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Abstract

In ray tracing, it is standard practice to consider solely the real part of any medium’s refractive index for
determining the changes in a ray’s direction at the interface between two media. Any absorption is
accounted for by reducing the intensity or weight of the ray in accordance with its propagation distance.
This practice is adequate at optical wavelengths where absorption is generally very low but in the infrared
and other regimes absorption can be significant and refraction angles and reflectances can deviate
substantially from lossless cases. We calculate the quantitative consequence of a more rigorous approach to
ray tracing for a lossy wedge and explore the potential differences in results from a Monte Carlo simulation
of reflection from a rough, lossy surface. Comparisons between the traditional and complex ray tracing
approaches are made and show that there can be significant discrepancies.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ray tracing is used commonly as a tool for calculating the response of a scene to light. The
scenarios can include computer-generated imagery [1], single scattering and multiple scattering
situations. In a single scattering scenario, the representative object can be a composite of smaller
see front matter r 2005 Elsevier Ltd. All rights reserved.
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objects and/or have a complicated geometry [2–4]. Multiple scattering effects are important for
propagation through turbid media, from structured and rough surfaces [5–7], and for thermal
systems [8,9].
The usual assumptions underlying ray tracing are that geometrical optics applies, all

intervening media are uniform and dielectric and all interfaces are planar. The first assumption
implies that the wavelength of light is short compared with other scales in the scene. The second
restricts the media to be homogeneous and non-absorbing. Note that classically dielectrics are
defined as non-conductors and have no internal loss mechanism (their electric susceptibility is
real) at frequencies far from atomic or molecular resonances. These first two assumptions allow us
to use rays to represent the propagation of light. The third implies that curved surfaces are
approximated to be locally flat at points where rays intersect them. Together these restrictions
permit the use of Snell’s law and Fresnel coefficients for calculating a ray’s properties on its
interaction with any surface in the scene. If there are inhomogeneities in the media or the surfaces
encountered have large curvatures, higher order corrections to the ray have to be applied using the
eikonal equation [10].
Strong absorption can occur in electrically conductors and semiconductors [11], biological

systems such as human tissue and industrial systems such as engines and furnaces where radiative
transfer could be the dominant means of energy transport [9].
In absorbing media, there are three separate problems that need to be addressed. The familiar

Snell’s law and Fresnel formulae are no longer valid and a ray is attenuated along its path. It is
common for the first two problems to be neglected by using the real part of the refractive indices
that describe the media alone. The path loss is accounted for by a simple exponential law. These
will be shown to be inadequate because they rely on ad hoc simplifications. We shall refer to this
traditional approach as the ‘standard’ method: see, for example, Refs. [4,7].
The following sections will detail the physics for a more rigorous approach, examine the low

absorption case, illustrate the differences with a quantitative study of light passing through a lossy
wedge and finally the scattering from a rough lossy surface is studied with a Monte Carlo ray
tracing model.
2. Physical basis of ray tracing in absorbing media

Geometrical optics is based on the solution to Maxwell’s equations for electromagnetic
radiation of short wavelength. For a homogeneous medium, it approximates light propagation
with a ray whose direction coincides with the normal to planes of constant phase of a travelling
plane wave.
The problem of solving Maxwell’s equations for plane waves travelling through an interface is

canonical. However, when there is absorption or loss in one or both media separated by the
interface, it is only recently that the problem has been completely settled [3,12–22]. The definitive
paper is by Dupertuis et al. [21] which clarified some of the issues surrounding propagation
between two absorbing media and pointed out flaws in previous work. We use this paper’s results
to derive the more rigorous ray tracing method and discuss the predicted discrepancies between it
and the traditional approach for two readily realisable instances. There is also a ‘‘high-frequency’’
solution derived by Yang and Liou [2]. Owing to the complex nature of the refractive index, the
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wave vector is also complex and hence the plane waves supported by lossy media are
inhomogeneous—that is, the normals to the planes of constant phase and constant amplitude do
not coincide.
The inhomogeneity leads to longitudinal components of the electric and magnetic field vectors

and this makes it more difficult to find formulae equivalent to the Fresnel formulae for dielectric
media. Many textbooks and papers gloss over the problem of two absorbing media and even
present a complex version of Snell’s law which is correct only under certain conditions.
The rest of this section reviews the derivation of the generalized Snell’s law and Fresnel

formulae. Results are presented that form the basis of a more rigorous ray tracing methodology.
2.1. Inhomogeneous plane wave solution to Maxwell’s equations

