3
THEORY AND PARAMETERIZATION OF

Electromagnetic radiation emitted from the sun’s photosphere, having an equiva-
lent blackbody temperature of about 6000 K, has its peak energy located at about
0.47 um, according to Wien’s displacement law, which has been discussed at the
beginning of Chapter 2. The total solar flux that is available to a planet is com-
monly represented by the solar constant. The solar constant for the earth has been
discussed in Section I.1. The distribution of solar fluxes averaged over a certain
period of time (e.g., one solar day) is referred to as solar insolation. Solar insola-
tion is a function of latitude and the characteristics of the earth’s orbit around the
sun (see Section 6.1).

The solar wavelengths that are significant for the transfer of solar flux range
from ~0.2 to 4 um. Shown in Fig. 3.1 is an observed solar irradiance at the top
of the atmosphere (TOA) with a spectral resolution of 20 cm ™. Fluctuations in
the ultraviolet (uv) and visible regions are due to absorption of various elements
in the solar atmosphere. A temperature of about 6000 K fits the observed curve
closely in the visible and near-infrared (ir) regions. In the uv region (< 0.4 ym),
the solar irradiance spectrum deviates significantly from the 6000 K Planck curve.
Variations in the solar irradiance in the uv are due primarily to sunspot variations.
The spectral solar irradiance available at the earth’s surface in a clear atmosphere
without aerosols and clouds is also shown in Fig. 3.1. The depletion of solar
irradiance is due to the scattering of molecules and the absorption of various
molecules and atoms, including atomic and molecular nitrogen and oxygen in the
uv, ozone and molecular oxygen in the visible, and water vapor (and to a lesser
degree carbon dioxide) in the near-ir. A detailed discussion of gaseous absorption
in the solar spectrum will be given in Section 3.8. *

In view of the spectra depicted in Figs. 2.1 and 3.1, the solar and thermal ir
spectra may be separated into two independent regions at about 4 zm. The overlap
between these two spectra is relatively insignificant. This distinction makes it
possible to treat the transfer of solar radiation independent of the transfer of thermal
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FiG. 3.1  Solar irradiance for a 20 cm—' spectral interval at the top of the atmosphere and at the
surface (solar zenith angle 60°) in -d on tha-ogram (Kneizys
et al., 1988).

emission contribution from the earth and the atmosphere can be neglected in the
discussion of solar radiative transfer. The one exception to this rule involves the
3.7 pm window, discussed in Subsection 2.2.5.2. If this wavelength is to be used
for remote sensing purposes, contributions from solar and thermal ir radiation
sources must both be accounted for during daytime.

In the earth’s atmosphere, the particulates responsible for scattering range
from molecules (~10~* zzm), aerosols (~1 pm), water droplets (~10 zm), and ice
crystals (~100 um) to raindrops and hailstones (~1 cm). In view of the ubiquitous
nature of aerosols and clouds, scattering plays the dominant role in the transfer of
solar radiation. The principles and methodologies for radiative transfer presented in
this chapter are primarily developed for plane-parallel atmospheres and an isotropic
medium. Subjects relating to radiative transfer in clouds will be comprehensively
addressed in Chapter 5.

3.1 Basic equations for solar radiative transfer

In the discussion of the transfer of solar radiation in planetary atmospheres, the
plane-parallel assumption, described in Section 2.1, can be followed. The position
of the sun, which may be considered as a point light source, must be accounted for
in the formulation of the bacic radiative trancfer ecanation The trancfer nrabhlem
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In(-,uo,;bo)

o

direct

diffuse

Fic. 3.2 The definitions of direct and diffuse radiation, and the scattering angle, ©, with respect to

solar radiative transfer in plane-parallel : i i
paible o1 Al p parallel atmospheres. The monochromatic solar irradiance at TOA is

1

direct component is associated with the exponential attenuation of unscattered
solar flux in the atmosphere. The diffuse component arises from light beams that
undc‘ergo m'ultiple-scattering events. In the polar coordinate, the directions definin
the incoming and outgoing light beams may be expressed by (i, @) and ( ¢)g
respectively, where p = cos 6, 0 is the zenith angle and ¢ is the a’zimuthal ﬁl,gle’
L:et p and —p denote the upward and downward directions associated with the:
light beams. Thus the position of the sun may be denoted by (—po, ¢o), where
”f’ — ¢0s 6, and A and @ denote the solar zenith and azimuthal angle’s as’seen in
Fig. 3.2. For simplicity of presentation in this chapter, we shall omit the v:/avelen th
subscript, A, in the radiative parameters. y

‘ Based on Eq. (2.1.2) and under the plane-parallel assumption, the basic equa-
tion governing the transfer of diffuse solar intensity may be written in the form

T.hree f%ictors contribute to the source function: emission, multiple scattering of
diffuse intensity, and single scattering of direct solar irradiance (flux densityg) at
TOA, F, which is attenuated to the level 7. Energy emitted f.rom the earth ;md the
?tmospher.e with an equilibrium temperature of ~255K is practically negligible
in comparison with that emitted from the sun. Thus, in the solar region, the source
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function is given by

+ 2 Ro P, by 00T e
™

where P is the scattering phase function (or, simply, the phase function), which
represents the angular distribution of scattered energy as a function of direction.
The phase function redirects the incoming intensity in the direction (¢, ¢") to
the direction (u, ¢), and the integrals account for all possible scattering events
within the 4 solid angle. The single-scattering albedo, @, is defined as the ratio of
the scattering cross section ds t0 the extinction (scattering plus absorption) Cross
section, o.; that is,

o=

(3:1:3)

IR

The single-scattering albedo, phase function, and extinction cross section are fun-
damental parameters in radiative transfer. These parameters are functions of the
incident wavelength, particle size and shape, and refractive index with respect
to wavelength. The first and second terms on the right-hand side of Eq. (3.1.2)
represent the diffuse (multiple scattering) and direct (single scattering of the direct
solar flux) contributions, respectively.

The phase function depends on the incoming and outgoing directions. For
spherical particles or nonspherical particles randomly oriented in space, the phase
function can be expressed in terms of the scattering angle: the angle defining
the incoming and outgoing directions shown in Fig. 3.2. We may express the
phase function in terms of a known mathematical function for the purpose of
solving Eq. (3.1.2), the first-order differential-integral equation. The Legendre
polynomials, by virtue of their unique mathematical properties, have been used
extensively in the analysis of radiative transfer problems. In terms of Legendre
polynomials, the phase function may be written in the form

(3.1.4)

The Legendre polynomials have the following orthogonal and recurrence proper-
ties:

i e e t#k
WPWdp =13 2 ¢=k (8.1.5)
ey} 4

2E4-147

¢+ 1 14
pPe(p) = WPP+I+'_’_"I)K—I- (3.1.6)
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106 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

From the orthogonal equation, the expansion coefficient is given by

we—LH-/-Pg(cose)dcose feBd N aln

- In the present notation, the phase function is normalized to unity, viz.,

Thus we have.=rom spherical geometry, the cosine of the scattering angle
can be expressed in terms of the incoming and outgoing directions in the form

con® = + (1~ = ook = 131

Using Eq. (3.1.9), the phase function defined in Eq. (3.1.4) may be written

N
Pt ) = 3o, (D)
0=0

(3.1.10)

Moreover, from the-n for Legendre-ee, e.g., Liou,

1980), we find

NN
Pudi o)=Y Y o) CRDREERGSGND (.1.112

m=0£{¢=m

where P} denotes the associated Legendre polynomials, and

—m)!
oy - ovosnsv cnw

P 1o =)
0m =1 0, otherwise.

In view of the expansion of the phase function, th—nay also be

expanded in the cosine series in the form

N

I 0) =y o M6 — 6). (3.1.12)

m=0

Substituting Eqgs. (3.1.11) and (3.1.12) into Eq. (3.1.2), and using the orthogonality
of the associated Legendre polynomials, the equation of transfer splits into (N + 1)
independent equations, and may be written
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[ rerema

om0t a1

Omitting the superscript O for simpliciiy of presentation, for m = 0 we have

dI(r, ) D e :
o =I(T,u)~§§wePe(u) /_ IPz(#’)I(T,u')du'
o N
Z @e Po(i) Po(—po) Foe ™™/, (3.1.14)

=0

11 th cquation f tanser that s independentof the aimuthal angle. Fr 1
Eq. (3.1.11a), the azimuth-independent phase function may be obtained from

Poi=5 | P g i

i {—m=o, i

01 m;éO

Equation (3.1.14) may then be expressed in terms of the azimuth-independent
phase function in the form

dI(r, p) @ [
p— R () — > /_ : I(r, p")P(p, 1) dyt!

&') e’ 31
~ - Plu, —po)Foe /mo, (3.1.16)

The azimuth-independent phase function defined in Eq. (3.1.15) has the following
properties:

] 1
E/lP(u,u’)du’ —@ (3.1.17)

l 1
3 / . P(u, pyp'dp’ = @yp/3. (3.1.18)

The monochromatic upward and downward diffuse fluxes at a given optical
depth level, 7, are defined by

(3.1.19a)
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tvely. using £4. (J.1.12), We L4

‘

L | ¥
F(r)=2n / I(7, wp dp. (3.1.19b)
JO

For solar flux computations, it suffices to consider the azimuthally averaged equa-
tion for the transfer of diffuse radiation. The direct downward solar flux at level 7
is given by the exponential attenuation of the effective solar flux at TOA, poFp.

Thl.lS, /
' 5 Fy () = pOFee_T/“O. (3.1.20)

The total upward and downward fluxes covering the entire solar spectrum,
using the height coordinate, may be written

F*(z):/ Fr)dA, (3.1.21)

0
F(2) = / (Ph4 By (3.1.22)

0

Thus the net flux is .
F.(2) = F (2) — Ft(2). (3.1.23)

The heating rate due to the absorption of solar flux in the atmosphere is produced
by the divergence of the net solar flux, and is given by

orT 1 dF,(2)
okt R o 1.24
(8t ) i T s

where p is the air density and C), is the specific heat at constant pressure.

