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ABSTRACT

We consider electromagnetic scattering by a spherical volume sparsely and randomly populated by spherical
particles of equal size and optical properties. The far-field scattering matrix of the entire volume is computed using
an exact method and an approximate method. The former is a direct computer solver of the Maxwell equations called
the superposition T-matrix method (STMM). The latter is a solver based on numerical Monte Carlo integration of the
ladder and cyclical diagrams appearing in the microphysical theory of radiative transfer and coherent backscattering
(RT–CB). The quantitative agreement between the STMM and RT–CB computations provides verification of the
RT–CB theory. Prominent backscattering features exhibited by the STMM data cannot be reproduced by keeping
only the ladder diagrams of RT. Our results strongly support the CB explanation of opposition brightness and
polarization phenomena observed for a class of atmosphereless solar-system objects. Further research is necessary
to determine the range of quantitative applicability of the RT–CB theory to densely packed particulate media.

Key words: minor planets, asteroids: general – planets and satellites: surfaces – polarization –
radiative transfer – scattering

Online-only material: color figure

1. INTRODUCTION

Regolithic surfaces of atmosphereless solar-system objects
are prime examples of complex particulate media of astrophys-
ical relevance. The scattering of electromagnetic waves by such
media is controlled by the macroscopic Maxwell equations
(MMEs; Stratton 1941), which need to be solved in order to
interpret the results of telescopic observations and thereby de-
duce useful macro- and microphysical information (e.g., Videen
et al. 2004; Mishchenko et al. 2010). Unfortunately, direct
computer modeling of electromagnetic scattering by such sur-
faces is still impracticable, and one has to rely on approxi-
mate approaches. For the past 125 years, one such approach has
been the canonical radiative transfer theory (RT; Lommel 1887;
Chandrasekhar 1950). More recently, it has been supplemented
by the coherent backscattering mechanism (CB), otherwise
known as weak localization of electromagnetic waves (e.g.,
Watson 1969; Barabanenkov et al. 1991). The RT theory is
believed to provide an adequate quantitative description of dif-
fuse multiple scattering of light by many-particle objects, while
the inclusion of CB causes several prominent backscattering
features in the reflected light.

It has been suggested (Shkuratov 1988, 1989; Muinonen
1989, 1990; Muinonen et al. 1991; Mishchenko 1993;
Mishchenko & Dlugach 1993; Hapke et al. 1993; Shkuratov
et al. 1994) that the CB effect is likely to have astrophys-
ical importance owing to the fact that atmosphereless solar-
system objects exhibit two ubiquitous opposition optical phe-
nomena (Muinonen et al. 2002; Rosenbush et al. 2002; Videen &
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Kocifaj 2002). One of them is a narrow peak of brightness cen-
tered at the exact backscattering direction. The other one is a
negative polarization branch at small solar phase angles (the
Sun–object–observer angle) which, according to more recent
observations (see Rosenbush & Mishchenko 2011 for a review),
can be accompanied by an extremely narrow and sharp mini-
mum centered at phase angles approaching zero.

The present study is analogous to an earlier study of the
CB phenomenon in scattering systems composed of a small
number of scattering objects. In the earlier study, Muinonen
(1989) has considered the electromagnetic scattering by two
particles that are small compared to the wavelength, with the
particles treated as electric dipole scatterers. The second-order
ladder and cyclical diagrams have been analytically derived,
identifying explicitly the CB interference effects resulting in
backscattering enhancement and negative linear polarization
in second-order scattering. However, first-order scattering has
been seen to predominate over second-order scattering so no CB
effects have showed up in the total solution.

These results have been extended to the case of scattering
by a particle close to an interface between two optically ho-
mogeneous and isotropic media (Lindell et al. 1991; Muinonen
et al. 1991; Ermutlu et al. 1995). Lindell et al. (1991) have
presented the Exact Image Theory solution (EIT) for scatter-
ing of electromagnetic waves by a small object located in the
same half-space with the incident radiation. Muinonen et al.
(1991) have then concentrated on the backscattering character-
istics of that system, unveiling explicitly the CB effects due to
the second-order interactions between the material half-space
and the particle. Both backscattering enhancement and negative
polarization have been verified in the full diffuse solution after
ensemble averaging. Ermutlu et al. (1995) have extended the
EIT analysis to the case of a buried object: due to the absence
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of cyclical interaction paths, this scattering system gives no rise
to CB effects.

