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7.6 Repeat Problem 6.10 for the case that Surface | is coated with a material described in
Problem 7.5.

CHAPTER

7.7 Repeat Problem 6.12 for the case that the corner is coated with a diffusely emitting,
specularly reflecting layer whose spectral behavior may be approximated by

S 0.8, 0/ =A< 3 m,
AT 02 Fum i AL e,

The line source consists of a long filament at 2500 K inside a quartz tube, i.e., the sou
behaves like a gray body for A < 2.5 wm but has no emission beyond 2.5 um.

7.8 Repeat Problem 6.12 for the case that the corner is cold (i.e., has negligible emission),
and that the surface is gray and specularly reflecting with € = p* = 0.5, but has
directional emissivity/absorptivity of

THE EQUATION OF
RADIATIVE
TRANSFER IN
PARTICIPATING
MEDIA

€'(6) = €,cosb.

Determine local and total absorbed radiative heat fluxes.

7.9 Consider two infinitely long, parallel plates of width w = I m, spaced a distan:
h = 0.5m apart (see Configuration 32 in Appendix D). Both plates are isothermal
1000 K and are coated with a gray material with a directional emissivity of

5’(0,') T a'(O,-) =t e Pl(on) Ta€h COSO,‘,

and a hemispherical emissivity of € = 0.5. Reflection is neither diffuse nor specul
but the bidirectional reflection function of the material is

3
p"(6:, 8,) = =—p'(6;) cos,.
27

Write a small computer program to determine the total heat lost (per unit length) )
each plate. Compare with the case for a diffusely emitting/reflecting surface.

8.1 INTRODUCTION

In previous chapters we have looked at radiative' tr?msfer betweep.surfacis that were
separated by vacuum or by a transparent (“radlatnvely' nonparticipating ) rpednum.
However, in many engineering applications the interacu(.)n' of .the”rma] rz_idlauon with
un absorbing, emitting, and scattering (“radiatively part1c1patm.g ) medium must b.e
pecounted for. Examples in the heat transfer area are the. burning o.f any fuel ('be it
puscous, liquid or solid; be it for power production, within fires, within explos.nons.
¢lc.), rocket propulsion, hypersonic shock layers, ablation systems on reentry vehicles,
niclear explosions, plasmas in fusion reactors, and many more.

In the present chapter we shall develop the general relationships tha.u govern the
hehavior of radiative heat transfer in the presence of an absorbing, emitting, and/or
seattering medium. We shall begin by making a radiative energy balance, known
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as the Equation of Radiative Transfer, which describes the radiative intensity field
within the enclosure as a function of location (fixed by location vector r), direction
(fixed by unit direction vector §) and spectral variable (wavenumber n)." To obtain
the net radiative heat flux crossing a surface element, we must sum the contributions
of radiative energy irradiating the surface from all possible directions and for all pos-
sible wavenumbers. Therefore, integrating the equation of transfer over all directions
and wavenumber leads to a conservation of radiative energy statement applied to an
infinitesimal volume. Finally, this will be combined with a balance for all types of
energy (including conduction and convection), leading to the Overall Conservation of
Energy equation.

In the following three chapters we shall deal with the radiation properties of
participating media, i.e., with how a substance can absorb, emit, and scatter thermal
radiation. In Chapter 9 we discuss how a molecular gas can absorb and emit photons
by changing its energy states, how to predict the radiation properties, and how to
measure them experimentally. Chapter 10 is concerned with how small particles
interact with electromagnetic waves—how they absorb, emit, and scatter radiative
energy. Again, theoretical as well as experimental methods are covered. Finally,
in Chapter 11 a very brief account is given of the radiation properties of solids and
liquids that allow electromagnetic waves of certain wavelengths to penetrate into them
for appreciable distances, known as semitransparent media.

8.2 RADIATIVE INTENSITY IN VACUUM

Before we discuss how radiative intensity is affected by absorption, emission, and
scattering, it is important to understand how intensity penetrates through a vacuum.
When discussing surface radiation we noticed that the concept of intensity had one
advantage over emissive power, namely, that the emitted intensity from a black surface
did not vary with direction. Within a medium, the definition of an emissive power
is not possible since there is no surface to which to r i

QTR e o e ertnout appropriats VaHEbIE 10 dReirice e THil] -
mm.