3.2 Exact methods for radiative transfer

3.2.1 Discrete-ordinates method

The discrete-ordinates method for radiative transfer has been elegantly developed
b r applications to the transfer of radiation in planetary
atmospheres. Liou (1973a) has demonstrated that the discrete-ordinates method is
a useful and powerful method for the computation of radiation fields in aerosol
and cloudy atmospheres. In essence, the method involves the discretization of the
basic radiative transfer equation and the solution of a set of first-order differen-
tial equations. With the advance in numerical techniques for solving differential
equations, the discrete-ordinates method has been found to be both efficient and
accurate for calculations of scattered intensities and fluxes (Stamnes and Swanson,
1981; Stamnes and Dale, 1981).

st An vl et 1 arite fio Btinena g dosvam dabin s vabalode e o skastioniytvnseantlia i oo dho o b dhe Bl g o il ol

in Eq. (3.1.13), and rewrite these equations as follows:

The source function is given by

N
‘:) ~m m S
QD (' + 0.0 > S wrrw [ PO
-1

l=m

RSO
w ~ m b - g
g > G PP (— po)Foe ™Mo, (3.2.2)

=m
To prgceed with the solution of Eq. (3.2.1), we first discretize the equation by
replacing w1thdith n = 1,2,...) and the integral,

j=-n

with the weight a;. The homogeneous solution for the set of first-order differential
equations may be written

M= Y LPePweT, (3:2.3)

j=—n

wher-lenote the eigenveetors and eigenvalues, respectively, and
I} : ;
L' are coefficients to be determined from appropriate boundary conditions. On

substituting Eq. (3.2.3) into the homogeneous part of Eq. (3.2.1), the eigenvectors
may be expressed by

w8 N n
wm (3.2.4)

=m . a=—n .

The particular solution may be written in the form

BT, 1) = Z“)e‘f/"". (3.2.5)

From Eq. (3.2.1) we have

L N
w i ~m m ‘
. A+ i/ po) Z bzl

f=m

. - m m F
x ( 2 PGyl + P (—uo)—f) . (326
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110 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

Equations (3.2.4) and (3.2.6) are linear equations in ¢ and Z™ and may be
solved numerically. The complete solution for Eq. (3.2.1) is the sum of the general
solution for the associated homogeneous system of the differential equations and
the particular solution. Thus,

j=-n

(3.2.7)
In order to determine the unknown coefficients, L', boundary conditions must
be imposed. Assuming that there are no external radiation sources from above or
below a layer with an optical depth of 7., we have

— ifori:l,...,nandm:O,...,N. (3.2.8)

A mathematical procedure from which the eigenvalues k7" may be calculated
from a recurrence characteristic equation has been developed by Chandrasekhar
(1950). The eigenvectors ¢} (u;) may be expressed in terms of known functions,
which contain the eigenvalues, and the particular solution is related to a known
mathematical function, the so-called H function. The characteristic equation for
the eigenvalues derived by Chandrasekhar is mathematically, as well as numeri-
cally, ambiguous. The method is unstable for highly peaked phase functions, as
pointed out by Liou (1973a), who discovered that the solution of the characteristic
equation may be formulated as an algebraic eigenvalue problem. Further, Asano
(1975) has shown that the degree of the characteristic equation for the eigenvalues
can be reduced by a factor of two because the solution for the eigenvalues may be
obtained by solving a characteristic polynomial of degree n for k2. Both of these
authors have expanded the matrix in polynomial form to solve the characteristic
equation for the eigenvalues corresponding to the associated homogeneous sys-
tem of the differential equations. However, the expansion in polynomial form is
not a stable numerical scheme for obtaining eigenvalues. To solve the algebraic
eigenvalue problem, a well-developed numerical subroutine found in the IMSL
User’s Manual (1987) may be used to compute the eigenvalues and eigenvectors
of a real general matrix in connection with the discrete-ordinates method. Stamnes
and Dale (1981) have shown that azimuthally dependent scattered intensities may
be computed accurately and efficiently using numerical methods.

In the discrete-ordinates method for radiative transfer, analytical solutions for
the diffuse intensity are explicitly given for any optical depth. Thus the internal
radiation field can be evaluated without additional computational effort. Moreover,
useful approximations can be developed from this method for flux calculations.

SOLAR RADIATIVE TRANSFER 111

We now confine our discussion to the transfer of solar fluxes, and consider the
azimuth-independent component in the diffuse intensity component. On replacing
the integral with a summation, Eq. (3.1.16) may be written in the form

dI(r, ) b -
p = ) - Z I(7, ) P, pj)a
="
i

47rFG>P(/ti»—M())6_T/“", i=-n,...,n, (329

where we may select the quadrature weights and points that satisfy a_; =
aj(zj aj = 2)and p_; = —p;. To simplify this equation, we may define

i 4y N
w w
Cij = EajP(ﬂi,;tj) = —2-(1]' Zd)gpg([t,;)Pg(/j,j),

=0
Ji=n,... —0,...,n, (3.2.10)
and
I(r, —po) = e 7'M Fg [2m, (3.2.11)
where we set a_y = 1 and the notation —0 is used to be consistent with the
definition, _o = —po. By virtue of the definiton of Legendre polynomials, we
have
Ci,—j = C—i,j) Cii Lyi=ICi, 4 # —0. (3.2.12)

Moreover, we may define

Ci i/ Miy L F# ]
bm-—‘{ i/ i (3.2.13)

(Cj — Dy 2= 3

It follows that b; ; = —b_; —j, and b; _; = —b_; ;. Using the preceding defini-
tions, Eq. (3.2.9) becomes

dI(7, 11:)
. - Zbi,jf(r, 14)- (3.2.14)

J

We may separate the upward and downward intensities in the forms

dI(r, ) | n
d:r — Z bi i 1(T, pi) + Z bi,—; 1(7, —115), (3.2.15a)
Jj=1 j=0
dI(T, —1;) = L.
o Db ;I )+ Y boi,—il(r, —ptj).  (3:2.15b)
j=1 j=0
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112 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

In terms of a matrix representation for the homogeneous part, we write

d [IT b* b~ It
LA
where
I(T) :t.ul) 4
I(Ta Zt/lz)
| ! : (3.2.17)
I(T, :t,“n) J

and b* denotes the elements associated with b; ; and b; ;. Since Eq. (3.2.16) is
a first-order differential equation, we may seek a solution in the form

I =t . (3.2.18)

Substituting Eq. (3.2.18) into Eq. (3.2.16) leads to

4 + B
{_b;_ j’b+] [Z_] = —k [2_} (3.2.19)

Equation (3.2.19) may be solved as a standard eigenvalue problem. In the discrete-
ordinates method for radiative transfer, the eigenvalues associated with the dif-
ferential equations are all real and occur in pairs (k) because of the symmetry
of the b matrix. Thus the rank of the matrix may be reduced by a factor of 2. To
accomplish this reduction, we rewrite Eq. (3.2.19) in the forms

btet +b ¢ = —ko™, (3.2.20a)
b 9" +btod™ =ko™, (3.2.20b)

Adding and subtracting these two equations yield
(T —b )bt +b )@ +07) =K@ +¢). (3.2.21)

Hence, the eigenvectors of the original system, ¢*, can now be obtained from
the reduced system, (¢ + ¢~ ), in terms of the eigenvalue k*. As discussed by
Chandrasekhar (1950), the Gaussian quadrature formula for the complete angular
range, —1 < p < 1, is efficient and accurate for the discretization of the basic
radiative transfer equation. However, the Gaussian quadrature can also be applied
separately to the half-ranges, —1 < g < 0 and 0 < p < 1, which are referred to
as the double-Gauss quadrature and appear to offer numerical advantages when
upward and downward radiation streams are treated separately.
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Radiation from above

Iin,rop (/‘"v¢') Iour, top () Iouf, top (pr )

/ S, / T:(/h¢;/f"/¢')
7§ / /l,/ i
5 i K 2 //’/
/// / / //;" # 5 //", ///// //,/ ’///
T(/L,¢;/4',¢') (ods A ,//

Tout, bottom (s ) Tout, bottom (wr#) Iin,bottom(p ¢’

Radiation from below

Fi6. 3.3 Configurations for radiation incident from above and below, and the definitions of the
reflection and transmission functions.

The adding method has been demonstrated to be a powerful tool for multiple-
scattering calculations. The principle for the method was stated by Stokes (1862)
in a problem dealing with reflection and transmission by glass plates. Peebles
and Plesset (1951) have developed the adding method theory for application to
gamma-ray transfer. van de Hulst (1980) has presented a set of adding equations
for multiple scattering that is now commonly used.