The recent derivation of the RT equation and the general equa-
tions of the theory of CB directly from the MMEs (Mishchenko
et al. 2006; Mishchenko 2011) has clarified their physical origin
and conditions of applicability. It is important to recognize that
the specific idealized notions of RT and CB can be introduced
only upon assuming that the particulate medium is sparsely
packed. While this assumption is valid for rarified scattering
objects such as clouds in planetary atmospheres, it may become
inapplicable to planetary regolith surfaces. Therefore, the in-
terpretation of the opposition phenomena observed for many
solar-system objects in terms of CB must be done with extreme
caution.

It has been demonstrated recently that direct computer solu-
tions of the MMEs for small densely packed volumes of partic-
ulate medium do reproduce qualitatively all opposition features
predicted by the low-density theory of CB (Mishchenko et al.
2007, 2009a, 2009b; Dlugach et al. 2011; Lumme & Penttilä
2011). This result provides a strong argument in favor of at-
tributing spectacular opposition phenomena observed for many
solar-system objects to the effect of CB. However, the inherent
limitation of this type of analysis is that one cannot split the di-
rect solution of the MMEs into the RT and CB parts. Therefore,
the definitive proof of the CB origin of the opposition features
exhibited by the direct solutions of the MMEs is still missing.

The only unequivocal way to establish the physical origin
of the opposition features seen in the computer solutions of the
MMEs is to perform a quantitative comparison of these solutions
with calculations based on the low-density theories of RT and
CB. Indeed, in this case the summation of the ladder diagrams
describing diffuse multiple scattering of light is separated from
the summation of the cyclical diagrams causing CB. What has
been missing is direct verification of the RT–CB model using
exact MME results.

The availability of the advanced Monte Carlo solver of the
RT and CB equations (Muinonen 2004; Muinonen et al. 2010;
Muinonen & Videen 2012) as well as of the efficient superposi-
tion T-matrix solver of the MMEs (Mackowski & Mishchenko
1996, 2011) provides a unique opportunity to address this unre-
solved yet fundamentally important problem. In this paper, we
advance the approach outlined briefly by Muinonen & Zubko
(2010) and perform a representative comparison of asymptot-
ically exact MME results and approximate RT–CB computa-
tions. This comparison allows us to achieve critical objectives:
(1) validate the specific concepts used in the derivation of the
RT and CB theories from the MMEs, (2) verify whether specific
features exhibited by the solutions of the MMEs can indeed be
attributed to the effect of CB, and (3) examine how stringent are
the restrictions of the RT–CB theory.

2. SCATTERING THEORY

2.1. General Methodology

We use the model of a random particulate medium in the
form of an imaginary spherical volume of radius R fully
enclosing N identical non-overlapping spherical particles of
radius r (see Figure 1). The size parameter of the volume is
kR, while the particle size parameter is kr , where k is the wave
number in the homogeneous and nonabsorbing host medium.
All particles populating a scattering volume have the same
relative refractive index m. The distribution of particle positions

obsn̂α

illn̂

kR

2kr

Figure 1. Scattering by a spherical volume randomly filled with small spherical
particles.

throughout the volume is assumed to be totally random and
statistically uniform.

It is assumed that the particulate volume is illuminated by
a parallel quasi-monochromatic beam of light propagating in
the direction of the unit vector n̂ill (Figure 1). The observer is
located in the far-field zone of the entire spherical volume in
the scattering direction specified by the unit vector n̂obs. Owing
to statistical randomness of particle positions, the ensemble-
averaged scattering and absorption properties of the particulate
volume depend only on the phase angle α (i.e., the angle
between the vectors n̂obs and −n̂ill) provided that the scattering
plane is used for defining the Stokes parameters of the incident
and scattered light. The far-field transformation of the Stokes
parameters I, Q, U, and V upon scattering by the entire
particulate volume is then formulated in terms of the 4 × 4
real-valued scattering matrix (e.g., Mishchenko et al. 2006)

⎡
⎢⎣

I sca

Qsca

U sca

V sca

⎤
⎥⎦ ∝

⎡
⎢⎣

P11 P21 0 0
P21 P22 0 0
0 0 P33 P34
0 0 −P34 P44

⎤
⎥⎦

⎡
⎢⎣

I inc

Qinc

U inc

V inc

⎤
⎥⎦ , (1)

where the superscripts “inc” and “sca” stand for “incident” and
“scattered”, respectively.

