Scattering of light by crystals:
Kirchhoff approximation

Karri Muinonen

a modified

A modified Kirchhoff approximation (MKA) is developed for the scattering of light by randomly oriented
crystals. The reflected and transmitted near fields are calculated from ray tracing; the corresponding far
fields are then obtained via the vector Kirchhoff integral. On the shadow side of the particle, an additional
near field exactly cancels the incident field and causes the forward diffraction. MKA contains a particle size
dependence, which is not included in ray optics treatments, and satisfactory results can be obtained for size
parameters larger than ten. The scattering phase functions and degrees of linear polarization are calculated
for some hexagonal and cubic water ice crystals using MKA. The Kirchhoff approximation for particles other
than crystals is discussed, and attention is paid to the backscattering enhancement due to the cyclic passage of
internally or multiply externally reflected electromagnetic waves.

I. Introduction

Scattering of light by randomly oriented crystals,
assumed optically homogeneous and isotropic, has re-
cently been examined by Muinonen et al.,! hereafter
referred to as Paper 1. Inthat work, asin other former
theoretical treatises on crystal scattering,2-8 the un-
derlying theory was mainly geometric optics. Howev-
er, in the evaluation of the forward and backward
scattering peaks some physical optics corrections were
introduced. In the present work, an improved ap-
proach, which is based on the Kirchhoff approxima-
tion, is established and applied to the calculation of the
scattering phase functions and the degrees of linear
polarization for hexagonal and cubic water ice crystals
of various sizes.

The new theoretical basis, the modified Kirchhoff
approximation (MKA), is developed especially for ran-
domly oriented crystals. There are no theoretical re-
strictions on the application of the complete Kirchhoff
approximation to the random orientation case, but the
complete approximation would require about as much
computer time for a single orientation as the modified
version requires for random orientation. In Paper 1,
the forward and backward scattering peaks were ex-

. The author is with University of Helsinki, Observatory & Astro-
physics Laboratory, Téhtitorninmaki, SF-00130 Helsinki, Finland.
Received 22 December 1988.
0003-6935/89/153044-07$02.00/0.
© 1989 Optical Society of America.

3044 APPLIED OPTICS / Vol. 28, No. 15 / 1 August 1989

amined using a single size parameter approach. MKA
introduces an extended treatment for the peaks, and in
fact the former approach is an effective size parameter
approximation of MKA.

MKA should prove useful in the study of light scat-
tering from planetary atmospheres, rings, and rego-
liths. For example, the reason for the sharp opposi-
tion spikes of some bright satellites and the
composition of the atmospheres of the outer planets
can now be more reliably examined.%10 Still, an inter-
esting question remains: can the cyclic passage of
electromagnetic waves in the regoliths, leading to a
constructive interference in the backscattering direc-
tion, cause the opposition spikes or the negative polar-
ization branches found for some solar system ob-
jects?11:12

First, the Kirchhoff approximation for scattering by
arbitrary small particles is introduced and discussed.
Next, the modified version is developed, and the sim-
plifications to the Kirchhoff approximation are ana-
lyzed. Then the numerical procedures are presented,
and finally MKA is applied to scattering by randomly
oriented hexagonal and cubic ice crystals.

ll.  Kirchhoff Approximation

In the Kirchhoff approximation for curved undulat-
ing surfaces, the boundary conditions are satisfied lo-
cally by assuming a Fresnelian interaction between the
incident, reflected, and transmitted electromagnetic
fields.!® This means that the surface fields are calcu-
lated from phase dependent geometric optics. The
Kirchhoff approximation is established for arbitrary
small particles in a similar manner:



(1) The reflected and transmitted electromagnetic
near fields on the surface of the scatterer are evaluated
from phase dependent geometric optics.

(2) Onthe shadow side of the scatterer, the incident
field is canceled by an additional scattered near field,
which causes the forward diffraction in the radiation
zone.