Maxwell’s equations for a homogeneous, isotropic, linear, stationary and charge-free system
are

r ^ Eðr; tÞ ¼ �mqtHðr; tÞ; r � Eðr; tÞ ¼ 0,

r ^Hðr; tÞ ¼ �qtEðr; tÞ þ sEðr; tÞ; r �Hðr; tÞ ¼ 0. (1)

An absorbing or lossy medium can be modelled with a complex refractive index ~n ¼ n þ ik: For
plane wave solutions, we impose Eðr; tÞ ¼ E expðik � r� iotÞ and Hðr; tÞ ¼ H expðik � r� iotÞ; and
obtain

k ^ E ¼ moH; k � E ¼ 0,

k ^H ¼ �e�oE; k �H ¼ 0, (2)

where e� ¼ �þ is=o ¼ �0 ~n
2:

Assuming the medium is non-magnetic ðm ¼ m0Þ; the wave vector k ¼ k0ðNeþ iKfÞ is complex
for k0 ¼ o=c and c2 ¼ 1=�0m0: From Eqs. (2), it can shown that the wave vector’s components
obey

N2 � K2 ¼ n2 � k2 and NKe � f ¼ nk, (3)

where e and f are unit normals to the planes of constant phase and amplitude, respectively. Note
that E and H are also complex vectors. Complex vector are known as bivectors [23] and obey the
usual identities involving scalar and vector products.
As a consequence of Eqs. (3), plane waves can be inhomogeneous when the medium is lossy and

the normals to the planes of constant phase and the planes of constant amplitude no longer
coincide. The associated ray is complex with its real part perpendicular to surfaces of constant
phase and its imaginary part perpendicular to surfaces of constant amplitude.

N and K can be interpreted as effective or apparent refractive indices. Defining cos a ¼ e � f;

N2 ¼ 1
2

n2 � k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � k2Þ2 þ 4ðnk= cos aÞ2

q� �
(4)

and K can be obtained from (3). Eq. (4) determines N when given the refractive index ~n and the
inhomogeneity angle a:
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An alternative formulation is to define k ¼ k0 ~ng; where g � g ¼ 1: The complex unit vector g can
be resolved into real and imaginary components

g ¼ cosh bgk þ i sinh bg? (5)

with gk � gk ¼ g? � g? ¼ 1 and gk � g? ¼ 0: The inhomogeneity parameter b acts in a similar
manner to the angle a in Eq. (4). It can be seen from

NKe ^ f ¼ 1
2
ðn2 þ k2Þ sinh 2bgk ^ g? (6)

that a wave is homogeneous, when b ¼ 0: In fact, we can derive a direct relationship between a
and b:

sinh 2b ¼
2nk

n2 þ k2
tan a (7)

by using (6) and (3) together with the fact that aX0 and the convention that bX0: Note that in a
lossless medium, k ¼ 0; there are two possibilities: N ¼ n and K ¼ 0 or a ¼ p=2 (where b is not
determined by (7)). The first is the homogeneous case whilst the second case represents f being
perpendicular to e:

2.2. Planar interface

Consider two half spaces separated by a plane with normal n and let the two media have
refractive indices n1;k1; n2; k2 with ki; kr and kt denoting the incident, reflected and transmitted
wave vectors. The geometry is shown in Fig. 1: yi and ci are the incident angles for the real and
imaginary parts of the wave vector. Without loss of generality, we can assume f i has an azimuthal
angle fi:

2.2.1. Snell’s law

Matching the phases of plane waves at the interface gives the boundary conditions

n ^ ki ¼ n ^ kr ¼ n ^ kt (8)
n
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Fig. 1. Geometry of the interface between two lossy media. For clarity, the real and imaginary parts of incident and

transmitted wave vectors are shown in separate diagrams.
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from which a generalized Snell’s law follows:

N1 sin yi ¼ N2 sin yt; K1 sin ci ¼ K2 sin ct, (9)

where the new apparent refractive indices can be calculated from the quartic equation

N4
2 � ½N2

s þ K2
s þ ðn2

2 � k22Þ�N
2
2 þ N2

sK
2
s þ ðn2

2 � k22ÞN
2
s � ðn2k2 � NsK s cos fiÞ

2
¼ 0 (10)

with Ns 
 N1 sin yi; K s 
 K1 sin ci: The normal components of the incident and reflected wave
vectors satisfy

n � kr ¼ �n � ki (11)

and hence yr ¼ p� yi;cr ¼ p� cr and fr ¼ fi: Note that ft ¼ fi throughout.
Therefore, the real and imaginary components of the wave vector have reflected and

transmitted directions given by

er ¼ ei � 2 cos yin; et ¼ N1ei=N2 þ ðcos yt � N1 cos yi=N2Þn,

fr ¼ f i � 2 cos cin; ft ¼ K1f i=K2 þ ðcos ct � K1 cos ci=K2Þn, (12)

where cos yt and cos ct have the same signs as cos yi ¼ n � ei and cos ci ¼ n � f i; respectively.
These equations allows us to trace the progress of a ray through any number of interfaces between
absorbing media.