To introduce the adding method for radiative transfer, the reflection function
R and the transmission function 7" must first be defined. Consider a light beam
incident from above, as represented in Fig. 3.3. The reflected and transmitted
intensities of this beam are expressed in terms of the incident intensity in the form

l 27 1
Iout,mp(ﬂ'v @) = ;l'- / / R([L, o5 ﬂ’: d)l)Iin.top(llf’s ¢,)l‘, dﬂ, d¢lv (3:2.22)
0 Jo

1 2w pl ,
‘[out,bouom(/['a @) = '7_‘_ / / T(/L’ ;5 /lla (p/)lin’lop(ltla ¢/)ﬂ, dﬂl d¢/, (3223)
0o Jo

Likewise, if the light beam comes from below, as is also shown in Fig. 3.3, we
write

1 2w pl
L)Ut.bouom(l»ls Q) = ; / / R*(ﬂ, o5 IJ’, ¢/)Iin,bonom(l1'/a ¢I)IL, dp,’ d¢la (3.2.24)
' 0 JoO

' 1 27 1 7 ;
Toutop(ht; 9) = — /0 / T* (1, d: 1, 3" )Min porom(i’, @)’ dp’ do’, (3.2.25)
“ 0

where R* and 7™ are so defined, and the superscript * signifies that radiation
comes from below.
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Consider the transfer of monochromatic solar radition. The incident solar
intensity, in the present notation, may be written in the form

Fin op(— 05 $0) = 6(1' — 10)8(¢" — do)Fo, (3.2.26)

where § is the Dirac delta function. Using Eq. (3.2.26), the reflection and trans-
mission functions defined in Eqgs. (3.2.22) and (3.2.23) are given by

R(ll/a o5 Mo, Po) = 7Tlnut.mp(//fa d))/lll()F@, @221
T2, O 1o, P0) = T out bottom (12, D)/ 0 Fio.- (3.2.28)

Under the single-scattering approximation, the source function defined in
Eq. (3.1.2) may be written in the form

J(T, @1, @) = :)—WF@P(H, ®; —po, doYe /M. (3.2.29)

Assuming that there are no diffuse intensities from the top and bottom of the layer
with an optical depth A7, then the radiation boundary conditions are as follows:

Iin,top(,uu ¢ =0
Iin,bouom(ﬂa o) = 0. (3.2.30)

With these boundary conditions, the reflected and transmitted diffuse intensities
due to single scattering can be derived directly from the basic radiative transfer
equation. Thus the solutions for the reflection and transmission functions for an
optical depth A7 are given by

U
S e Jats NG ] [t eI i
4(#+ )P(u,qﬁ uo,(bo){ CXP[ T(u+uo>]}
(3.2.31)

P(—p, ¢y — o, Po)e~AT/H — e=AT/H0) i 2 pg

R(u‘a ¢; Ho, ¢0)

: o (u Ho)
T(/J" ¢v Ho, ¢0) l wAZ- P( 1, d) i ¢())6—AT/“0, U = Wo.
4 (3:2:32)

If we consider a layer in which A7 is very small (e.g., AT = 107%), Egs. (3:2.31)
and (3.2.32) may further be simplified in the forms

OAT
R(ﬂ7¢’ Ho, ¢0) ZN_[J,_P(I""(p —H0, ¢0)1 (3233)
A
s, 0 b, ) = P b = s, (3.2.34)

dppo
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Hofo
o o e
i \ %/ /lT/Rzrl/T/RzR;RzT/ R 5
T:

e
RaT RIRZTI RyR/RaRIRST,

\ \v . U

r yr D

RIR,T, RRIR, T,

75 X

TET 4T \ ~
‘7‘.'

2TI T RI RZT/ T.’;‘R/RZRI RZT/

F16.3.4  Configuration of the adding method. The two layers of optical depths 7} and 7, are rendered,
for convenient illustration, as though they were physically separated.

For a thin homogeneous layer, the reflection and transmission functions will be the
same regardless of whether the light beam is incident from above or below. Thus,
R* = Rand T* = T. However, when we proceed with the adding principle for
radiative transfer, the reflection and transmission functions for combined layers
will depend on the direction of the incoming light beam.

In reference to Fig. 3.4, consider two layers, one on top of the other. Let
the reflection and total (direct and diffuse) transmission functions be denoted R,
and T for the first layer and as R, and 7> for the second layer, respectively.
We define D and U for the combined total transmission and reflection functions
between layers 1 and 2. In principle, the light beam may undergo an infinite number
of scattering events. Upon tracing the light beam in the two layers, we find the
combined reflection and total transmission functions as follows:

Ri = R: + Tt Ryl 1* Ry R: R, Ty + T RyRE Ry R Ry T +
=R +TfR [14 R{ Ry + (R{R)* + -+ | T
= R, + TRyl = R} Ry)~'T, (3.2.35)
Ty =0T + HR{RT) + TR BRI Ry T +
=T [1+RiRa+ (RIR)* +--- | T
=T(1 - RIRy)™'T. (3.2.36)



116 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

Likewise, the expressions for U and D are given by

U = RyTy + RyR:RyTi + RyR BRI Ry T + - -

=Ry [l +R{R + (Ri R’ +--- | T

= Ry(1 = R}Ry)~'T, (3.2.37)
D =T +R!R.Ti + RIRRI R T + - -
=[1+R{R + (B{ R’ +--- ] T

=~ RERs) "1y (3.2.38)

In Egs. (3.2.35)~(3.2.38), the infinite series is replaced by a single inverse function.
We may define an operator in the form

S=RIR(1 - RRy)™". (3.2.39)

Thus, (1 — R{Ry)~' = 1 + S. From the preceding adding equations, we have

Ry =R+ T}, (3.2.40a)
T, =TD, (3.2.40b)
U = R,D. (3.2.40¢)

At this point, we wish to separate the diffuse and direct components of the total
transmission function, which is defined by

P e Th (3.2.41)

where 1/ = 1o when transmission is associated with the incident solar beam, and
1/ = pwhen it is associated with the emergent light beam in the direction p. Using
Eq. (3.2.41), we may separate the direct and diffuse components in Egs. (3.2.38)
and (3.2.40b) to obtain

D =D+e /™ = (1+8)Ti +e™/™)
= (L B4 8e ke 1, (3.2.42)
T =T + e~ /MY(D + e—fl/m»)
e By T2e~1'|/;40 +TD

+ exp [— (ﬂ- + E)] 6(p = po), (3.2.43)
Mo M
where D, T}, and 75 denote thé diffuse components only, and a delta function is

added to the exponential term to signify that the direct transmission function is
a function of s only. On the basis of the preceding analysis, a set of iterative
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equations for the computation of diffuse transmission and reflection for the two
layers may be written in the forms

Q = R{R;, (3.2.44a)
S - Q) (3.2.44b)
D=1+ ST, + Se "/ | (3.2.44c)
U= RyD + Rye™™/H0 (3.2.444)
Ry =Ry +e ™/* +T}U, (3.2.44e)
Ty =e ™/*D + The~ "/ L T,D. (3.2.44f)

The direct transmission function for the combined layer is given by exp[—(7 +
72)/ o). In these equations, the product of two functions implies an integration over
the appropriate solid angle so that all possible multiple-scattering contributions are
accounted for, as in the following example:

1 27 pl
RiR; = — /0 i Ri(u, s 1, @R’ &5 o, do)p’ dp’ dg’. (3.2.45)

In the numerical computations, we may set 7y = 7. This is referred to as the
We start with an optical depth A7 on the order of 10~* and
use Egs. (3.2.33) and (3.2.34) to compute the reflection and transmission func-
tions. Equations (3.2.44a-f) are subsequently employed to compute the reflection
and transmission functions for an optical depth of 2A7. For the initial layers,
R}, = Ry and T}, = Tj . Using the adding equations, the computations may
be repeated until a desirable optical depth is achieved.
For radiation emergent from below, R}, and T}, may be computed from a
scheme analogous to Eq. (3.2.44). Let the incident direction be y’; then the adding
equations are as follows:

Q = R:R}, (3.2.46a)
S=QU - ) (3.2.46b)
U + ST} + Se /¥, (3.2.46¢)
D=RIU + Rre-"ﬁ/ﬂ' ; (3.2.46d)
% =R +T,D+e /"D, (3.2.46e)

TE ey o+ e~ T/B & T,*e_”/“l . (3.2.46f)

When polarization and azimuth dependence are neglected, the transmission func-
tion is the same regardless of whether radiation is from above or below; that is ,
T*(, ') = T(1', ). This relation can be derived based on the Helmholtz prin-
ciple of reciprocity in which the light beam may reverse its direction (Hovenier,
1969).
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FiG. 3.5 Normalized phase functions for cloud droplets, aerosols, and molecules illuminated by a
visible wavelength of 0.5 pm.

For practical applications, we begin with the computations of the reflection
and transmission functions given in Egs. (3.2.33) and (3.2.34). The phase function
must be expressed as a function of the incoming and outgoing directions via
Eq. (3.1.11a) in the form

N
P, ds ', &) = PO(u, i) +2 ) P™(u, ) cosmi(@' = ¢),  (3.2.47)
2=

where P (i, 1) (m = 0,1,..., N) denotes the Fourier expansion coefficients.
The number of terms required in the expansion depends on the sharpness of the
forward diffraction peak in phase function (see Fig. 3.5).

The preceding adding equations for radiative transfer have been written in
scalar forms involving diffuse intensity. However, these equations can be applied to
the case that takes into account polarization in which the light beam is characterized
by the Stokes parameters and the phase function is replaced by the phase matrix
(see Subsection 5.1.2 for further discussion). The phase matrix must be expressed
with respect to the local meridian plane in a manner defined in Eq. (5.5.6).
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3.3 Two-stream and Eddington’s approximations for radiative transfer

3.3.1 Two-stream approximation

On the basis of the aﬁalysis presented in Subsection 3.2.1 of the
r radiative transfer, Eq. (3.2.9) may be written in the form

W = IR - cioolo SRR

j=-n

where ¢; ; and I have been defined in Eqs. (3.2.10) and (3.2.11), respectively.
The simplest way of solving Eq. (3.3.1) is to tak and let the expansion
term in the Legendre polynomials b fter rearranging terms and denoting

I(7, py) an wo simultaneous equations may
be written in the forms

m——=It—a0-* QY-s~e T, (3329)
P %{TL T )Y - ste~T/Ho (3.3.2b)
where p; = 1/v/3, a1 = a_; = 1 from the Gauss formula, and
(3.3.2¢c)
(3.3.2d)

The asymmetry factor g is defined by

: RS
9=73 _Eﬁl-osedcos@. (3.3.3)

The asymmetry factor is the first moment of the phase function. It is derived
from Eq. (3.1.4) by using the orthogonal property of the Legendre polynomials.
Note that the zero moment of the phase function is equal to @y(= 1). For isotropic
scattering, g is zero, as it is for Rayleigh scattering. The asymmetry factor increases
as the diffraction peak of the phase function sharpens. Conceivably, the asymmetry
factor may be negative if the phase function peaks in backward directions (90—
180°). For Mie particles, whose phase function has a generally sharp peak at the
0° scattering angle, the asymmetry factor denotes the relative strength of forward
scattering. Parameters b and (1 — b) can be interpreted as the integrated fraction
of the energy that is backscattered and forward scattered, respectively. Thus it is
apparent in Eq. (3.3.2) that the multiple-scattering contribution in the two-stream
approximation is represented by upward and downward intensities weighted by
appropriate fractions of the forward or backward phase function. The upward
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120 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

intensity is strengthened by its coupling with the forward fraction (0-90°) of
the phase function plus the downward intensity, which appears in the backward
fraction (90—180°) of the phase function. A similar argument is valid for the
downward intensity.

