciprocity relation to be used as a measure of
computational accuracy.

Second, symmetry relations are utilized to improve the numerical convergence of the angular scattering pat-
terns, in particular, in the case of spherical media. There are six incident polarization states that need to be
traced in order to obtain the corresponding contributions to the scattering matrix of the spherical medium.
In the optimized method, one Markov chain of scatterings is computed in the case of linear polarization and
another one in the case of circular polarization. The three remaining linear polarization chains follow, after
proper mapping, from the one computed. Analogously, the one remaining circular polarization chain follows
from the one computed. The improvement of the convergence is substantial, and the numerical results have
been verified against those from the original method.

Third, the finite size of the volume element is accounted for probabilistically. When interaction distances
smaller than the volume element diameter are generated, that is, when the current and the trial next volume
element appear to overlap, we draw a uniform random deviate within u €]0, 1[ and reject the interaction
distance if
u< ﬂ, (26)
VO
where AV denotes intersectional volume of the two elements. In the case of rejection, we repeat the
generation of the distance (together with the direction).

4, First Results With Discussion

In what follows, we will compare RT-CB results with those obtained by using the Superposition T-matrix
method (Markkanen & Yuffa, 2017; Mackowski & Mishchenko, 2011) for a spherical medium (Figure 1) with
size parameter X = kR = 40 with varying volume density v. For the STMM method, the sample discrete media
have been generated using Poisson statistics with the mean number of particles also describing the variance
in the number of particles. We point out that, with the RT-CB comparison in mind, what actual distribution
one should incorporate for the STMM computations is a nontrivial question.

MUINONEN ET AL.
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Figure 2. Lorenz-Mie scattering phase matrix elements (top left) P'{'}", (top right) —P'2-'1V‘ /P'{':", (bottom left) P;';"/P';’;’l, and
(bottom right) PET/P%Q" as a function of the scattering angle 6 for the ice (blue line, Case ) and silicate cases (red line,

Case ll): Case |, size parameter x = 2, refractive index m = 1.31. Case ll: x = 1.76, m = 1.50.

In terms of composition, we consider two cases of discrete random media composed of equal-sized, nonab-
sorbing spherical particles. In the first case (ice, Case I), the size parameter is x = 2 and the refractive index
is m = 1.31. In the second case (silicate, Case lI), the size parameter is x = 1.76 and the refractive index is
m = 1.50. Figure 2 shows the scattering phase matrix elements for the two spherical particles as a function

-2.0
~ -25 ~
3 £
I -30 N
%S =35 23
<~ —-4.0 ~
S o
A -45 e
5 -5.0 =
> -55 o

-6.0

-1.0 Of
o 15 ~ _15:

E

I -20 3 -20
28 -25 g3 -2
< -3.0 ~ -3.0F
< < :
% -35 80 -35¢
§ -4.0 5
= -45 = ;

-5.0 . . . . . -5.0% . . X . .

0 30 60 90 120 150 180 0 30 60 90 120 150 180
6 (°) 6 ()

Figure 3. Volume element incoherent scattering phase matrix element Piocﬂ (scattering phase function) for Case |
(ice) for varying volume elements (thin red lines) as a function of the scattering angle. The phase function has been
normalized to yield the incoherent scattering coefficient k., /k upon integration over the solid angle. Also depicted is

the final phase function (thick black line) obtained by regularizing the variance for the number of particles.
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Figure 4. As in Figure 3 for Case |l (silicate).

of the scattering angle. These specific kinds of particles have been studied earlier in, for example, Muinonen
et al. (2012), in the context of coherent backscattering by sparse discrete random media. In particular, there
is no significant negative polarization in either case (Figure 2).

We now compute the incoherent volume element extinction, scattering, and absorption characteristics. As
we consider nonabsorbing particles, we are merely concerned with the scattering characteristics, and the
incoherent extinction and scattering coefficients coincide. Figures 3 and 4 illustrate the incoherent volume
element scattering phase matrix element PEH as a function of volume element size parameter, normalized
so as to yield the incoherent scattering coefficient k/°/k upon integration over the full solid angle. Notice
that the other matrix elements, expressed as ratios Pc. /P -, equal those illustrated in Figure 2 for the

0,ij/ " o117
spherical particles.

We have repeated the computation of (K;C/k)Pz;11/(4ﬁ) for the size parameters X, = kR, = 10, 15, 20, and 40
for altogether eight volume densities. For Case |, we assume that v = 3.125%, 6.25%, 12.5%, or 25%, corre-
sponding to the mean number of particles of 250, 500, 1,000, and 2,000, respectively. For Case Il, we assume the
same mean number of particles, resulting in the volume densities v = 2.130%, 4.259%, 8.518%, or 17.037%.
In comparison to our earlier study (Muinonen et al., 2012), we have thus added the cases of 1,000 and 2,000
particles, raising the volume density clearly beyond the validity domain of classical radiative transfer.