The elements of the scattering matrix can be used to define
conventional optical observables corresponding to different
types of polarization state of the incident radiation used in
remote-sensing, in situ, and laboratory particle characterization.
Specifically, if the incident light is unpolarized then the phase
function P11 characterizes the angular distribution of the far-
field scattered intensity, while the ratio P = −P21/P11 gives
the corresponding degree of linear polarization. If the incident
radiation is polarized linearly in the scattering plane (i.e.,
Qinc = I inc, U inc = V inc = 0) then the linear polarization ratio
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Figure 2. Scattering by a spherical volume of particulate medium with a size parameter kR = 40 and packing density of v = 3.125% (I) and 6.250% (II), populated
with spherical particles with a size parameter kr = 2 and a refractive index m = 1.31. The solid, dotted, and dashed curves depict the RT–CB, RT-only, and STMM
results, respectively. See the text.

μL is defined as the ratio of the cross-polarized and co-polarized
components of the scattered intensity:

μL = P11 − P22

P11 + 2P21 + P22
. (2)

If the incident radiation is polarized circularly in the counter-
clockwise direction when looking in the direction of propagation
(i.e., V inc = I inc, Qinc = U inc = 0), then the circular polariza-
tion ratio μC is defined as the ratio of the same-helicity and

opposite-helicity components of the scattered intensity:

μC = P11 + P44

P11 − P44
. (3)

2.2. Radiative Transfer with Coherent Backscattering

The RT–CB method is based on the Monte Carlo integration
of the ladder and cyclical diagrams (Muinonen 2004), wherein
CB is computed alongside RT by incorporating the reciprocity
relation in electromagnetic scattering (Saxon 1955) and keeping
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Figure 3. Same as in Figure 2, but for the full range of phase angles.

the relative phase information of the wave components. The
notion of the ladder and cyclical diagrams is explained briefly
in the Appendix. In the original work, the RT–CB method
has been presented for a plane-parallel medium of particles;
subsequently, it has been customized for a spherical particulate
medium (Muinonen et al. 2010).

More recently, the RT–CB method has been further modified
so that it makes use of scattering-amplitude matrices in the
computation of the ladder and cyclical diagrams, allowing for
the reciprocity relation to be utilized in monitoring the accuracy
of the numerical computation (Muinonen & Videen 2012).
Furthermore, the incorporation of symmetries into the wave
propagation with different polarization states has resulted in

improved convergence of the Monte Carlo integration near the
backscattering direction.

2.3. Superposition T-matrix Method

The superposition T-matrix method (STMM; Mackowski &
Mishchenko 1996, 2011) is a direct computer solver of the
MMEs for a fixed multi-sphere group. Within the range of
its numerical convergence, the corresponding public-domain
STMM computer code yields results with a guaranteed accuracy,
which makes it numerically exact.

To model statistically random and uniform particle positions
within the spherical volume consistent with the fundamental
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Figure 4. Same as in Figure 2, but for kr = 1.76, m = 1.50, and v = 2.130% (I) or 4.259% (II).

assumption of ergodicity, we follow the approach by
Mishchenko et al. (2007). Specifically, we create a realization
of an N-sphere group generated randomly according to the pro-
cedure described by Mackowski (2006) and then average the
elements of the scattering matrix over the uniform orientation
distribution of this configuration with respect to the labora-
tory coordinate system. Although the mutual positions of the
N particles with respect to each other remain fixed, they are
quite random from the outset. Therefore, this straightforward
approach yields, in effect, an infinite continuous set of random
realizations of the scattering volume while enabling us to use
the highly efficient orientation averaging procedure afforded by
the analyticity of the STMM formulation.

An essential feature of the analytical orientation averag-
ing procedure is that it generates results that are completely
free of noise potentially caused by the discreteness of orien-
tations used in the numerical averaging procedure (cf. Voit
et al. 2009; Penttilä & Lumme 2011). This feature ensures
definitive identification of subtle optical effects and their cor-
rect attribution. To re-enforce the statistical randomness of a
scattering particulate volume, each STMM result shown be-
low has been obtained by averaging over five independently
generated N-sphere configurations. Such averaging has been
found to be adequate for the present comparison through grad-
ual increase of the number of sample volumes. It is inevitable,
however, that a certain amount of numerical noise always
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Figure 5. Same as in Figure 4, but for the full range of phase angles.

remains due to averaging using a finite number of sample
volumes.