The form of Eq. (3.3.2), without the direct solar source term, was first pre-
sented by Schuster (1905). Schuster’s formulations have been used by Neiburger
(1949) for solar reflection, absorption, and transmission measurements from Cal-
ifornia stratus clouds, and have been further discussed by Herman and Abraham
(1960). An application of the two-stream approximation to planetary atmospheres
has been presented by Sagan and Pollack (1967) for interpreting observed visual
and near-ir reflectivity from the clouds of Venus.

The m
[Egs. (3.3.2a) and (3.3.2b)] can be derived by straightiorward analysis. Let ;

then we obtain

It = I(7, ) = (3.3.4a)
I~ = I(r, — ) = (3.3.4b)

where
K =1 -a)l —o9)/u, (3.3.4¢)
v=>1+0a)/2, u=(-a)/2 (3.3.4d)
a®=(1 -/ —ag), (3.3.4¢)
e=(a+03)/2, v = (a — 0)/2, (3.3.4f)

a=Zyd/(1 - gk,  B=Zud/( - uik?), (3.3.4g)
(1 -@g)s” + st) 4 87 — 8t

i 2 (3.3.4h)
1251 1 o
e e
PO .m0 00T (3.3.40)
Hy H1pko

The terms +k, in Eq. (3.3.4c) are the eigenvalues for the solution of the differential
equations, and v and v represent the eigenfunctions, which are defined by the sim-
ilarity parameter a in Eq. (3.3.4e) (see Section 3.4 for discussion on the similarity
principle in radiative transfer). For conservative scattering, @ = 1. Simpler solu-
tions can be derived from Eqs. (3.3.2a) and (3.3.2b) with one of the eigenvalues,
k = 0. In practice, however, we may set @ = 0.99999 in Eqs. (3.3.4a—i) and obtain
the results for conservative scattering. With two proper boundary conditons, the
two integration constants, K and H, may be determined. The upward and downard
fluxes in the context of the two-stream approximation are

.= 2 p I(Ty 1), -= 2 I(T, —p1). (3:3.9)
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3.3.2 Eddington’s approximation

We begin with the general approach of decomposing the equation of radiative
transfer using the property of Legendre polynomials. In line with the Legendre
polynomial expansion for the phase function denoted in Eq. (3.1.15), the scattered
intensity may be expanded in terms of Legendre polynomials such that

§ily
QR > - e (336
£=0

Using the orthogonal and recurrence properties of Legendre polynomials, Eq.
(3.1.16) may be decomposed in N harmonics in the form

¢ diys e+ 1 dlpy

20— 1 53 dar
i R v o
- (1 i 20 + 1) T wapf(—‘ﬂ())ﬂ—:)e /Io’

€=0,|,2,...’N‘ (3'3‘7)

The method of solving the basic radiative transfer equation using the aforemen-
tioned procedure is referred to as the spherical harmonic method (Kourganoff,
1952). Numerical solutions to a set of differential equations may be carried out in

_ the same way as they are in the discrete-ordinates method (Dave, 1975).

Eddington’s approximation uses an approach similar to that of the two-stream
approximation, and was originally used for studies of radiative equilibrium in

stellar atmospheres (Eddington, 1916). Letting-the phase function and
intensity expressions may be written as follows:

CEREERRED << 09

Subsequently, Eq. (3.3.7) reduces to a set of two simultaneous equations in the
forms

dl; i 6 T

== Wl - &)lo — T Foe g (3.3.92)
dly ) 3@

3 — @9 + Egqu@e"/ i (3.3.9b)

Differentiating Eq. (3.3.9b) with respect to 7 and substituting the expression for
dI, /dr from Eq. (3.3.9a) leads to

d?I
dTZO S kZI() il Xe—’r/llr() ; (33]0)
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122 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

where y = 3@F(1 + g — ©g)/4m and the eigenvalue is
k* = 3(1 — o)1 — @g). (3.3.11)

Here, the eigenvalues are exactly the same as they are for the two-stream approx-
imation depicted in Eq. (3.3.4c). Equation (3.3.10) represents a well-known dif-
fusion equation for radiative transfer. The diffusion approximation is particularly
applicable for the radiation field in the deep domain of an optically thick layer.
Straightforward analyses yield the following solutions for the diffusion equa-

tion:
fo= Ke*" + He ™™ + e~/ (33.12a)

where 3%
v =2 R+ o1 - D1/ 1/

Following a similar procedure, the solution for the second harmonic, I,, is given

b
y NG

where a> = 3(1 — @)/(1 — @g), defined in the two-stream approximation
[Eq. (3.3.4e)], and

3@ Fp

i 4 po

[1+3g(1 — @) /K — 1/115).

The integration constants, K and H, are to be determined from proper boundary
conditions. Finally, the upward and downward fluxes are given by

ol A0 w(f+3n)
=2n | (o+pl)pdp=
F] w(l-30)-

3.3.3 Generalized two-stream equation

(3.3:13)

Using the radiative transfer equation denoted in Eq. (3.1.16) and the upward and
downward diffuse fluxes defined in Eq. (3.1.19b), we may write

i I e
Ll / I, wdp—2 / / I(r, )P, 1) i’ dps
2’)1" dT 0 2 Olisd
~ 1
LR gr i / P(u, —po) dp, (3.3.14a)
471' 0
el 1 ~ 1 pl1
LD [ re-wau 5 [ [ 1Py d
2m AT 0 2 )iy :

o) 1
+iF@e—T/#°/ Pl udy (3.3.14b)
4T 0
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Table 3.1 Coefficients in two-stream approximations

Method T 97 RE
Two-stream [1 — @&+ g)/21/ (1 = g)/2m (1 —3gp1p0)/2
Eddington’s [7—@+3g)w]/4 —[1 — (4 - 3g9)&1/4 (2 — 3gp0)/4
The generalized two-stream approximation may be expressed by
dET
dT(T) = YNFY(1) — 72 F~ (1) — ;30 Fge” /o | (3.3.152)
dbi
dT(T) =wFt(@)-mF (M +1 - y3)@Fge™™/H0 | (3.3.15b)

The differential changes in upward and downward diffuse fluxes are directly related
to the upward and downward diffuse fluxes, as well as the downward direct flux.
The coefficients y; (i = 1,2, 3) depend on the manner in which the intensity and
phase function are approximated in Eq. (3.3.14). In the two-stream approximation,
there are only upward and downward intensities in the directions x; and —; given
by the Gauss quadrature formula, while the phase function is expanded in two terms
in Legendre polynomials. In Eddington’s approximation, both intensity and phase
function are expanded in two polynomial terms. The coefficients ~y; can be directly
derived from Egs. (3.3.2a, b) and (3.3.9a, b), and are given in Table 3.1.
In Eq. (3.3.14), we let the last integral involving the phase function be

1 1
> / P(p, —po) dps. (3.3.16a)
0
Since the phase function is normalized to unity, we have

1 1
5/ P(—p,—po)dp =1 — q. (3.3.16b)
0

Equations (3.3.16a, b) can be evaluated exactly by numerical means. We may take
73 = q in the two-stream approximation. This constitutes the modified two-stream
approximation proposed by Liou (1973b) and Meador and Weaver (1980). The
two-stream approximation yields negative albedo values for a thin atmosphere
when ;3 < 0 (i.e., g > p1/po). This also occurs in Eddington’s approximation
when g'> 0.75/ 9. These negative albedo values can be avoided by using ¢, the
full phase function integration for the direct solar beam, denoted in Eq. (3.3.16b).
The accuracy of the two-stream approximation has been discussed in Liou (1973a).
The overall accuracy of the two-stream and Eddington’s approximations can be
improved by incorporating the é-function adjustment for forward scattering. We
will discuss forward scattering in Subsection 3.4. There are other two-stream ap-
proximations, such as those discussed by Zdunkowski et al. (1974) and Coakley
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124 RADIATION AND CLOUD PROCESSES IN THE ATMOSFHERE

and Chylek (1975), who used hemispheric average intensities for the upward and
downward diffuse fluxes, and by Meador and Weaver (1980), who used a combi-
nation of Eddington and §-function methods to get the two-stream approximations.
The accuracy of these methods is geherally on the same order of magnitude as that
of the 6—two-stream or é-Eddington approximations (see Section 3.5).

The solutions for the equations of the generalized two-stream approximation
expressed in Eq. (3.3.15a, b) are as follows:

Ft+ = vKe*™ + uHe ™ ™ + ee~ "/, (3.3.17a)
= uKe®™ +vHe * + 7(%“’/“0 ) (3.3.17b)
where
P S G | (3.3.182)
| |

V= 5[1 + (1 — 'Y'.Z)/k]‘ U= —2-[1 — (’yl - "/2)/k], (3.3.18b)

€ = [73(1 /o — 1) — 21 — @ Fo, (3.3.18¢)

v = —[(1 = 7)1/ o + 1) + 1 lg@ Fo, (3.3.18d)

and where K and H are unknown coefficients to be determined from the boundary
conditions.

3.4 Delta-function adjustment and similarity principle

The two-stream and Eddington methods for radiative transfer are good approxima-
tions for optically thick layers, but they produce inaccurate results for thin layers
and when significant absorption is involved. The basic problem is that scattering by
atmospheric particulates is highly peaked in the forward directions. Figure 3.5 il-
lustrates the phase functions for cloud water droplets, aerosols, and molecules. The
phase functions for cloud and aerosol particles are highly peaked in the forward
direction. This is especially evident for cloud particles, for which the forward-
scattered energy within ~5° scattering angles produced by diffraction is four to
five orders of magnitude greater than it is in the side and backward directions. The
highly peaked diffraction pattern is typical for atmospheric particulates. It is clear
that a two-term expansion in the phase function is far from adequate.