Figures 3 and 4 show, first, that the normalized phase functions are in excellent agreement across a wide range
of scattering angles from the backscattering hemisphere toward forward scattering. Second, they show the
challenges near the forward scattering direction: a persistent diffraction-like feature appears in all cases. Third,
Figures 3 and 4 show that the regularization method relying on downsizing the variance successfully removes
the diffraction-like feature. Fourth, for both Cases | and Il, the normalized phase function tends to saturate
near the forward scattering direction with increasing volume density. Simultaneously, the phase function
tends to rise near the backward scattering direction. In conclusion, we can utilize an unambiguous volume
element incoherent scattering phase matrix in RT-CB computations. In detail, we have derived this scattering
phase matrix using X, = 15 and downsizing the variance with the help of the first-round result using X, =20
(enforcing the forward direction value to be equal to the first-round result at 6 = 10°).

With the incoherentinput parameters in order, we can turn to the RT-CB computation for the discrete spherical
random media of spherical particles. Figures 5 and 6 show the results for Cases | and Il, and certain key numbers
are collected in Table 1. For sparse media studied earlier by Muinonen et al. (2012) using the RT-CB method
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Figure 5. Scattering phase matrix elements APy, and —P,, /P;; for spherical discrete random media (size parameter
kR = 40, varying volume density v) of spherical particles as a function of the phase angle a. We show the results for
Case | (ice with size parameter x = 2 and refractive index m = 1.31) as computed using the RT-CB (solid line) and the
Superposition T-matrix methods (dashed line). Also shown are the RT-only results (dotted line). As denotes the spherical
albedo of the random medium, allowing for absolute comparison between the two methods.

with the Lorenz-Mie scattering characteristics as input, the agreement with the STMM results is here even
better. We recall that the dense-media RT-CB incorporates a probabilistic treatment for overlapping volume
elements, when generating the next interaction point. There is no counterpart in the RT-CB with independent
scattering: accounting for the spherical particle size would cause a negligible effect on the angular scattering
characteristics.
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Figure 6. As in Figure 5 for Case Il (silicate) with x = 1.76 and m = 1.50.

For the cases of dense media, the RT-CB with incoherent input characteristics works perhaps surprisingly well,
considering that only first-order input is utilized. There are deviations between the RT-CB and STMM results
in the negative polarization branch, but these differences may be due to the fact that the discrete medium
statistics for generating the STMM results are bound to differ from the corresponding statistics for the RT-CB
results. The two most important statistical parameters of the discrete random medium are the mean and
variance of the number of particles in the medium.

Table 1 shows the evolution of the incoherent extinction mean-free path length and incoherent extinc-
tion coefficient for Cases | and Il as a function of the volume density. It also shows how the incoherent
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Table 1

The Volume Densities v, Dimer_lsionless Incoherent Scattering Mean-Free Path
Lengths k¢ and Coefficients k[ / k, As Well As the Resulting Spherical Albedos
As, Geometric Albedos p, and Enhancement Factors ¢ for the Cases Studied

spherical albedo, geometric albedo, and backscattering enhancement fac-
tor of the discrete random medium evolve with the volume density. For both
cases, the enhancement factor shows saturation toward the highest volume
density—the saturation is stronger for the silicate case where the mean-free
path lengths are shorter. We note that, for X, = 40, the volume element

v k¢ K€ /k(1072) As p (%) ¢ . . . S
: size equals the size of the spherical random medium itself. Furthermore, for
e X, = 40in Casesland Il as well as for X, = 20 in Case II, the volume element
DRI IR Uilss L2 e 134 Size is close to or exceeds the resulting incoherent extinction mean-free
0.06250 83.869 1.1923 046 1.79 1.54 path length. In spite of the evident violation against the validity criterions
0.12500 50.953 1.9626 0.62 4.89 170 (see section 1), we have included these cases in the analysis, too, as they
0.25000 39.487 25325 0.71 11.16 1.76  allow for the formal mapping of the mean-free path length with increasing

Case I, silicate volume element size.

0.02130 97.726 1.0233 0.41 1.49 160 The first results suggest that there is a collective incoherent polarization
0.04259 51.181 1.9539 0.62 4.49 177  effect for phase angles larger than about 90° (Figures 5 and 6, bottom
008518 29,540 33852 0.79 11.44 185 right): there is a tendency for the exact computation to yield more positive
o057 20.128 4.9683 0.88 2.9 1.86 polarization than what results from the RT-CB computation. This unknown
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phenomenon can be due to bisphere resonances similar to those verified
for circular polarization in the backscattering direction by Virkki et al. (2015).
The phenomenon can also be related to the fact that independent orders of scattering must fail to describe
the full scattered field for grazing angles of emergence (see, e.g., Lindell et al., 1991; Muinonen et al., 1991).
Studying the ultimate cause for the phenomenon is, however, beyond the scope of the present study.

5. Conclusions

We have studied multiple scattering by finite discrete random media of spherical particles using the radia-
tive transfer coherent backscattering method. By introducing first-order incoherent interaction between the
incident field and the volume element, we have successfully extended the RT-CB method to dense random
media markedly beyond the validity regime of classical radiative transfer.

There are a number of questions arising on the basis of the present study. First, all the current example com-
putations have concerned nonabsorbing spherical particles with low to moderately high refractive indices.
It remains to be studied where the limits of the first-order incoherent treatment exactly are, a task that can
be assessed with the help of the Superposition T-matrix method. Second, it is our near-term plan to replace
the first-order incoherent interaction with a rigorous treatment, again, using T-matrices. Finally, we intend to
incorporate nonspherical particles and extend the numerical methods accordingly.
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