3. NUMERICAL RESULTS AND DISCUSSION

RT–CB and STMM computations have been carried out for
specific finite random media of spherical particles with kR =
40. First, for the monomer refractive index m = 1.31 and size
parameter kr = 2, the numbers of constituent spheres N (STMM)
and the corresponding packing densities (RT–CB) have been
N = 250, v = 3.125% and N = 500, v = 6.25%, where
the packing density is defined as v = Nr3/R3. Second, for
m = 1.50 and kr = 1.76, the particle numbers N = 250 and
N = 500 have implied packing densities v = 2.130% and

4.259%. The Monte Carlo RT–CB computations with 100,000
rays have required several hours of computing time on a single
processor per each of the four cases.

Figures 2–5 show separately the RT–CB and RT-only results
for the scattering phase function, the degree of linear polar-
ization for incident unpolarized light, and for the linear and
circular polarization ratios, all as functions of the phase angle.
Also shown are the ensemble-averaged STMM results.

It must be recognized that the RT–CB theory is fundamen-
tally based on the asymptotic requirements v � 1 and N � 1
(Mishchenko et al. 2006). The former inequality ensures that
each particle is located in the far-field zones of all the other par-
ticles populating the medium and also is a necessary condition
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(a)

(b)

(c)

(d)

Figure 6. RT–CB (solid lines) and RT-only computations (dotted lines) for a macroscopic medium with kR = 107 composed of a power-law size distribution (index
ν = 3) of spherical monomers with sizes within kr ∈ [2.0, 3.0]. The refractive index of the monomers is m = 1.31 + i10−3 and the volume density is v = 3.125%.
(a) P11/P11(0), (b) P = −P21/P11, (c) μL = (P11 − P22)/(P11 + 2P21 + P22), and (d) μC = (P11 + P44)/(P11 − P44).

for assuming that particle positions inside the volume are totally
random and mutually independent. The latter inequality allows
one to ignore looped (i.e., non-self-avoiding) diagrams in the
far-field order-of-scattering expansion of the electromagnetic
field. The combination of these limits implies that kR � 1.

While these inequalities are essential in the derivation of the
RT–CB theory from the MMEs (Mishchenko et al. 2006), this
derivation does not yield specific numerical estimates of the
largest allowable packing density and the smallest allowable
number of particles. Such estimates can only be derived from
quantitative comparisons of the approximate RT–CB results and
numerical data obtained by directly solving the MMEs.

These well-established facts along with the numerical data
displayed in Figures 2– 5 imply the following important and
instructive results.

1. Although the random particulate volumes studied contain
modest numbers of particles, the packing density deviates
from zero significantly, and the size parameter of the
volumes is moderate, the quantitative agreement between
the STMM and approximate RT–CB results is quite evident.

2. The only phase-angle range where the STMM and RT—CB
results disagree is that corresponding to forward-scattering
directions. This result is predictable and is explained by
different ways of treating the effect of forward-scattering
interference (Mishchenko et al. 2007; Muinonen 1989).
Indeed, in the framework of the approximate microphysical
RT–CB theory, this effect is incorporated mathematically in
the computation of the exponential attenuation rate inside
the volume (Mishchenko et al. 2006), whereas, in the

framework of the far-field STMM computations it causes
the strong and exceedingly narrow diffraction peak.

3. Outside a relatively narrow range of backscattering geome-
tries, the full RT–CB and the RT-only results are very simi-
lar. This result is consistent with the physical interpretation
of CB as a backscattering interference mechanism.

4. The RT-only results cannot reproduce the backscattering
peaks in P11, μL, and μC as well as the asymmetric
polarization minimum at small phase angles exhibited by
the STMM results. The inclusion of the cyclical diagrams
allows us to reproduce these backscattering features very
closely, which provides a definitive proof of their CB nature.

5. In all the cases considered, the effect of CB is noticeable
to phase angles exceeding 20◦. Furthermore, the angular
widths of the CB phenomena are rather insensitive to pack-
ing density. Both traits can be explained by the modest size
parameter of the particulate volumes and the moderately
forward-scattering tendency of the constituent spheres. As
a consequence, kR rather than the transport mean free
path defines the mean length of the interference base and
thus the angular width of the backscattering features (cf.
Barabanenkov et al. 1991; Mishchenko et al. 2009a, 2009b).