2.2.2. Fresnel coefficients
The integral form of Maxwell’s equations give rise to continuity conditions at the interface.

These are that the tangential components of E and H are continuous and that the normal
components of e�E and mH are discontinuous due to surface charges and currents, respectively. To
apply these conditions, we need to decompose the field vectors into components tangential and
normal to the interface. Following Dupertuis et al. [21], we define a set of complex orthonormal
vectors:

h1 ¼
n ^ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn ^ kÞ2

q ; h2 ¼
k ^ h1

k0 ~n
. (13)

The projections of the field vectors on h1 and h2 correspond to the TE (perpendicular or s) and
TM (parallel or p) polarizations, respectively, since they match definitions with the homogeneous
case, where k is real or f is parallel to e:
Solving the boundary conditions gives the generalized Fresnel formulae for reflection and

transmission coefficients

rs ¼
ki � kt

ki þ kt
; ts ¼

2K i

ki þ kt
,

rp ¼
~n22ki � ~n2

1kt

~n22ki þ ~n2
1kt

; tp ¼
2 ~n1 ~n2ki

~n2
2ki þ ~n21kt

, (14)

where k 
 k � n ¼ k0ðN cos yþ iK cos cÞ:
It should be emphasized that in the absorbing medium, Es ¼ E � h1 is not the transverse electric

field component and similarly Ep is not the TM component. However, in air or vacuo Es and Ep
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become the usual quantities on exiting lossy media by transformation according to the formulae
in Eq. (14).
2.2.3. Path loss
A ray attenuates along a path in an absorbing medium. With a complex wave vector, the

normal to planes of constant amplitude is at an angle a to the normal to planes of constant phase.
So along the ray’s path, r ¼ le;

EðleÞ ¼ E expðilk � eÞ

¼ E expð�k0Kl cos aÞ expðik0NlÞ, ð15Þ

where l is the path length.
Comparing the above with the usual loss factor expð�k0klÞ; we see that the absorption

coefficient in a lossy medium is dependent on the angle of entry into that medium.
3. Low absorption case

The formulae in the previous section allow us to explore the behaviour of rays at low
absorption.
For simplicity, consider a ray travelling across a planar interface from air or vacuum to a

medium of ~n ¼ n þ ik; where n41 and x ¼ ðk=nÞ51: By using the binomial expansion in x, we
find that, to second order,

N2 � n 1þ
sin2 yi

2ðn2 � sin2 yiÞ
x2

� �
,

K2 �
nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � sin2 yi
p 1�

n2sin2 yi
2ðn2 � sin2 yiÞ

2
x2

� �
,

sin yt �
sin yi

n
1�

sin2 yi
2ðn2 � sin2 yiÞ

x2

� �
. (16)

These demonstrate that the lossless case (N2 ¼ n; K2 ¼ 0 and sin yt ¼ sin yi=n) is reached in the
limit of k ¼ 0:
Also, the real part of the apparent refractive index and the sine of the transmitted angle deviate

from the lossless case by a squared dependency on the imaginary part of the refractive index. This
second-order correction together with the maximum value of the coefficients ð1=ð2ðn2 � 1ÞÞÞ
implies that x has to be of reasonable size, say40:15 for n ¼ 1:5; for the more rigorous method to
show differences from the standard method greater than 1%.
The loss factor is determined to be

K2 cos yt � k 1�
sin2 yi

2ðn2 � sin2 yiÞ
x2

� �
. (17)
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Thus path loss has a second-order correction too. However, the reflection and transmission
coefficients have first-order corrections. For example,

rs �
cos yi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 yi

p
cos yi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 yi

p 1þ
2i

n2 � 1

n2 cos yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 yi

p x

" #
. (18)