Consider radiative intensity penetrating at normal angle through a (fictitious) in-
finitesimal area dA, at location s, and time #,, as shown in the sketch of Fig. 8-1.
Based on the definition of intensity, we see that the amount of energy passing through
dA, over a duration dr and spectral range d7 that will—a little later—fall onto the
infinitesimal surface dA,, is

dA;

I,,(s.. t)dt d.Qf]__)Z d’Y]dA] = In(sl,tl)dl‘(sz T S|)2

dndA,,

'In our discussion of surface radiative transport we have used wavelength A as the spectral variable
throughout, largely to conform with the majority of other publications, However, for gases, frequency
v or wavenumber 7 are considerably more convenient to use. Again, to conform with the majority of
the literature, we shall use wavenumber throughout this part.
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FIGURE 8-1

Radiative intensity in vacuum.

where d{);,; is the solid angle with which dA, is seen from an observer on dA,.
Since it takes the radiation until the time ¢, = ¢; + (s2 — 51)/ ¢ to travel from s, to
52, we can say that the energy going through dA, that is coming from dA; is

dA
Iy(s2, 1) dt dQyoy dydAy = I (52, tz)dt-—ls)z dn dA,.
1

(52~

Since both energies must be equal, we conclude that

GERHFESIEES 1. 1. (8.1)

Since the speed of light is so large in comparison with nearly every time scale in
engineering problems, we may almost always assume that the radiative energy arrives
“instantaneously” everywhere in the medium,? or

I, (s2) = Iy(s1), (8.2)

or
const. (8.3)

15(8)

Therefore, within a radiatively nonparticipating medium, the radiative intensity in any
given direction is constant along its path. This property of the intensity makes it a
most suitable quantity for the description of absorption, emission and scattering of
energy within a medium, because any changes in intensity along any given path must
be due to one or more of these phenomena.

2Using slightly different arguments this relation had already been established during the discussion on
surface radiation between nonideal surfaces, equation (7.9).
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B it Scattered photons

§

Absorbed photons

Transmitted photons

FIGURE 8-2
Attenuation of radiative intensity by absorption and scattering.

8.3 ATTENUATION BY ABSORPTION
AND SCATTERING

If the medium through which radiative energy travels is “participating,” then any
incident beam will be attenuated by absorption and scattering while it travels through
the medium, as schematically shown in Fig. 8-2. In the following we shall develop
expressions for this attenuation for a light beam which travels within a pencil of rays
into the direction 8. The present discussion will be limited to media with constant
refractive index, i.e., media through which electromagnetic waves travel along straight
lines [while a varying refractive index will bend the ray, as shown by Snell’s law,
equation (2.71), for an abrupt change].

Absorption

11 absolte amount of sborpion s ben abserved 10 be ety proporions 0
the magnitude of the incident energy as well as the distance the beam travels through ]

the medium. Thus, we may write,

@y = =kylyds, (8.4)

where the proportionality constant k., is known as th
and the negative sign has been introduced since the intensity decreases. As will be
discussed in the following chapter, the absorption of radiation in molecular gases
depends also on the number of receptive molecules per unit Volume, so that some

particles
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researchers use a mass absorption coefficient or a pressure absorption coefficient,
defined by

dlp)as = —Kpnlgpds = —Kpply pds. (8.5)

The subscripts p and p are used here only to demonstrate the differences between the
coefficients. The reader of scientific literature often must rely on the physical units
to determine the coefficient used.