To incorporate the forward peak contribution in multiple scattering, we may
consider an adjusted absorption and scattering atmosphere, such that the fraction
of scattered energy residing in the forward peak, f, is removed from the scattering
parameters: optical depth, 7; single-scattering albedo, &; and asymmetry factor,
g. We use primes to represent the adjusted radiative parameter's, as shown in Fig.
3.6. The optical (extinction) depth is the sum of the scattering (7,) and absorption

(7,) optical depths. The forward peak is produced by diffraction without the con-
tribution of absorption. Thus the adjusted scattering and absorption optical depths
must be

T, = (1 — f)rs, (3.4.1)
o M (3.4.2)

The total adjusted optical depth is
=141 =1~ T +71 =11~ f@). (3.4.3)

The adjusted single-scattering albedo is

/ p: ~
e (1 -fyr, (=@
W === = ; 4.
T (1l - fo)r 1 - f@ i
Moreover, we multiply the asymmetry factor by the scattering optical depth to get
the similarity equation

rigl =g ~ 7,f, thatis, g’ = 'l————}f;, (3.4.5)
where we note that the asymmetry factor in the forward peak is equal to unity. In
the diffusion domain, the solution of the diffuse intensity is given by exponential
functions with eigenvalues defined in Eq. (3.3.11). We may set the intensity solution
in the adjusted atmosphere so that it is equivalent to that in the real atmosphere,
in the form

kr =Kk'7. (3.4.6)

From Egs. (3.4.3)—(3.4.6), the similarity relations for radiative transfer can be
expressed in the forms

T K _1-0 dd-g) i
7k 1-0 (-9 G

Using the expression for the eigenvalue defined in Eq. (3.3.4c), we also find the
relation for the similarity parameter defined in Eq. (3.3.4e), as follows:

b o\ 1@l
a = (l _wq) = <m) . (347b)

The similarity principle can also be derived from the basic radiative transfer
equation. We may begin with this equation in the form

dI(r, p) & r
# dTﬂ =1(T~N)—§/ I(r, )P, ') g’ (3.4.8)
el
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With forward peak Without forward peak

FiG.3.6  Similarity principle for radiative transfer. The prime system represents adjustment radiative
parameters such that the forward diffraction peak in scattering processes is removed.

From Eq. (3.3.8), the phase function in the limit of the two-stream and Eddington’s
approximations is given by P(u,p') = 1 + 3gu’. However, the phase functions
involving cloud and aerosol particles are highly peaked in the forward direction,
and two-term expansions do not adequately account for the strong forward scat-
tering. Let the fraction of the energy scattered in the forward direction (& =05
be denoted by f. The normalized phase function may be expressed in terms of this
value, as follows:

Pu, ') = 2f6(u — p')y + (1 = f)(1 + 3¢" pp"), (3.49)

where ;1 = 1/ when © = 0, § is the é function, and g’ denotes the scaled asymmetry
factor. The phase function so defined is normalized to unity, and the asymmetry
factor defined in Eq. (3.3.3) is given by

g=f+0-fy. (3.6.10)

The second moment of the phase function expansioh is
@5/ 8= fi (3.6.11)

Thus the scaled asymmetry factor can be expressed by

'_g;‘:_)_zﬁ 3410
T aa G

Now, substituting Eq. (3.4.9) into Eq. (3.4.8), we obtain

dI(T, @) @ile )G
) sl b i)

iy ()l ~@f) ~ 5

1
x/ (1 4 3¢" I (r, ') dp' . (3.4.13)
L
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Consequently, if we redefine the optical depth, single-scattering albedo, and phase
function such that

' =1 —-a&f)r, (3.4.14a)
el (1 i f)‘:)
i gy (3.4.14b)
Pu,p')=143¢py' (3.4.14¢)
Eq. (3.4.13) then becomes
dI(r', @ [
M (dT' 95 I, - W / ; I(r, WP (u, i)dp. (3.4.15)

Equation (3.4.15) is exactly the same as Eq. (3.4.8), except that g, 7, and @ have
been replaced by ¢’, 7/, and @’. By redefining the asymmetry factor, optical depth,
and single-scattering albedo, the forward-scattering nature of the phase function
is approximately accounted for in the basic radiative transfer equation. In essence,
we have incorporated the second moment of the phase function expansion in
the formulation of the radiative transfer equation. The “equivalence” between
Egs. (3.4.8) and (3.4.15) is the similarity principle that has been stated previously.

The phase functions for aerosol and cloud particles require involved scattering
calculations, as will be discussed in Section 5.1. For many applications to radiative
transfer in planetary atmospheres, an analytic expression for the phase function in
terms of the asymmetry factor has been proposed:

@3 i+ et PN (3416

£=0

This is referred to as the Henyey—Greenstein phase function (Henyey and Green-
stein, 1941), which is adequate for scattering patterns that are not strongly peaked
in the forward direction. Using this expression, the second moment for the phase
function is given by

/5 = f =g (3.4.17)

Thus, in the limit of the Henyey—Greenstein approximation, the forward fraction of
the scattered light is now expressed in terms of the asymmetry factor. Subsequently,
the scaled asymmetry factor, optical depth, and single-scattering albedo can now
be expressed by

’ g

L (=g
9—1+g @

I ~ 0
i 7= (l —@©g°)T, _—1—?—(:)’7.

(3.4.18)
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The similarity principle for radiative transfer was first stated by Sobolev
(1975) for isotropic scattering. The general similarity relationships have been
presented by van de Hulst (1980). The application of employing a Dirac é function
to approximate highly peaked forward scattering in radiative transfer has been
discussed by a number of researchers, including Hansen (1969), Potter (1970),
Joseph et al. (1976), and Wiscombe (1977).

The two-stream approximations are popular because they enable the ana-
lytic solutions for upward and downward fluxes to be derived, and the numerical
computations for these fluxes to be efficiently performed. The incorporation of
the delta-function adjustment to account for the strong forward scattering of large
size parameters in the context of two-stream approximations has led to a signif-
icant improvement in the accuracy of radiative flux calculations. As pointed out
previously, the & adjustment provides a third term closure through the second
moment of the phase function expansion. Schaller (1979) has illustrated that the
5—two-stream and §—Eddington approximations have the same accuracy. King and
Harshvardhan (1986) have undertaken a more comprehensive examination of the
accuracy of various two-stream approximations. They have shown that relative er-
rors of 15-20% could result for some values of optical depths, solar zenith angles
and single-scattering albedos. In the next section, we will introduce the é—four-
stream approximation, which produces an accuracy within ~5% in the radiative
flux calculations.

3.5 é-four-stream approximation for radiative transfer parameterization

For atmospheric flux computations, Liou (1974) has proposed that the four-stream
approximation could be of value. For this approximation, the solution for eigen-
values associated with the homogeneous part of the discretized equations can be
derived analytically from the recurrence equation for eigenvalues. Thus, the com-
putational time for the flux calculations does not significantly exceed that required
for the two-stream approximation. Cuzzi et al. (1982) have carried out an examina-
tion of the four-stream approximation. Their findings indicate that the four-stream
approximation, as well as the incorporation of the forward-peak adjustment in this
approximation, does indeed have much to offer for flux calculations in terms of
both accuracy and efficiency.

The four-stream approximation, as given in Liou (1974), is based on the
general solution for the discrete-ordinates method for radiative transfer. In order
to be able to understand the merit of the four-stream approximation, it is nec-
essary to have some background in solving a set of differential equations based
on Chandrasekhar’s (1950) formulations. In particular, it is noted that the search
for eigenvalues from the recurrence equation developed in the solution is both
mathematically ambiguous and numerically troublesome, as pointed out in Sub-
section 3.2.1.
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; A systematic and independent development of the solution for this approxi-
mation has been presented by Liou et al. (1988). Specifically, this solution involves
the computation of solar radiative fluxes using a relatively simple, convenient, and
acc1‘1rate method. Knowledge of the discrete-ordinates method for radiative t;ans-
fer is desirable but not necessary. In addition, a wide range of accuracy checks
for this approximation has been provided, including the é adjustment to account
for the forward diffraction peak based on the generalized similarity principle for
radiative transfer.

Consider two radiative streams in the upper and lower hemispheres (i.e., let
r? = 2). At the same time, expand the scattering phase function into four te;'ms
(i.e., N = 3) in line with the four radiative streams. On the basis of Eq. (3.2.16)
four first-order differential equations can then be written explicitly in matrix form;

i) =00l by —by 27 [ Bos s

a bl o[-y by —b s P Lo
di ey b=y, b bi I, bi,—o o,

iz by ol _ by, b L b2 _o
(850

whern? Io = I(7, —pp) defined in Eq. (3.2.11). The 4 x 4 matrix represents the
contnl?ution of multiple scattering. Thus the derivative of the diffuse intensity at
a specific quadrature angle is the weighted sum of the multiple-scattered intensity
from all four quadrature angles. The last term represents the contribution of the
unscattered component of the direct solar flux at position 7.