6. The origin of the small residual differences between the
STMM and RT–CB results at side- and backscattering
angles remains uncertain. These differences do seem to
decrease with decreasing packing density, which would
be an expected result. However, they still persist even for
packing densities as small as 2.130%, probably because
the reduction of v is achieved by decreasing the number of
constituent particles and thus violating more significantly
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the requisite inequality N � 1. These observations call for
additional computations in which v is reduced while N is
kept constant.

To further demonstrate the astrophysical relevance of our
methodology, the RT–CB method is applied to compute the
backscattering characteristics of a spherical medium with
macroscopic size kR = 107 (i.e., for λ = 2π/10 μm, R =
1.0 m) composed of a size distribution of absorbing spherical
monomers with m = 1.31 + i10−3. The size parameter varies
from kr = 2 to kr = 3 according to a power-law size distribu-
tion with index ν = 3 (see Muinonen et al. 2010). Altogether
11 different monomer sizes are utilized (kr = 2.0, 2.1, 2.2,
. . ., 3.0) and the volume density is v = 3.125%. The average
single-scattering albedo takes a high value of ω̃ = 0.99112 and
the extinction mean free path converted to the size parameter
range is k� = 100.31. The computations have been carried out
utilizing 160,000 rays and have taken more than four days of
computing time on an eight-core computer.

The Bond and geometric albedos of the spherical medium turn
out to be A = 0.67 and p = 0.65, respectively, values not atypi-
cal of high-albedo atmosphereless solar-system objects. Figure 6
shows the backscattering enhancement and degree of linear po-
larization for the spherical medium. As the narrow size distri-
bution neutralizes the polarization in average single scattering,
the resulting negative polarization from coherent backscattering
is also weakened. In absolute terms, the polarization peaks at
roughly −1.7% at a phase angle of 0.◦4; that is, the polariza-
tion becomes comparable to what has been observed for certain
atmosphereless solar-system objects (Boehnhardt et al. 2004;
Rosenbush and Mishchenko 2011). The backscattering peak is
narrow with an enhancement factor of 1.68 over the RT-only
background.

Comparing Figure 6 with Figures 2–5, the angular depen-
dences are drastically sharper for the dependences of the macro-
scopic medium. In comparison to case I in Figure 2 with an equal
volume density of v = 3.125%, on one hand, there is a complete
reversal of μL near backscattering: for the macroscopic medium,
μL shows a narrow and prominent downward surge, whereas a
wide and moderate upward surge is evident for the microscopic
medium. For μC, on the other hand, the upward surge is further
strengthened for the macroscopic medium. These results com-
pare favorably with the computations by Muinonen (2004) for
optically thick plane-parallel media of spherical particles with
varying absorption as well as with the experimental measure-
ments of linear and circular polarization ratios for lunar samples
by Hapke et al. (1993). Our computations corroborate the result
by Mishchenko & Liu (2009) that CB can cause a backscatter-
ing enhancement in μL for optically thin particulate media that
gradually evolves into a backscattering depression for optically
thick media.

4. CONCLUSIONS

In summary, first, the quantitative agreement between the
STMM and RT–CB results obtained with full account of
polarization provides the first direct and definitive corroboration
of the microphysical RT–CB approach (Mishchenko et al.
2006). We have verified in previous studies that the prominent
backscattering features exhibited by the STMM data cannot be
reproduced by accounting for only the ladder diagrams of RT.
Thus, second, our results strongly support the CB explanation
of the spectacular opposition optical phenomena observed for
many atmosphereless solar-system objects. Perhaps of most

practical significance is that our results suggest that, to an
extent, the stringent restrictions of the RT model regarding
particle packing density can be relaxed. Satisfactory results can
be obtained using the RT–CB model for relatively dense media.