Integration of equation (8.4) over a geometric path s results in
In(s) = In©@exp (= |5 kyds) = IRIDIERAD (8.6)

where

s
Ty = I Ky ds 8.7)

0
is the optical thickness (for absorption) through which the beam has traveled and /,,(0)
is the intensity entering the medium at s = 0. Note that the (linear) absorption coef-
ficient is the inverse of the mean free path for a photon until it undergoes absorption,
One may also define andor the participating medium (for a given path
within the medium) as

L 11;(0) T In(s) AL

—e ™, 8.
ay R0 liie (8.8)

Scattering

Attenuation by scattering, or— (away from the direction under consid-
eration), is very similar to absorption, i.e., a part of the incoming intensity is removed
from the direction of propagation, §. The only difference between the two phenomena
is that absorbed energy is converted into internal energy, while scattered energy is
simply redirected and appears as augmentation along another direction (discussed in
the next section), also known as “in-scattering.” Thus, we may write

— (8.9)
where the proportionality constant o, is the_r scat-

tering from the pencil of rays under consideration into all other directions. Again,
scattering coefficients based on density or pressure may be defined. It is also possible
to define an here the scattering coefficient is the

inverse of th
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Total Attenuation

The total attenuation of the intensity in a pencil of rays by both absorption and
scattering is known a Thus, an extinction coefficient is defined® as

Ba =yt (8.10)

The optical distance based o

extinction is defined as

(8.11)

As for absorption and scattering,
density or pressure.

the extinction coefficient is sometimes based on

8.4 AUGMENTATION BY EMISSION
AND SCATTERING

A light beam traveling through a participating medium in the direction of § loses
energy by absorption and by scattering away from the direction of travel. But at
the same time it also gains energy by emission, as well as by scattering from other
directions into the direction of travel §.

Emission

The rate of emission from a volume element will be proportional to the magnitude
of the volume. Therefore, the emitted intensity (which is the rate of emitted energy
per unit area) along any path again must be proportional to the length of the path,
and it must be proportional to the local energy content in the medium. Since, at
thermodynamic equilibrium, the intensity everywhere must be equal to the blackbody
intensity, it will be shown in Chapter 9, equation (9.15), that

e = ol ds, @1

that is, the proportionality constant for emission is the same as for absorption. Sim-
ilar to absorptivity, one may also define an emissivity of an isothermal medium as
the amount of energy emitted over a certain path s that escapes into a given direc-
tion (without having been absorbed between point of emission and point of exit), as
compared to the maximum possible. Combining equations (8.4) and (8.12) gives the
complete equation of transfer for an absorbing-emitting (but not scattering) medium
as

= Reply ='1); (8.13)

3Care must be taken to distinguish the dimensional extinction coefficient By from the absorptive index,
i.e., the imaginary part of the index of refraction complex & (sometimes referred to in the literature as
the “extinction coefficient”).
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!e!lrecllon-o radiative intensity by scattering.

where the first term of the right-hand side is augmentation due to emission and tl‘1c
second term is attenuation due to absorption. The solution to the equation of transfer

for an isothermal gas layer of thickness s is
I(s) = Iy@e™™ + Iy (1 — e™™), (8.14)

where the optical distance has been defined in equation (8.7). If only emission is
considered, 7,(0) = 0, and the emissivity is defined as

e @y == @19

which. as is the case with surface radiation, is identical to the expression for absorp-

tivity.

Augmentation due to scattering, o fas contribut!ons from all dlf;C-
tions and, therefore, must be calculated by integration over all solid angles. .Con.sll e'r
the radiative heat flux impinging on a volume element d V = dAds, from an mﬁn.nt.c.s-
imal pencil of rays in the direction §; as depicted in Fig. 8-3. Recalling the deﬁnml(?g
for radiative intensity as energy flux per unit area normal to the rays, per unit soli

angle, and per unit wavenumber interval, one may calculate

1,(8:)(dAS; - §) dCY; dn.

This flux travels through dV for

, according o

s vinnli') - U

(8.16)
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302 RADIATIVE HEAT TRANSFER

FIGURE 8-4
Pencil of rays for radiative en-
ergy balance.

Of this amount, the fraction ®,(8;, §) d{) /4 is scattered into the cone d{) around
the direction 8. The function ®,, is called tm and describes
the probability that a ray from one direction, §;, will be scattered into a certain
other direction, §. The constant 47 is arbitrary and is included for convenience [see
equation (8.19) below].