We proceed with a direct approach to find the eigenvalues and eigenvectors

for Eq. (3.5.1). To do so, we define the sum and difference of the upward and
downward intensities in the form

+
M5 =nL,+1_,_,. (3.5.2)
From Eq. (3.5.1), we obtain the following four equations:
dM, O R
i by My + by M + b5 I, (3.5.3a)
dM;y &
=My + M+ b5 I, (3.5.3b)
.
T b My + by M, +brr1@, (3.5.3¢c)
dM;
g = RMS M b7 I, (3.5.3d)

where the coefficients are defined by
b5 =bap by, b =by £by_y,

e
b§=hnihfm b = by, £ by, (3.5.4)
b2 e bz'_.() e [)._;2‘_0, b;t T bl._() e b_|’_(),



130 RADIATION AND CLOUD PROCESSES IN THE ATMOSPHERE

and b; ; have been defined in Eq. (3.2.13). Equations (3.5.3a—d) can be combined

to yield
’ @ [MF]  [ax azl] [Mz*] i [dZ} . (3.5.5)
El'_z AII—F i ap Qg M1+ d,
where
ax = bhby, +bhby . an =bpbd + b5l
a2 = byybf; + by bl an = b;b3; + by by
dy = bpby + b7 + b /o, (3.5.6)

di = bypby +byby + by /o
Performing differential operations on Eq. (3.5.5) leads to

aMf _, EMy

fle CA{;_ o (d—; + asndy — a|]d2) Loy (3.900a)
Ho

dr? dr?
+ 281+
L AR TR ) T a22d1> Io, (3.5.7b)
drt dr? I

where the terms b = ay; + aj; and ¢ = ap a3 — ajaz;. The complete solution
for M5" (or M;") is the sum of the solution for the homogeneous part of the
fourth-order differential equation plus a particular solution. Thus,

2
M1 (] [B]om, ase
b gl

where G; and H; are associated with eigenvectors, and 7, and 7, are results for
the particular solutions. Considering the homogeneous part in Eq. (3.5.7a) and
substituting the homogeneous solution for M, into this equation, we find

2
> (k3 —bk2 —c)Gje ™™ =0. (3.5.9)
j=-2
In order to have a nontrivial solution for M,;" (or M;"), we must have
f(k) =k*—bk*—c=0. (3.5.10)
It follows that the eigenvalues are given by

k2 = [b + (% + 4c)‘/2] /2. (3.5.11)

From the definitions of b and ¢, we have b* + 4¢ = (a;; — an)? + 4asap.
The terms ay; and aj; can be expressed in terms of ¢; ; defined in Eq. (3.2.10).
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Under the conditions that 0 < g < 1 and 0 < < 1, we find that a;; < 0
and ajz < 0. This implies that b* + 4¢ > 0. Also, it can be shown that the term
c=—[Tho(1 — @g%/ #i43. This term is less than zero, so that the eigenvalues
are all real numbers. In the case of conservative scattering, ¢ = 0. As a result,
the two eigenvalues are zero. By substituting the particular solution for M. ,+ , into
Eqgs. (3.5.7a, b), we obtain

da/ 1§ + andy — and, Fy

= e 3512
i 7/ 1) 2 o A
di /g + arpd; — and, Fs
— - 3.5.12b
£/ 1) o ( )

The function f in this equation has been defined in Eq. (3.5.10). Because G; and
Hj in Eq. (3.5.8) are defined after hi gh-order differentiations, they are not mutually
independent. We may determine their relationship from the homogeneous part of
Eq. (3.5.5). A straightforward substitution yields

Hle_k'T =l H-lek"r = Al(Gle—k‘T + G—lek'r), (3.5.13a)
Hye™ 7 4 H_,eM™ = Ay(Gre=*7 + G.qe), (3.5.13b)

where A, = (k,2,2 — ax)/ay, and k| and k, are eigenvalues from Eq. (3.5.11).
Following the preceding procedures and analogous to Eq. (3.5.7), we may
obtain expressions for M, 1,2 in the form

i 2 My /
ddr“2 L ddlzz + M+ (Z—% + a3, dj — agld;) I, (3.5.14a)
d*M;

N
T =V = M+ (u—é ‘e agzd’l) I, (3.5.14b)

where the primed coefficients can be obtained by replacing the superscripts + and
— inEq. (3.5.6) with — and +, respectively. Also, we note that b’ — ay +aj; = b,
and ¢’ = a5, a}, — a},a}, = ¢. The particular solutions for M;, are

My, =n),e7/k0 (3.5.15)
with

o 2/ M5 + a5 df — alydb Fy
. F(1/110) o’

o di/p§ + alydy — ahydi Fy ;
: F(1/ o) In

(3.5.16a)

(3.5.16b)
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From Egs. (3.5.3b, d), the homogeneous solutions for M, ; are given by

A/[Z_ e A'I.L:_b“.kl(_ale—kﬂ' A G-leklf)
a

i Azbz:;_— O o (—Gre=T + G_yebr™), (3.5.17a)
My = . —af‘—lbzz kil Gre M L GLeNT)
- e ‘afl__mzbz—z ky(~Gre™™" + G e"7), (3.5.17b)

where a™ = by,b;; — bp1b;,. )
Finally, combining Egs. (3.5.8), (3.5.13), and (3.5.17), the complete solutions
for I; (1 = —2,—1, 1, 2) are given by

- &~ - &= +
I, Gler el We; ey G Z;
i) q);()l— (I>I+PT @2—62— Q;e; G- 2 Zl+ e~ T/Ho
— BB i $ il il + 2 p
L drer drey die; ¢ ei G2 Zy
—o=  dFet bme= &F a 7-
7 e e o5 e 5 e g )
2 o1 € ¢1 1 272 (3.5.18)
oo e NS
where the elements e;” = e %17, ef = €M7, e; = e %7 and e = e**", and the

eigenvectors are:

Vi b — Alals
‘sz i (l + _L_‘a_—kl,Z . (3.5.192)
of, = % (Ax,z % A—"Z%Z_—_—bﬁkl,z) \ (3.5.19b)

In Egs. (3.5.19a, b), b;‘; is defined by Eq. (3.5.4), with b; ; given in Eq. (3.2.13), and
ki » by eigenvalues of Eq. (3.5.11) with b and ¢ defined below Eq. (3.5.7b). a~ and
A; » are defined by expressions below Eqgs. (3.5.17b) and (3.5.13b), respectively,
wi£h ai; given in Eq. (3.5.6). The Z functions are defined by

1
Zh = 5(771,2 £ 2), (3.5.19¢)

where 7, » and Tli,z are defined by Egs. (3.5.12) and (3.5.16). d; and a;; are given
in Eq. (3.5.6), and f(1/uo) has the same expression as that in Eq. (3.5.10), except
k is replaced by 1/ . d} and a;; have the same expressions as those in Eq. (3.5.6)
except that the superscripts + and — are replaced by — and +, respectively. The
coefficients G (j = 1,2, —1, —2) are to be determined from'radiation boundary

conditions.
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Consider a homogeneous layer characterized by an optical depth 7, and as-
sume that there is no diffuse radiation from the top and bottom of this layer; then
the boundary conditions are

I8y (1. =0) =0
ha(r =7.) =0 (3.5.20)

The lower boundary condition can be modified to include surface albedo effects.
Using these boundary conditions, G; can be obtained by an inversion of the 4 x 4
matrix given in Eq. (3.5.18). The upward and total (diffuse plus direct) downward
fluxes at a given level T are given by

FH(r) = 2m(ayu I + aspa 1), (3.5.21a)
F=(r) =2n(aym -1 + acppl_3) + poFoe™™/Ho (3.5.21b)

We may also apply the four-stream solutions to nonhomogeneous atmospheres in
the manner presented in Section 3.7.

The regular Gauss quadratures and weights in the four-stream approximation
are i1 = 0.3399810, pup = 0.8611363, a; = 0.6521452, and a, = 0.3478548.
When the isotropic surface reflection is included in this approximation or when it
is applied to the thermal infrared radiative transfer involving isothermal emission,
double Gauss quadratures and weights (;1; = 0.2113248, 2 = 0.7886752, and
a; = ap = 0.5) offer some advantage in flux calculations because Zi asr =—'1/2
in this case. In the case of conservative scattering, & = 1, o3 = ®F = 0.5,
the 4 x 4 matrix becomes 0 in Eq. (3.5.18). The solution for this equation does
not exist. Direct formulation and solution from Eq. (3.5.1) are required by setting
@ = 1. However, we may use @ = 0.999999 in numerical calculations and obtain
the results for conservative scattering. In the case @ = 0, the multiple-scattering
term vanishes.

Itis possible to incorporate a §-function adjustment to account for the forward
diffraction peak in the context of the four-stream approximation. In reference to
Eq. (3.1.8), we may express the normalized phase function expansion by incorpo-
rating the é-forward adjustment in the form

N
Ps(cos ©) = 2f8(cos© — 1) + (1 — f) Y &, Pi(cos ©), (3.5.22)
=0

where @ is the adjusted coefficient in the phase function expansion. The forward
peak coefficient f in the four-stream approximation can be evaluated by demand-
ing that the next-highest-order coefficient in the prime expansion, @}, vanish.
Setting P(cos ©) = Ps(cos ©) and utilizing the orthogonal property of Legendre
polynomials, we find

G =[5 — FE+ DI/ - f. (3.5.23)
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Letting &} = 0, we obtain f = @4/9. Based on Eq. (3.5.23), @, (¢ o 011,2, 3)
can be evaluated from the expansion coefficients of the phase function, @, (¢ =
0,1,2,3,4). o

The adjusted phase function from Eq. (3.5.22) is given by

N
P'(cos©) = @, Pi(cos ©). (3.5.24)
=0 Fi

This equation, together with Egs. (3.4.14a, b), constitutes the general.ized si.milarity
principle for radiative transfer. That is, the removal of the forward d.1ff:acu_on peal:
in scattering processes using adjusted single- scattering parameters is “equivalent
to actual scattering processes. ;

The reflectance r and total transmittance ¢ of the solar flux y Fi; are defined

in the forms

r(po) = FT(0)/ o Fo, (3.5.25a)
t(uo) = F~ (1) /o Fo . (3.5.25b)

The accuracy of the §—two-stream and d—four-stream approximations is examined
by comparing the approximate results with the “exact” values computed from
the adding method for radiative transfer. Let the reflectance computed from the
approximate and “exact” methods be denoted by 7 and 7, respect1ve¥y. Tl'xen the
relative accuracy is defined by (Ar/r)100% = [(7 — r)/r]100%. Likewise, tlTe
relative accuracy of the total transmittance is defined by (At/t)100%. The analytic
Henyey—Greenstein phase function expanded in the asymmetry factor g was used
in the computation [Eq. (3.4.16)]. .