Hence the standard Fresnel coefficients are only a good approximation for very low absorptions.
However, the reflectivities and transmittivities have second-order corrections because they are
defined using the absolute squares of the coefficients:

jrsj
2 �

cos yi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 yi

p
cos yi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 yi

p !2

� 1þ
2ð2n4 � ðn2 þ 1Þsin2 yiÞn2 cos yi

ðn2 � 1Þ2ðn2 � sin2 yiÞ
3=2

x2

" #
. (19)

The maximum value of the coefficient of x2 in the reflectivity is 4n3=ðn2 � 1Þ2 and is much greater
than the corresponding coefficients in the approximations for the sin yt and the path loss. So the
amount of absorption allowed for a given limit on the deviation from the standard reflectivity is
much less than previously calculated. For example, for differences less than 1%, xo0:034 when
n ¼ 1:5:
Yet another difference is that the reflectivity of light polarized parallel to the plane of incidence

does not vanish at any angle for lossy media. That is, at Brewster’s angle, as defined by tanðyBÞ ¼
n; rp is finite [22]. In fact,

jrpðyBÞj2 �
ðn2 � 1Þ2

4n4
x2, (20)

which shows the zero-order term, the standard reflectivity in lossless media, vanishes but that
there is a positive second-order term.
Therefore, we can conclude that rays propagating through low absorption media can be

approximated accurately by the standard approach. The only exception to this is that the
polarization state is altered significantly as shown by Eq. (18) in a manner not accounted for using
the standard approach. This is because the imaginary part of rpr�s is directly proportional x to first
order. So any absorption in the medium will lead to linearly polarized states being reflected in an
elliptically polarized state.
4. Refraction by a lossy wedge

We now illustrate the differences between the standard and more rigorous methods by
considering a wedge of absorbing material of angle g as shown in Fig. 2. Various quantities can be
calculated analytically for this simple geometry using the results of the previous section.
Snell’s law (9) with Eqs. (3) and (4) determines all the incident and transmitted angles and hence

the output angle. The surrounding medium is assumed to be air with N i ¼ 1; K i ¼ 0 and ei ¼ f i:
The dependence of the output angle upon yi and ~n is shown in Fig. 3, which also demonstrates
that total internal reflection (TIR) occurs only in the lossless case [22] when sin yTIR ¼
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Fig. 2. An illustration of refraction by a lossy wedge of internal angle g: The complex refractive index is assumed to be
~n ¼ 1:5þ ik:
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
sin g� cos g: For the case shown, g ¼ 30� and n ¼ 1:5 so there is no transmission when

yioyTIR ¼ �17:88�:
Examining the output apparent refractive index in Fig. 4 shows that the transmitted rays are

homogeneous only when k ¼ 0: This is not surprising since the rays in the lossy wedge retain their
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inhomogeneity on refraction by virtue of Snell’s law (9). The inhomogeneity that occurs for k ¼ 0
when yioyTIR is shown by K40 even though there is no transmission. This is due to the
evanescent surface wave on the upper surface of the wedge, i.e. y0 ¼ 90�:
Applying (14), allows us to calculate the transmittances (initially neglecting path loss) for rays

that pass through the wedge using T ¼ 1� jrj2: The plots for s and p polarizations, shown in the
left and right graphs in Fig. 5, respectively, exhibit the same TIR for zero absorption. In the
conventional TIR zone, the two transmittances rise to maxima with increasing k before falling to
zero. These maxima occur below k ¼ 0:6: This behaviour occurs because of the interplay between
decreasing y0 leading to higher transmittance and the increasing K which lowers transmittance.
To study the attenuation due propagation losses, let the ray’s entry point be a distance L from

the apex of the wedge. If D is the attenuation factor then we define the dimensionless attenuation
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coefficient d through

D ¼ expð�2k0LdÞ. (21)

In Fig. 6, the dotted curves are the coefficients for standard treatment and the solid curves
represent the more rigorous approach. The dotted curves always lie above the corresponding solid
ones. This implies that the losses are overestimated by the standard approach. This is particularly
significant in the TIR zone yio� 17:88�; when the ray has a longer path through lossy medium.
By specifying the distance from the ray’s entry point to the wedge’s apex as L ¼ 2l=p; the total

transmittance can be calculated. Both polarization states show measurable differences in the plots
of Fig. 7 between the two ray tracing approaches. The standard method never has any
transmission in the TIR zone and always has higher p transmittance when yi4yTIR: The more
rigorous method shows that the p polarized transmittance behaves differently to the s polarized
transmittance in the TIR zone—it possesses a point of inflection.
5. Monte Carlo simulation