(3) The scattered far fields are calculated from the
near fields through the vector Kirchhoff integral.l4

At the present context the scattered near fields are
assumed to be already known. The surface waves or
edge scattering effects are excluded in the Kirchhoff
approximation. Moreover, the Kirchhoff approxima-
tion overestimates the importance of higher order
internal reflections because of the pure ray tracing
treatment for the internal fields. The Kirchhoff ap-
proximation is valid for particles for which the mini-
mum curvature of the surface is much larger than the
wavelength of the incident field.

Consider now an arbitrary small particle in a fixed
orientation in an incident electromagnetic plane wave
field that propagates along the z axis with a wave
vector ko and with a harmonic time dependence
exp(—iwt),

E;(r) = Ejexp(ik,- 1),
Bi(r) = L k, X E,(r),
w
ko - Ey(r) = k- By(r) = 0. )

After the scattering process, in the radiation zone the
scattered electromagnetic field is an outgoing spheri-
cal wave,

E,(r) = 9@ AGG)  kr>1, @
where 0,¢ are the scattering angles. The scattering

amplitude A is obtained from the near fields E;(x’) and
B,(r’) through the far field vector Kirchhoff integral,

1
AG) = 7=k X ]

S

dS"12 k X [n(r') X B,(r")]
urface k2

—n(’) X Es(r’)} exp(—ik - 1), 3)

where the integration extends over the surface of the
scatterer, the unit normal of which is n(x’). The wave
vector k points in the direction of r. In the Kirchhoff
approximation, the near fields are divided into the

geometric optics and the shadow components. For
example,
E(r) = Eq() illuminated side,
() = Eq(r') — E(r") shadow side. (4)

Because of the linear relation between the near and far
fields, the same division can be made for the scattering
amplitude,

A(01¢) = AG(0y¢) + AD(aad)))

1
Acl0,9) = =k X ]

S

ds'{% k X [n(r") X B(r))
urface k
—n{r’) X EG(r’)} exp(—ik-r’),

-1
Ap(0,9) = 7=k X [

'shadow

dS'{% k X [n(r") X B;(r')]
—n(r) X Ei(r’)} exp(—ik - 1), (5)

where Ag and Ap are the scattering amplitudes due to
the geometric optics and diffraction contributions, re-
spectively.

When the scattering amplitudes for the incident
field polarized both parallel and perpendicular to the
scattering plane are known, the scattering phase ma-
trix P, which relates the Stokes vectors of the incident
and scattered field, and further the degree of linear
polarization P and the asymmetry factor g, can imme-
diately be calculated!:

dQ
8 =L E’COS@PH, (6)

where o, is the average scattering cross section. Using
the orientation angles defined in Paper 1, the integra-
tion over the orientations can be written as

B = j B6.girN), @)

sinrdrd\ J dg o5(TA) =
4 4r 2

x 2 Oy

where o,(7,\) is the scattering cross section in the fixed
orientation 7,\. For example, the scattering phase
function can be obtained from

Py0) = J

4

Sin‘rdfd)\f g_té 47
4r 2r 2m 0'le0|2

X Yy (1A (6,057, M) 2 + 1A (0,657, M. 8)

For crystal scatterers, we can proceed further by
treating all the single emerging plane wavefronts sepa-
rately. In afixed orientation, the integration over the
surface can thereby be divided into a number of inte-
grations over discrete areas on the crystal faces. By
marking the areas and wavefronts with the index j and
including the phase information in the scattering am-
plitudes, we obtain
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J

= Z—k x] {“’2 k X [n,(r)) X Bi(r)]

4

- n,(r’) X E{;(r’)} exp(—ik-r’) (9)
-Z—kx[ k X (n; X Bj) — n XFYG]u( k)

uy(kk) = L dsS" expli(k; — k) - '],
where u; is termed the scattering integral and is closely
related to the Fraunhofer diffraction integral.l® It is

straightforward to calculate the integral, when the
shape and size of the surface area are known. The
diffraction amplitude reads

Ap(0,9) = " Ab(0,4)

]‘ 7 A
_ZT [ {;kx [n,(r') X B(r")]
- nj(r') X Ei(r')} exp(—tk-r’)
—Z—kx{ k X [n; X (ko X Ey)]

—n; X Eo} u k), (10)

where the summation goes over the faces that are on
the shadow side of the crystal.