Numerous asymmetry factors, single-scattering albedos, optical depths, and
solar zenith angles were used in the computations. For presentation purposes,
however, we select two single-scattering albedos of 1 and 0.8, optical depths from
0.1 to 50 (intervals of 0.1 from 0.1 to 1, 1 from 1 to 10, and 5 from 10 to 50),
and cosines of the solar zenith angle from 0 (0.01) to 1 (intervals ch 0.'1). The
asymmetry factor chosen for the graphic presentation is 0.75. To hlghllghF tl}e
relative accuracy of the presentation, heavy shading is used for f:lccura.cy within
5%, while accuracy within 5-10% is denoted by light shading. White regions show
errors greater than 10%.

Figure 3.7 shows the relative accuracy of the 6—two-stream (top graphs) and
S—four-stream (bottom graphs) approximations displayed in intervals of 0, 1, 2, 5,
10%, etc. The accuracy of the —two-stream approximation is comparable to that of
the 6-Eddington approximation presented by King and Harshvardhan (19.86)..For
conservative scattering, the reflection values produced by both approximations
have low accuracy, on the order of 10 to 30% for pp < 0.5 and po > 0.9 for
7 < 1. Errors greater than 10% occur for the total transmittance when po < 0.2.
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In general, reflectance and total transmittance values computed from the §—four-
stream approximation are accurate within about 5%, except for three small regions.
For reflectance, 5-10% errors occur for #o <0.3and 0.6 < pg < 1 when T < 1.
For total transmittance, errors greater than 5% are produced for very high solar
zenith angles (19 < 0.1). It is noted that these regions are associated with very
small values. Thus, absolute errors are extremely small (< 1%). In the case of & =
0.8, significant absorption could be built up for large optical depths and/or small
solar zenith angles. The §~two-stream (or 6-Eddington) approximation generally
produces errors greater than 5-10%, as is evident from the graphic presentation.
In particular, due to small transmittance values, errors of more than 50% may
result in the case of large optical depths. The 6—four-stream approximation, on
the other hand, has a relative accuracy (i.e., within about 5%) that is comparable
to the case of conservative scattering. Errors of 5-10% occur only for very low
solar zenith angles (19 < 0.2). Tables 3.2 and 3.3 present numerical results of
reflectance and total transmittance computed from §—two-stream, 6—four-stream,
and doubling methods for & = 1 and 0.8.

In addition to the aforementioned results, computations have also been car-
ried out using asymmetry factors of 0.7, 0.8, and 0.85 for the analytic Henyey—
Greenstein phase function. The actual phase functions for cloud droplets were
employed in accuracy checks, as were the surface albedos. The accuracy of the 6—
four-stream approximation and, for that matter, the 6—two-stream or -Eddington
approximation is not sensitive to small variations in the asymmetry factor and the
detailed structure of the phase function. Also, variations in the surface albedo do
not significantly alter the accuracy of the approximations.

Lastly, we have examined the accuracy of the é—two-stream and §—four-stream
approximations in the case of Rayleigh scattering. Since g = 0 for Rayleigh atmo-
spheres, there is no & adjustment, and use of the two-stream method is equivalent
to the isotropic scattering approximation. The four-stream approximation for flux
calculations in Rayleigh atmospheres has an accuracy within about 3%.

For applications to the solar absorption bands, in which gaseous absorption in
scattering atmospheres must be accounted for, the single-scattering albedo could be
small. For this reason, we investigated the accuracy of the §—two-stream and 6—four
stream approximations using single-scattering albedos of 0.5 and 0.3 and keeping
the other parameters the same as in Fig. 3.7. For cases involving large absorption,
the reflectance values are generally very small. Thus we have presented the per-
centage of relative accuracy for absorptance, (A A /A)100%, where A = 1 —r —¢,
and total transmittance. Fig. 3.8 shows that the §—two-stream approximation for ab-
sorption calculations produces adequate accuracy, which increases as @ decreases
(i.e., absorptance increases). The §—four-stream approximation has better accuracy
than the 6—two-stream approximation, with errors for absorptance generally less
than 2%. It is noted that as & decreases, the effects of multiple-scattering on the
flux calculations become less important. For total transmittance, errors from the
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imation are again within about 5%. Large relative errors can

b—four-stream approx
_two-stream approximation when the transmittance values

be produced by the 6

are small.
We have presented a simple and systematic formulation of the 6—four-stream
approximation for solar flux calculations. While all approximate methods for ra-

diative flux transfer have advantages and shortcomings in terms of their computa-
tional accuracy for different @, 7, and fio, this approximation can achieve relative
accuracy within about 5% for all reasonable ranges of the single-scattering para-
meters at a given wavelength. For computations of solar fluxes covering the entire
the averaged accuracy should also be within about 5%. By virtue
treams in the upper hemisphere and the two in the lower
hemisphere, the 6—four-stream approximation has all the radiative characteristics

inherent in the 5—two-stream approximation. The solution of this approximation,
¢ form so that the computer time

solar spectrum,
of the two intensity s

like various two-stream methods, is in analyti
involved is minimal. The method can be easily applied to nonhomogeneous at-
bed in Section 3.7. For radiative transfer parameterizations in

mospheres, as descri
ive transfer approximation is required,

numerical models in which a single radiat
the §—four-stream approximation would be an excellent method.

3.6 Principles of invariance and radiative flux transfer

The transfer of light beams in planetary atmospheres depends on the incoming and
outgoing directions. If computations of flux are required, numerical integrations
over the outgoing directions must be performed by virtue of the definition of
flux. Numerical integrations require considerable computational effort. Hence, it
is desirable to seek simplified and approximate expressions for the representation
of a flux field. In this section, we wish to introduce the transfer of radiative flux
based on the principles of invariance. It suffices to consider azimuthal-independent
radiative transfer. Consider an atmosphere with an optical depth 7. The reflection

function R and transmission function T" are defined by

Al 1 (3.6.12)
poFo i

E_I_‘(T_*’;“_) (3.6.1b)
woFo b

mlE s, ) _ - (3.6.1¢)
toFo : i

R(p, po) =

T(py o) =

T (po) =

where I, and I, represent the reflected and transmitted intensities at the top and
bottom of the atmosphere, respectively. The minus sign assodiated with  indicates

that the direction of the light beam is downward. The diffuse and direct (dir)
components of the transmission function are separated in the definitions.

At/tx100%

8-Two-Stream

8-Two-Stream

8 -Four-Stream

50

s

ko

FiG. _3.7 Rela.live accuracy of the reflectance () and total trans

ur-stream (lower graphs) ap-
(* — r)/r for reflectance and

th angle 449, and expressed in terms

presents errors greater than 10%. The left and

epth 7 and the cosine of the solar zeni

10%, respectively, while the white area re
1988).

mittance () computed from the §—two-stream

0.8 (after Liou et al.,

in the domain of the optical depth d thy
@

5% and within 5—

= 1 (conservative scattering) and

heavy and light- shadings denote errors within
w

, respectively, for

proximations with res
=G
of percentage. The
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§-Two-Stream

5-Two-Stream

At/tx100%

Aa/ax100%

At /tx100%

8-Four-Stream

8 -Four-Stream

| — r — t. The relative accuracy for absorptance is defined by AA/A

(A — A)/A. The left and right graphs are, respectively, for @ = 0.5 and 0.3 (after Liou et al., 1988).

Fi1G.3.8  Same as Fig. 3.7, except for absorptance A and total transmittance ¢, where A
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Next, we introduce the corresponding nondimensional parameters in flux
forms. Reflectance (also referred to as reflection or local or planetary albedo) and
transmittance (also referred to as transmission) are defined by

1;4_(0) 1
7'(#0) c- p = 2 / R(/J'v “0)“ d,“‘) (3623)
/L()I’(.) Jo
() A
to) = ——— =2 / T(p, pro)pe dpa, (3.6.2b)
HoFr Jo
vl
t (ug) = 2 / e /M el b (3.6.2¢)
0

where F'* and F'~ represent the diffuse upward and downward fluxes, respectively.
These are obtained by integrating the upward and downward intensities over the
upper and lower hemispheres. The total transmission t(p10) is therefore the sum of
t and ¢4ir,

Finally, the global reflectance (or global albedo) 7 and global transmittance £
may be defined in the forms

i () /‘
r=-—m—— = ol l § 3 .
7 g 2 ’ (o) o dpto (3.6.3a)
¥ o) s .
= m = 2/0 t(/,l,o)p,()d/l,(), (363b)
1
Al / e ™Mo dug (3.6.3¢c)
0

where f* and f~ represent the total outgoing flux at the top and bottom of the
atmosphere, respectively, a. is the radius of the planet, and wa? F;, represents the
total incoming solar flux at TOA.

For a semi-infinite, plane-parallel atmosphere, the diffuse reflected intensity
cannot be changed if a layer of finite optical depth, having the same optical prop-
erties as those of the original layer, is added (Ambartzumian, 1942). Based on
this invariant principle, the reflection function at the top of a plane-parallel atmo--
sphere can be expressed in terms of a known mathematical function, the so-called
H function. More general principles of invariance for a finite, plane-parallel at-
mosphere have been developed by Chandrasekhar (1950), who used scattering
and transmission functions in defining the four principles governing the reflection
and transmission of a light beam in two layers. Liou (1980) has developed these
four principles in terms of the conventional reflection and transmission functions
defined in Subsection 3.2.2.

The four principles of invariance governing the reflection and transmission
of light beam may be stated as follows:
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1. The reflected intensity at any given optical depth level 7 results from the
reflection of (a) the attenuated solar flux and (b) the downward diffuse
intensity at that level by the optical depth 7, — 7.

2. The diffusely transmitted intensity at 7 results from (a) the transmission
of solar flux and (b) the reflection of the upward diffuse intensity above
the level 7.

3. The reflected intensity at the top of the finite atmosphere (7 = 0) is
equivalent to (a) the reflection of solar flux plus (b) the direct and diffuse
transmission of the upward diffuse intensity above the level 7.