A simulation of reflections from a slab that has an upper Gaussian rough surface and a lower
plane surface over a half-space of air was modified to incorporate the more rigorous approach.
The Monte Carlo simulation is based on micro-facets [5–7] and allows rays to penetrate the
surface. The lower plane is situated a distance H below the mean upper surface and any rays that
impinge on it are reflected with proper weighting and polarization state. Rays of different
polarization are launched at a given incident angle yi and the polarimetric bidirectional reflectance
distribution function (BRDF) is calculated. For each of the four entry polarization states, 160
million rays were launched and over 2440 different surface realizations were generated for an
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ensemble average of the results. The rays that return from the slab are binned in divisions of 2�

and 10� in polar and azimuthal angles, respectively.
A refractive index of ~n ¼ 2:694þ i0:509 was chosen together with an incident angle of 40�: This

value of the refractive index was chosen to match that of glass at l ¼ 10mm [11, p. 762]. The
surface properties were an RMS slope angle of 18:4� and RMS height l=2 thus giving a
correlation length of 3l: The lower surface was offset by H ¼ 2l:
Fig. 8 shows the unpolarized responses as a function of the output polar angle in the plane of

incidence. The more rigorous approach gives a response greater by about 6.6% than the standard
method. This is because the reflectivity is higher for an absorbing medium. For a smaller value of
absorption, k ¼ 0:2; Fig. 9 demonstrates that the more rigorous approach yields results that are
around 1.1% greater than standard method.
Fig. 10 shows plots that summarize the angular response for all Mueller matrix elements.

Overall, the standard method gives Mueller matrix elements that are smaller in magnitude than
the more rigorous approach. The main qualitative differences shown by the more rigorous
approach is illustrated in Fig. 11. The M24;M34;M42 ande M43 elements were found to be zero or
close to zero in the standard method. The top two plots in Fig. 11 demonstrates that right
circularly polarized light reflected by the surface possesses non-zero portion of light linearly
polarized at 0� and 135�: The bottom two plots shows that any linearly polarized light has, on
reflection, an elliptical polarization state. The ratio M43=M11 was found to vary up to nearly 0.2
for ~n ¼ 2:694þ i0:509; for k ¼ 0:2; it had a maximum of almost 0.08.
6. Summary and conclusion

A review of the propagation of plane waves between two lossy media was undertaken. The
generalized forms of Snell’s law and Fresnel formulae were given. A more rigorous method of ray
tracing was detailed and then applied to two very different situations.
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The low absorption case was also examined and, generally, the more rigorous method shows a
deviation from the standard approach by a second order term in k=n: This deviation was more
pronounced for the reflectivities and transmittivities than the angle of refraction or the path loss
coefficient. However, the polarization changes a ray suffers (as encoded in M34 and M43) from
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Fig. 10. Plots of all Mueller matrix elements for standard approach for a selection of azimuthal angles.

P.C.Y. Chang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 96 (2005) 327–341 339
traversing across an interface between lossless and lossy media are directly proportional to k=n in
the low absorption limit.
A lossy wedge was used as an example to study the effects of the more rigorous approach and to

point out features of including absorption in a correct manner. Total internal reflection was found
to occur only for lossless media. The path loss was clearly shown to be greater for the standard
method.
A model of a lossy slab with a rough upper surface and a plane lower surface was examined

with a polarized Monte Carlo ray tracing computer program. The standard approach and the
more rigorous method were implemented separately. The results showed that the new method has
greater unpolarized reflectance. In the case of glass with an entry angle of 40�; the more rigorous
response was found to have an increase of about 6% when compared with the standard approach.
Also the more rigorous method has non-zero M24; M34; M42 and M43 elements of the Mueller
matrix because the single reflections has non-zero M42 and M43 elements. These elements are zero
in the standard approach as the Fresnel coefficients are purely real.
We conclude with recommendations for ray tracing involving absorbing media. If polarization

information is needed, it is essential to use the more rigorous method for, say, k=n40:01: For
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Fig. 11. Plots of some Mueller matrix elements for more rigorous approach for a selection of azimuthal angles.

P.C.Y. Chang et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 96 (2005) 327–341340
unpolarized ray tracing, the standard approach works well when k=no0:07: These guidelines are
rough estimates for obtaining results within around 1% of the more rigorous method.
This paper has concentrated on reflection and transmission within lossy media but further work

that may be interesting is the case of multiple scattering in a lossy turbid media. The Mie solution for
light scattering from spheres has been extended to spheres in absorbing media. This solution could be
used with the more rigorous ray tracing method detailed herein to enable new results to be found.
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