For particles with curved irregular surfaces, the
Kirchhoff approximation leads to integration difficul-
ties. However, an approximate stochastic treatment,
resembling the one by Peltoniemi et al.® for rough
particles in ray optics approximation, might be worth
looking for.

The Kirchhoff-approximation predicts an enhance-
ment of backscattering due to a constructive interfer-
ence for particles that are able to scatter backward
through internal or multiple external reflections.
Thisis enlightened in Fig. 1, where the waves, traveling
cyclically along the path in the opposite dlrectlons,
interfere constructively at the backward direction.
Basically the same phenomenon has been demonstrat-
ed both experimentally and theoretically for a slab of
spherical particles, where the cyclic multiple scatter-
ing between different particles causes a sharp back-
scattering peak.!”!8 For a single particle, the experi-
mental verification should be straightforward,
although it could include an exhaustive integration
over particle orientations. Also, the phenomenon can
theoretically be true for particles that do not lie in the
validity region of the Kirchhoff approximation. It
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Fig. 1. Cyclic backscattering through an internal reflection.

may also have an observable influence on the polariza-
tion in the backward scattering domain.12

lll. Modified Kirchhoff Approximation

Instead of the complete Kirchhoff approximation, a
modified approximation, which includes the most im-
portant details of the complete one and leads to nu-
merical results, may now be introduced. The addi-
tional simplifications are briefly the following:

(1) In a fixed crystal orientation, the reflected and
transmitted amplitudes are superimposed on each oth-
er, and further on the diffracted amplitude, without
regard to phase.

(2) The scattering integrals are azimuthally aver-
aged. The waves are allowed to emerge from a circular
area equal to the corresponding crystal face instead of
the smaller and sharp-edged real area.

(3) The diffracted amplitude is calculated from
Fraunhofer’s theory by assuming a size distribution of
circular projected areas that is equal to the distribu-
tion of the real projected areas.

The first simplification allows us to separate the
scattering phase matrix into the diffraction and the
reflection and transmission parts,

= 1 = =
P= + (20, — 0,)PY], (11)

where o, is the extinction cross section. In MKA it is
twice the mean projected area or a half of the total
surface areal!® of the randomly oriented crystal. For
random crystal orientation, the constructive and de- -
structive interferences will cancel each other quite well
in directions other than the backward. MXA lacks the
backscattering enhancement due to cyclic passage.

To gain insight into the significance of the second
simplification, consider a plane wavefront reflected
from a square face S; of a cubic crystal according to the
geometry shown in Fig. 2. Let

E;(r") = E, exp(ik, - v’),
Bl(l" = %kl X El(l‘/),
k;-E,(v')=k,-B;x’)=0 (12)

be the emerging electromagnetic field on S;. The



Fig. 2. Local scattering geometry on the surface element S;.

scattering amplitude is obtained by straightforward
integration,

1 1
Ay(8,0;7,0) = i k, X {ﬁ k, X [e, X (k; X E))]
—e, X El} u,(ky,ky), (13)

where the scattering integral u; is

u;(ky ky) = [ dS’ expli(k; — k,) - 1]

S

- 4 sin(k, .d) sin(k ,d)

kJ_xd klyd

(14)
k. = k(sinf, — sinf, cos¢y),

k= —k sinf, sing,.

After some straightforward algebra and excluding
the directions, where the far fields vanish, the follow-
ing scattering matrix representation can be obtained
for the relation between the reflected near and far
fields predicted by the Kirchhoff approximation,

I,
Q>
U,
Vs

k2
= Tet |y (ky keo) [ (cosf; + cosfly)?