The amount of energy flux from the cone d(); scattered into the cone d () is then

oo ly(81) dAdQY; dn ds%. (8.17)

P calculate the energy flux scattered into the direction § from all incoming

by integrating:

dQ)

@R A a0 an = J Ounly (i) dA A dm ds ©y (1, 87—,
4

@), ;| comemmms o
T Jam

Returning to equation (8.17), we find that the amount of energy flux scattered from
d(); into all directions is

R T ds_

which must be equal to the amount in equation (8.16). We conclude that

Therefore, if ®, =const, i.e., if equal amounts of energy are scattered into all

directions (ca]le_ then @, = 1. This is the reason for the
inclusion of the factor 4.

8.5 THE EQUATION OF TRANSFER

or

We can now make an energy balance on the radiative energy traveling in the direction
of § within a small pencil of rays as shown in Fig. 8-4. The change in intensity is
found by summing the contributions from emission, absorption, scattering away from
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FIGURE 8-5
Enclosure for derivation of equation of transfer.

the-d scattering into the direction of §, from equations (8.4), (8.9)
(8.12), and (8.18) as

s

The outgoing intensity may be developed into a truncated Taylor series, or

so that equation (8.20) may be simplified to

%ISE =.— Kyl = Osply + ZM Lﬂ I (8) Py (8, §di, (8.22)

m

where ¢ = ds/dt is the speed with which the radiation intensity propagates. In tl.lis
equation all quantities may vary with location in space, time and wavenumber, while
the intensity and the phase function also depend on direction § (and §;). On!y the
directional dependence, and only whenever necessary, has been explicitly indicated
in this and the following equations, to simplify notation. Equation (8.22) is_valid
anywhere inside an arbitrary enclosure. Its solution requires knowledge of the m?en-
sity for each direction at some location s, usually the intensity entering the n.1ed|um
through or from the enclosure boundary into the direction of §, as indicated in Fig. 8-5.
We have not yet brought equation (8.22) into its most compact form so that the four
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304 RADIATIVE HEAT TRANSITR

different contributions to the change of intensity may be clearly identified. Again we
can state that the time dependence of the radiative intensity may be almost always
neglected in heat transfer applications. We have presented here the full equation for
completeness, but will omit the transient term during the remainder of this book.

After introducing the extinction coefficient defined in equation (8.10), one may
restate equation (8.22) as

G2 =8 VE = iy ol + G| 16008940,

where the intensity gradient has been converted into a total derivative since we assume
the process to be quasi-steady. The equation of transfer is often rewritten in terms of
nondimensional optical coordinates (see Fig. 8-5),

= | e omds = | Bras. 521

Osn Tsp

w =
n
Kn + Oy By

) (8.25)

leading to

Wy Al
’= + il 3,8 dQ;. (8.26)
o - § - (- v |-

The last two terms in equation (8.26) are often combined and are then known as the
radiative intensity,

Sn(my,8) = (1 — wy)lpy +_ 8.27)

Equation (8.26) then assumes the deceptively simple form of

which is, of course, an integro-differential equation (in space, and in two directional
coordinates with local origin). Furthermore, the Planck function /;, is generally
not known and must be found by considering the overall energy equation (adding
derivatives in the three space coordinates and integrations over two more directional
coordinates and the wavenumber spectrum).

8.6 FORMAL SOLUTION TO THE
EQUATION OF TRANSFER

If the source function is known (or assumed known), equation (8.28) can be formally
integrated by the use of an integrating factor. Thus, multiplying through by e™ results
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d " e
d_‘l',-, (Ine n) i Sn(Tn: S)F ih (829)

which may be integrated from a point s’ = 0 at the wall to a point s’ = s inside the
medium (see Fig. 8-5), so that

In(ry) = I,@e ™™ + j " So(rt, ) e~ dr, (8.30)
0

where T, is the optical coordinate at s = 5.