4. The diffusely transmitted intensity at the bottom of a finite atmosphere
(t = 7,) is equivalent to (a) the transmission of the attenuated solar flux
at level 7 plus (b) the direct and diffuse transmission of the downward
diffuse intensity at the level 7 by the optical depth 7, — 7.

Using the definitions of the reflection and transmission functions in Egs.
(3.6.1a,b), letting 7 = 71, and 7. — 7 = 73, and defining the dimensionless upward
and downward internal intensities by

wI(Ty, p)
Uy, = — (3.6.4a)
(1, p20) b
mI(Ty, —p)
D(u, po) = ——=——-, 3.6.4b
(4, po) ks ( )

the four principles of invariance may be expressed in terms of the reflection and
transmission functions as follows:

U(p, po) = Rops, po)e™ "/

1
+2 / Ry(u, 1")D(', po)p’ dp’ (3.6.4)
0

1
B ) = Tt a8 / Ry 60", g di”,  (3.6.5)
0

Rua(t, o) = R, po) + €~ ™/H0U (u, o)

1
+2 / Ty, U s o)’ dpd’ (3.6.6)
0
Tiop, pio) = Ta(u, o)e™™/# + e~ ™/# D(y, o)
1
+2 / Ty, YD o) dpt (3.6.7)
0

The geometric configuration involving the basic variables is illustrated in Fig. 3.9.
Although the preceding equations are written for azimuthal-independent cases,
these equations may be modified for applications to genéral radiative transfer
involving azimuthal terms and polarization effects by replacing p with (u, @)
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Fi6.3.9 Geometric configuration for the reflection and transmission functions defined in Egs. (3.6.4)—
(3.6.7) based on the principles of invariance for a finite atmosphere. For illustration purposes, we have
defined 7 = 7 and 7. — 7 = 73 in the text.

and the diffuse intensity with the Stokes parameters defined in Subsection 5.1.2.
Substituting Eq. (3.6.4) into Eq. (3.6.5) leads to

D(u, o) = Ty (e, pio) + Siaps, po)e™"/Ho

1
+2 / Siales, "D, oy dut”, (3.6.8)
JO

where

1
S, ) =2 /0 Ri(p, W YRa(u', 'y dp’ . (3.6.9)

Equations (3.6.4) and (3.6.6)—(3.6.9), which are postulated from the principles of
invariance, are “equivalent” to the adding equations presented in Egs. (3.2.44a—f)
for the case involving radiation from above. The principles of invariance can also be
formulated for the case involving radiation from below, and the resulting equations
would be “equivalent” to the adding equations presented in Egs. (3.2.46a—f).

We wish to derive a set of equations for the computation of fluxes. Analogous
to the derivation of Eq. (3.6.8), substituting Eq. (3.6.5) into Eq. (3.6.4) yields

1
U, o) = Ralliler ™ (b6 + 2 / R, TG, tioe! it
0

1
+2 /0 810 Gt U " o (3.6.92)

In order to obtain flux forms based on the principles of invariance, we define

1
Uio) = 2 /0 2 PRI (3.6.10)
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where the notations y(Y) can be u(U), d(D), ri2(R12), t12(Th2), or s12(Si2). Car-
rying out solid-angle integrations on Egs. (3.6.9a) and (3.6.5)—(3.6.7), we obtain

1
u(po) = ralpo)e”™/H +2 / r ()T (W, o)’ dpt!
JO

+2 /) l s U@, pon’ dp” (3.6.11a)
(
d(po) = t1(po) + 2/0l r (U po)p’ dp’ (3.6.11b)
r12(po) = T1(p0) + 2/01 e~ T RU (, po)p dps
+2 /0 ; t(HUW s o)’ dp’ (3.6.11c¢)
t1a (o) = ta(po)e™™/H +2 /0 | e~ /" D(p, po)p dp
+2 /O l (YD, po)w’ dpt” - (3.6.11d)

Moreover, by using global values for reflectance and for direct and diffuse trans-
mittance in these equations, Viz.,

1 1
2 / ra(u YTy (W, po)p’ dp' = 722 / Ty, po)p’ dyt'
0 0

= T'-gt;(ﬂ()), (36]2&)
1 |
2 / eI (u, polp dp = e P 2/ U (g, o) dpe
JO 0
= e~/ Pu(up), (3.6.12b)

where 1//i denotes the diffusivity factor to be determined numerically, we have

w(po) = ra(po)e™ /10 + oty (po) + F12u(ko), (3.6.13a)
d(po) = ti(po) + 71 p(f0); (3.6.13b)
r12(po) = ri1(po) + e~ T Fu(pg) + Erulpo), (3.6.13¢)
ti2(po) = ta(uo)e ™M + e~ ™ P d(p) + tad(po), (3.6.13d)
where :
31 = 2/0 ri(p () dp' = 7 (3.6.14)

To finalize the iterative equations for reflectance and transmittance for a
combined layer with an optical depth (7; + 75), we introduce a parameter referred
to as the upward generation function, based on Eq. (3.6.133), in the form

(o) = [raGuo)e ™™™ + Fats(uo)| (1 = 517" (3.6.15)

SULAN RAUVIALLIY L FINAINOT IR

Further, we may define a number of total global transmittances as follows:

(3.6.16a)

2-12 = t_|2 + CXp(—Tl,Z/ﬁ)1
! (3.6.16b)

f1.2 = t1,2(u0) + exp(—T1,2/ po)-

By adding the direct transmittance, exp[—(m1 + 72)/ 1)), to the diffuse transmit-
tance in Eq. (3.6.13d), we obtain

r12(p0) = r1(po) + f1u(po), (3.6.17)
t1a(po) = B(uo)e” /10 + B[t (o) + Frulo)]- (3.6.18)

Equations (3.6.15), (3.6.17), and (3.6.18) constitute a closed set of iterative equa-
tions for computing reflectance and transmittance for a combined layer. The
physical meaning and configurations of these equations may be understood from
Fig. 3.10. The reflectance of a combined layer is produced by (a) the reflectance
of the first layer plus (b) the diffuse transmittance of the upward generation func-
tion, u(yo). The total transmittance of a combined layer is the result of (a) the
transmittance of the direct transmittance component of the first layer and (b) the
global diffuse transmittance of the diffuse transmittance plus the global diffuse
reflectance of the upward generation function by the second layer. The upward
generation function is the sum of (a) the reflectance of the direct transmittance of
the first layer and (b) the global diffuse reflectance of the diffuse transmittance of
the first layer by the second layer that undergoes multiple reflections.

In order to proceed with the computational procedures for flux, it is nec-
essary to determine the reflectance and transmittance values as functions of the
solar zenith angle for each layer. We may begin with a layer that is optically thin
and use the single-scattering approximation given in Eqs. (3.2.31)—(3.2.34). Subse-
quently, we may perform zenith angle integrations to obtain reflectance, r(f), and
transmittance, t(1). The global albedo 7 and global transmittance t may also be
calculated. The forward diffraction peak may be incorporated in the computation
through the 6-function adjustment discussed in Section 3.4.

The principles of invariance may be applied to a combination of a finite
homogeneous layer with an optical depth of 7, and a surface. Consider a Lam-
bertian surface with an isotropic reflectance of r, and zero transmittance. From
Egs. (3.6.17), the reflectance at the top of the layer is

ro(pto) = 1 (o) + Truyo), (3.6.19)

where
u(po) = rsti(uo)(1 — ra) ™. (3.6.20)
Based on Eq. (3.6.13b), the total transmission at the bottom of the layer (or at the
surface) is given by
t (o) = t1(p0) + Fru(po)- (3.6.21)
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F1G6.3.10  Adding principles for reflectance, 3, and total transmittance, 2, according to the terms
in Egs. (3.6.17) and (3.6.18). The term w is defined in Eq. (3.6.15), 1(10) denotes unit solar flux, and
the dashed lines in the diagram represent exponential attenuation. The wavy lines illustrate multiple
reflections. The meanings of all other terms are explained in the text.

Equations (3.6.19)—(3.6.21) can also be derived from the adding principle for
radiative transfer presented in Fig. 3.4.

3.7 Application of radiative transfer methods to nonhomogeneous
atmospheres

One of the fundamental difficulties in radiative transfer involves accounting for
the nonhomogeneous nature of the atmosphere. Figure 3.11 shows the profiles
of molecular and aerosol number densities in the earth’s atmosphere. Two typ-
ical aerosol concentrations are displayed. The clear condition has a visibility of
~25km, whereas the hazy condition represents an extreme aerosol concentra-
tion in an urban environment. These profiles illustrate that the atmosphere, even
without clouds, is nonhomogeneous and cannot be represented by a single single-
scattering albedo @ and a phase function P. The radiative transfer equation for
diffuse intensities must be modified to include variations in & and P with optical
depth. Using the basic radiative transfer equation denoted in Eq. (3.1.16), we may
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Fi6. 3.11 The number density of aerosols and molecules as functions of altitude in a model atmo-
sphere. Two aerosol concentrations, representing background (clear) and urban (hazy) conditions, are
shown. .

write
dI(r, 5 :
u—(TL) = I(t,p) - M/ I(r, " )P(rs o, i) dpt!
dr 2
~ 2D P(r ) Foe™ /0 3.1

Since @ and P are functions of optical depth, analytic solutions for this equation
are generally not possible. We may, however, devise a numerical procedure to
compute the diffuse intensities in nonhomogeneous atmospheres.

3.7.1 Discrete-ordinates method

The discrete-ordinates method for radiative transfer can be applied to nonhomo-
geneous atmospheres by numerical approximations (Liou, 1975). For the present
analysis, consider the azimuth-independent component. As illustrated in Fig. 3.12,
the atmosphere may be divided into N homogeneous layers, each of which is
characterized by a single-scattering albedo, a phase function, and an extinction
coefficient (or optical depth). The solution for the azimuthally independent diffuse
intensity, as given in Eq. (3.2.7), may be written for each individual layer £ in the
form

§ .
IO, m) = 3 LPEP (e ™™ + ZOu)e/,

i
i1, 2,... N (8:7:2)