From an astrophysical perspective, it should be recognized
that our numerically exact STMM data are obtained for a
rather simple model of a particulate medium. It is, therefore,
not surprising that the amplitude of the brightness opposition
effect and the depth of the negative polarization minimum
in Figures 2 and 4 exceed those observed, for example, for
high-albedo satellites of Jupiter and Saturn as well as for
E-type asteroids (Rosenbush and Mishchenko 2011). Indeed,
it is unlikely that the entire surfaces of these objects are covered
by the same microscopic grains causing uniformly the same
opposition effects via the CB effect. The angular widths of
the observed effects are also predictably smaller than those in
Figures 2 and 4. The interference base for a finite scattering
volume is controlled by its size parameter kR, whereas that for
an optically thick, nonabsorbing, or weakly absorbing regolith
layer is controlled by the product k�tr of the wave number and
the transport mean free path (Barabanenkov et al. 1991). The
actual values of k�tr for bright solar-system objects are likely to
be much greater than the kR values used in our computations
and result in much narrower opposition effects. Figure 6 shows
the first evidence of such neutralization of polarization and
narrowing of the angular widths.

It should be recognized, however, that the photometric and
polarimetric observations for several high-albedo atmosphere-
less solar-system objects (Rosenbush and Mishchenko 2011) are
unique in that they reveal coexisting brightness and polarization
effects of comparable angular widths and with angular profiles
consistent with the numerically exact STMM computations. So
far, no other first-principles theory of electromagnetic scattering
has been able to reproduce both effects with their very specific
traits simultaneously. Therefore, the results of our comparisons
of the STMM and CB computations strongly point to the CB
origin of the observed opposition phenomena. It is expected that
the much greater flexibility of the RT–CB theory (in terms of the
size and composition of a particulate medium) and its potential
applicability to regolith surfaces with realistic packing densities
will eventually result in significantly better fits of theoretical
computations to observational results (cf. Figure 6).

There is an extensive amount of future work needed to deter-
mine the range of quantitative applicability of the RT–CB theory
in terms of particle packing density and particulate medium size.
The success of the RT–CB theory applied to finite media of par-
ticles calls for a parallel treatment of electromagnetic scattering
by large compact particles. In this spirit, initial studies have been
carried out for the so-called exploding particle by Zubko et al.
(2008) with the use of the discrete-dipole approximation. This
technique can be applied, in particular, to the study of the role
of the so-called near fields in scattering by aggregates where the
constituent particles are in contact with one another.
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APPENDIX

LADDER AND CYCLICAL DIAGRAMS

The concept of ladder and cyclical diagrams is most conve-
niently introduced in the framework of the so-called Foldy–Lax
equations (FLEs) which are mathematically equivalent to the
MMEs and describe electromagnetic scattering by an arbitrary
group of N discrete particles (Mishchenko et al. 2006). The FLEs
allow one to decompose the total electric, E, and magnetic, H,
fields at an observation point r into the respective incident fields
and individual-particle contributions:

E(r) = Einc(r) +
N∑

i=1

Ei(r),

H(r) = H inc(r) +
N∑

i=1

H i(r). (A1)

Each ith partial field can, in turn, be represented mathematically
as a superposition of contributions from all possible particle
sequences ending at particle i:

Ei(r) = Ei0(r) +
N∑

j=1,j �=i

Eij (r) +
N∑

j=1,j �=i

N∑
k=1,k �=j

Eijk(r) + · · · ,

(A2)

where Ei0(r) is the direct response of particle i to the incident
field, and similarly for H i(r). Examples of such multiple-
scattering sequences are shown in Figure 7(a). Combining
Equations (A1) and (A2) results in

E(r) = Einc(r) +
N∑

i=1

Ei0(r) +
N∑

i=1

N∑
j=1,j �=i

Eij (r)

+
N∑

i=1

N∑
j=1,j �=i

N∑
k=1,k �=j

Eijk(r) + · · · , (A3)

and an analogous formula follows for H(r).
In general, the explicit analytical expressions for the individ-

ual terms in the decomposition (A3) are quite complex. They
can, however, be drastically simplified upon making the follow-
ing two assumptions.

1. The N particles forming the group are separated widely
enough that each of them is located in the far zones of all
the other particles.

2. The observation point is located in the far zone of any
particle forming the group.

Both assumptions imply that the particulate medium in question
is sparsely packed.

Thus, the order-of-scattering expansion (A3) and its magnetic
counterpart allow one to represent the total field at a point in
space as a sum of contributions arising from all possible particle
sequences. The next major assumption, called the Twersky
approximation, is that all sequences involving a particle more
than once can be neglected. For example, the self-avoiding
sequences (i)–(iii) in Figure 7(a) are kept, whereas the sequence

(iv) is excluded. It can be proven that the Twersky approximation
is justified provided that the number of particles in the scattering
volume is very large. Thus, instead of Equation (A3), we have

E(r) = Einc(r) +
N∑

i=1

Ei0(r) +
N∑

i=1

N∑
j=1,j �=i

Eij (r)

+
N∑

i=1

N∑
j=1,j �=i

N∑
k=1,k �=i,k �=j

Eijk(r) + · · · , (A4)

and similarly for H(r). Note that the very applicability of the
Twersky approximation makes the limit N → ∞ an explicit
assumption in the solution of the electromagnetic scattering
problem.