Physically, one can readily appreciate that the first term on the right-hand side of
equation (8.30) is the contribution to the local intensity by the intensity entering the
enclosure at s = 0, which decays exponentially due to extinction over the optical
distance 7,,. The integrand of the second term, Sn(T,’,)dT,,',, on the other hand, is the
contribution from the local emission at 7;, attenuated exponentially by selfextinction
over the optical distance between the emission point and the point under consideration,
7, — 7,. The integral, finally, sums all the contributions over the entire emission path.

Equation (8.30) is a third-order integral equation in intensity /,,. The integral over
the source function must be carried out over the optical coordinate (for all directions),
while the source function itself is also an integral over a set of direction coordinates
(with varying local origin) containing the unknown intensity. Furthermore, usually
the temperature and, therefore, the blackbody intensity are not known and must be
found in conjunction with overall conservation of energy. There are, however, a few
cases for which the equation of transfer becomes considerably simplified.

Nonscattering Medium .

If the medium only absorbs and emits, the source function reduces to the local black-
body intensity, and
T i
In(7y) = In(0)e™™ + f oo () ye TRl e (8.31)
0
This equation is an explicit expression for the radiation intensity if the temperature
field is known. However, generally the temperature is not known and must be found
in conjunction with overall conservation of energy.

Example 8.1. What is the spectral intensity emanating from an isothermal sphere
bounded by vacuum or a cold black wall?

Solution

Because of the symmetry in this problem, the intensity emanating from the sphere sur-
face is only a function of the exit angle. Examining Fig. 8-6, we see that equation (8.31)
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FIGURE 8-6
Isothermal sphere for Example 8.1.

reduces to

Ts

In(TR: 0) = J Ibn('r;) e_(T:_T”)de,.
0

But for a sphere
T, = 27080,

regardless of the azimuthal angle. Therefore, with I,,(7) = I, = const, the desired
intensity turns out to be

5 .. |27R cos O
Lt @)= g e 9t

L 4 Ibr; (1 o e—2TRC059)'

Thus, for 7 => 1 the isothermal sphere emits equally into all directions, like a black
surface at the same temperature.

The Cold Medium

If the temperature of the medium is so low that the blackbody intensity at that tem-
perature is small as compared with incident intensity, then the equation of transfer
is decoupled from other modes of heat transfer. However, the governing equation
remains a third-order integral equation, namely,

T

§ Tt @ ! QA (i ’
Ly(75,8) = In(0)e ™™ +L ﬁJ;ﬂIn(Tn»gi)q)n(shs)ine =) g (B0

If the scattering is isotropic, or @ = 1, the directional integration in equation (8.32)
may be carried out, so that

g gien iy T
Iy(78) = In(©)e "+EL wn Gy e~ dr, 8.33)
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L@
i T
Iy K
h 3 FIGURE 8-7
Geometry for Example 8.2.
where
Gn(T) o J In('r-,’,r $i) ds; (8.34)
4

is known as the incident radiation function (since it is the total intensity impinging
on a point from all sides). The problem is then much simplified since it is only
necessary to find a solution for G [by direction-integrating equation (8.33)] rather
than determining the direction-dependent intensity.

Purely Scattering Medium

If the medium scatters radiation, but does not absorb or emit, then the radiative
transfer is again decoupled from other heat transfer modes. In this case w, = 1,
and the equation of transfer reduces to a form essentially identical to equation (8.32),
ite.

T

& i 1 7 P g U —(Ty—Tr !
Iy(rq, 8) = I0) e "+ZEJ Lwln('r,,,s,-)d),,(s,-,s)dn,-e W=7 dr! . (8.35)

0
Again, for isotropic scattering, this equation may be simplified by introducing the
incident radiation, so that

L7, 8) = I,(0) e ™ ﬁj- 1 G,,(T',§)e_(""_7';) dr,. (8.36)
0

Example 8.2. A large isothermal black plate is covered with a thin layer of isotropically
scattering, nonabsorbing (and, therefore, nonemitting) material with unity index of refrac-
tion. Assuming that the layer is so thin that any ray emitted from the plate is scattered
at most once before leaving the scattering layer, estimate the radiative intensity above the
layer in the direction normal to the plate.