The Stokes parameters in the far zone of the entire N-particle
group can be found from the configuration-averaged so-called
Poynting–Stokes tensor 〈H ⊗ E〉 (Mishchenko 2011), where
⊗ denotes dyadic multiplication of two vectors. Obviously, the
computation of 〈H ⊗ E〉 requires ensemble averaging of the
dyadic products of the type H i...k ⊗ E∗

l...m. Each such product
can be depicted diagrammatically as exemplified in Figure 7(b),
in which the magnetic-field term H4321 is represented by blue
arrows, while the electric-field term E∗

765 is depicted by yellow
arrows.

The very essence of the ladder approximation is to keep
only a certain class of diagrams. The simplest ladder dia-
gram is shown in Figure 7(c) and corresponds to the product
Hn,n−1,...,2,1 ⊗ E∗

n,n−1,...,2,1 In other words, all n particles are
common to the corresponding magnetic- and electric-field terms
and appear in exactly the same order. Figure 7(d) shows a more
complicated ladder diagram in which the same n particles are
common to both terms and appear in the same order. However,
the magnetic-field sequence contains an additional uncommon
particle, while the electric-field sequence contains two uncom-
mon particles. Obviously, this diagram corresponds to the prod-
uct Hn,l,n−1,...,2,1⊗ E∗

n,n−1,...,2,i,j,1. Thus, the main characteristic
of the ladder diagrams is that all common particles appear in
corresponding magnetic- and electric-field sequences in exactly
the same order.

The main justification for using the ladder approximation is
that averaging over random positions of participating particles
can be expected to extinguish the contribution of any multi-
particle diagram with no common particles appearing in the
same order, like, e.g., the diagram shown in Figure 7(b). Indeed,
the result of interference of the two waves in Figure 7(b) at the
observation point fluctuates randomly as the particles move and
eventually averages out. On the other hand, the phase difference
between the two waves in Figure 7(c) is identically equal to zero,
while averaging over all positions of all uncommon particles
(such as particles i, j, and l in Figure 7(d)) results in the standard
exponential attenuation law.

Although analytical summation of all ladder diagrams is still
a mathematically involved procedure, the final result is the
integral form of the well-known vector RT equation for the
specific Stokes column vector (Mishchenko et al. 2006).
There are many numerical techniques that can be used to solve
the RT equation. However, the Monte Carlo method used in our
calculations is particularly flexible and can easily be applied to
a spherical volume of particulate medium such as that shown in
Figure 1.

Thus the microphysical derivation of the RT equation from the
MMEs explicitly ignores the contribution of so-called cyclical
diagrams exemplified by Figures 7(e) and (f). In this case
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Figure 7. (a) Examples of multi-particle sequences contributing to Equation (A3). (b) Diagrams contributing to the Poynting–Stokes tensor of the total field. (c, d)
Ladder diagrams. (e, f) Cyclical diagrams.

(A color version of this figure is available in the online journal.)

particles 1, 2, . . . , n−1, n are common to a pair of multi-particle
sequences but appear in the reverse order (cf. Figures 7(e) and
(c) and Figures 7(f) and (d)). The cyclical diagrams composed
of such conjugate multi-particle sequences usually provide a
negligible contribution to the scattered intensity, but cause a
significant CB effect in the immediate vicinity of the exact
backscattering direction (n̂obs = −n̂ill). Indeed, there the phase
difference between any conjugate multi-particle paths vanishes,
thereby causing consistently constructive interference and a
pronounced CB peak in intensity. Importantly, averaging over
all positions of all uncommon particles (such as particles i, j,
and l in Figure 7(f)) again results in the exponential attenuation
law.

Numerical summation of all the cyclical diagrams is more
involved than the solution of the vector RT equation. It requires
a modification of the standard Monte Carlo solver wherein the
wave-phase information is carefully preserved and accounted
for (Muinonen 2004).
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