Solution

The exiting intensity in the normal direction (see Fig. 8-7) may be calculated from equa-
tion (8.36) by retaining only terms of order 7, or higher (since 7, << 1). This process
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leads toie ™ =1 = 7, = O(T:’,), G(-r,’,) = G(ry) + O(r,) (radiation to be scattered arrives

unattenuated at a point), and e ™™™ = 1 — O(r,) (scattered radiation will leave the
medium without further attenuation), so that

1
Inn ot Ib'q(l e Tn) i 4_‘7;(;1, Tn 2 @(T,:)»

where the intensity emanating from the plate is known since the plate is black. The incident
radiation at any point is due to unattenuated emission from the bottom plate arriving from the
lower 27 solid angles, and nothing coming from the top 27 solid angles, i.e., G, = 2ml,,
and

1 T 2
un = Togl = 1) + 5Ton T + O2) = (1 = 2 )+ 005D,

Physically this result tells us that the emission into the normal direction is attenuated by
the fraction 7, (scattered away'from normal direction), and augmented by the fraction
7,/ 2 (scattered into the normal direction): Since scattering is isotropic, exactly half of
the attenuation is scattered upward and half downward; the latter is then absorbed by the
emitting plate. Thus, the scattering layer acts as a heat shield for the hot plate.

8.7 BOUNDARY CONDITIONS FOR THE
EQUATION OF TRANSFER

The equation of transfer in its quasi-steady form, equation (8.23), is a first-order dif-
ferential equation in intensity (for a fixed direction §). As such, the equation requires
knowledge of the radiative intensity at a single point in space, into the direction of
§. Generally, the point where the intensity can be specified independently lies on
the surface of an enclosure surrounding the participating medium, as indicated by the
formal solution in equation (8.30). This intensity, leaving a wall into a specified di-
rection, may be determined by the methods given in Chapter 5 (diffusely emitting and
reflecting surfaces), Chapter 6 (diffusely emitting and specularly reflecting surfaces)
and Chapter 7 (surfaces with arbitrary characteristics).

Diffusely Emitting and Reflecting Opaque
Surfaces

For a surface that emits and reflects diffusely, the exiting intensity is independent of
direction. Therefore, at a point r,, on the surface, from equations (5.18) and (5.19),

I(ry,8) = I(ry) = J(ry)/m = €(ry) Iy(ry) + p(ry) H(ry)/m, (8.37)

where H(r,) is the hemispherical irradiation (i.e., incoming radiative heat flux) de-
fined by equation (3.39), leading to

T 8)=re@) Iix,) + ﬁ(f_’.’_)J’ I(r,,8)|h-8d4Q, (8.38)
T Jas'<o
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FIGURE 8-8
Radiative intensity reflected from a surface.

where h is the local outward surface normal and fi - 8 = cos@’ is the cosine of
the angle between any incoming direction §' and the surface normal, as indicated in
Fig. 8-8. Therefore, the outgoing intensity is not generally known explicitly, but is
related to the incoming intensity. An exception is the black surface, for which (with
L. 7.5

I(ry,,8) = Ip(ry). (8.39)

Diffusely Emitting, Specularly Reflecting,
Opaque Surfaces

If the reflectivity of the surface has a specular as well as a diffuse component, i.e.,
the reflectivity obeys equation (6.1), then the outgoing intensity also consists of two
components. One part of the outgoing intensity is due to diffuse emission as well as
the diffuse fraction of reflected energy, as described by equation (8.38). In addition,
the outgoing intensity has a specularly reflected component,* so that

d
I(ry,8) = e(m)h(mﬂ@[ Iy, 8| -840

i-§'<0

+ p(ry,) IS E)s (8.40)

where §; is the “specular direction,” defined as the direction from which a light beam
must hit the surface in order to travel into the direction of § after a specular reflection,

“Note that the specularly reflected component cannot be “assigned” to the surface where it leaves in
diffuse fashion, as was done for surface transport in Chapter 6. The reason is that the intensity changes
while radiation travels from surface to surface within a participating medium.
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This direction is, from Fig. 8-8, § + (—8§;) = 2cos 0, or

S

S, = § — 2(8 - )i (8.41)

Opaque Surfaces with Arbitrary Surface
Properties

Reflection from a surface with nonideal radiative properties is governed by the bidirec-
tional reflection function, as discussed in Chapter 7. From equation (7.10) it follows
immediately that

[(ru': §) == G(l'w, §) Ib(rw) +“J’ i

n-§

p"(r,,8,8) I, 8)|A-§|d0". (8.42)
<0

If the surface reflects diffusely, p” = p?/m and equation (8.42) reduces to equa-
tion (8.38). For specular reflection the development of equation (7.15) shows that it
reduces to equation (8.40).

Semitransparent Boundaries

If the boundary is a semitransparent wall, external radiation may penetrate into the
enclosure and must be added to equations (8.38), (8.40), and (8.42) as I,(r,,, 8). The
emissivity € in these boundary conditions is then an effective value for the internal
emission from the entire semitransparent wall thickness. If the bounding surface is
totally transparent (or simply an opening), then there is no emission from the boundary

and € = 0. This type of boundary condition was discussed in some detail in Section
6.6.

8.8 RADIATION ENERGY DENSITY

A volume element inside an enclosure is irradiated from all directions and, at any
instant in time #, contains a certain amount of radiative energy in the form of photons.
Consider, for example, an element dV = dAds irradiated perpendicularly to dA with
intensity /,(8) as shown in Fig. 8-4. Therefore, per unit time radiative energy in
the amount of 7,(8) d{) dA enters dV. From equation (8.1) we see that this energy
remains inside dV for a duration of dt = ds/c, before exiting at the other side.
Thus, due to irradiation from a single direction, the volume contains the amount of
radiative energy 7,,(8) dQ) dAds/c = 1,(8) dQ) dV/c at any instant in time. Adding
the contributions from all possible directions, we find the total radiative energy stored
within dV is u, dV, where u,, is the spectral radiation energy density

Uy = 'ELW 1,3 dQ. (8.43)

Integration over the spectrum gives the fotal radiation energy density,

u =[ Updn = lf J 1,8)dndQ = lj 1(8)d(). (8.44)
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Although the radiation energy density is a very basic quantity akin to in}ernal energy
for energy stored within matter, it is not widely used by heat transfer engineers.
Instead, it is common practice to employ the incident radiation G, which is related
to the energy density through

Gy = L 1,8)dQ = cuy; G = cu. (8.45)

8.9 RADIATIVE HEAT FLUX

The spectral radiative heat flux onto a surface element has been expressed in terms of
incident and outgoing intensity in equation (1.36) as

o vl J 1,8-8d0. (8.46)
4

This relationship also holds, of course, for a hypothetical (i.e., totally transmissive)
surface element placed arbitrarily inside an enclosure. Removing the surface nor-
mal from equation (1.36), we obtain the definition for the spectral, radiative heat
flux vector inside a participating medium. To obtain the rotal radiative heat flux,
equation (8.46) needs to integrated over the spectrum, and

*x© o0
q= J qpdn = J J 1,(8)8d Q) dn. (8.47)
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Depending on the coordinate system used, or the surface being described, the radiative
heat flux vector may be separated into its coordinate components, for example ¢, dy.
and ¢- (for a Cartesian coordinate system), or into components normal and tangential
to a surface, and so on.

Example 8.3. Evaluate the total heat loss from an isothermal spherical medium bounded
by vacuum, assuming that k, = const (i.e., does not vary with location, temperature or

wavenumber).

Solution

Here we are dealing with a spherical coordinate system, and we are interested in the radial
component of the radiative heat flux (the other two being equal to zero by symmetry). We
saw in the last example that the intensity emanating from the sphere is

T
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L(m, 0)i= Dpills e %] =

where 6 is measured from the surface normal pointing away frorp Fhe sphere (Fig. 8-6).
Since the sphere is bounded by vacuum, there is no incoming radiation and

I,(7,0) = 0, % =6=m.