+ sin?, sin%f, sin’p,)

1 0 0 0 I
0 cos2p sin2y O
; A, (15)
0 =sin2p cos2n 0 || U,
0 0 0 1]l Vv

cosgy(cost; + cosly)
cosy = )
\/(cosfi1 + cosfy)? + sin’f; sin’0, sin’p,

singy(1 + cosf; cosfy)

(cosb; + cosl,)? + sin®f; sin®0, sin%p
‘ 1 2 2

sing =

It is evident from both Eqs. (13) and (15) that the size
dependence is included only in the scattering integral,
which thereby determines the spreading of the reflect-
ed plane wavefront. In MKA, an approximation is
developed both for the squared scattering integral and
the angular term in front of the rotation matrix in Eq.
(15). Thus, instead of the square area S;, consider
next a circular area Sg of equal size with radius R in an
otherwise equivalent situation; in that case the scatter-
ing integral leads to

2J,(k | R
up(k,ky) = f dS” explitl, — ky) - 1] = ni2 2R
S kR
kR, = k\/sin"’f)1 + sin®, — 2 sinf; sind, cosgy, (16)
R= E .
N

For external reflection from the square crystal face, the
second simplification to the Kirchhoff approximation
can now be written as

iz, (ky ko) 2[(cosB; + coshy)? + sin®0; sinf, sin?e,] ~
[t (ky k) 2[(cosf; + cosby)? + sin®0; sinf, sin?p,] ~
4 2R2
——7;2 cost,py(kp k), (17)
where p11, the scattering function, reads

2J4[x, sin(k k,)]

2
_ .2 o _
Pk ky) = x1 cos(kl,k2){ <, sin(i, ky) } 0[90° — (ky k,)]

+ Jo(x)? + Ji{x)%

x, = kR,fcost, (18)

and has the following asymptotic and normalization
properties:

Pk ko) = 4w6(0°) x> 1,

p1(kpky) =1 2 K1,

dQ
j e, =L (19)
Fes 47!'

In MKA the scattering matrix representation for the
reflected near and far fields reads thereby

I 10 o o\[L
@ |_ xR? 0 cos2p sin2y O || @
= a » . ’
U, |~ a2 %P ulleko) —sin27 cos2y O || Uy
v, 0o 0 o 1]

(20

where the 5 angle is defined in Eq. (15).
The approximate scattering function is compared to
the exact one, which is distinguishable from Eq. (17),
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in Fig. 3 in the x’~z’ plane for a size parameter kR = 10
and for three angles of emergence, §; = 0, 30, and 60°.
The differences rise mainly from the rotational sym-
metry of the approximate pattern around the initial
propagation direction. In the exact pattern the peak
maximum appears at a smaller angle of emergence
than the initial, which is not included in MKA, and can
cause some error in the calculations. For the oblique
emergence, the smaller projected area is taken into
account and leads to further spreading of the wave-
fronts, as seen in the figure.

The calculation of the projected areas for the trans-
mitted plane wavefronts has been excluded, which is
by far the largest simplification in MKA. Instead, the
spreading is described with the scattering function
stated in Eq. (18) separately for each crystal face.
This means that the spreading of the transmitted
waves is underestimated, since their real projected
areas must be smaller than the crystal face areas in
question. However, the choice for the scattering func-
tion ensures that MKA approaches ray optics with
increasing size parameter. The low size parameter
limit is sensitive to the approximations made in formu-
lating the scattering function. Here an isotropic as-
ymptotic limit has been adapted. The circular ap-
proximation fails for elongated surface areas, which
restricts the applicability of MKA.

Finally, the diffraction part of the scattered intensi-
ty is approximated as

y? 2y sin®) p
PP(0) = j dyn(y) ;5 {y2 cosﬂ,:—yST 6(90° — )
+do()? + Jl(y)2} ,
[ dyn(y) =1, (21)

where n is the normalized size parameter distribution
for projected areas of the randomly oriented crystal,
and x is the mean projected area size parameter. Ta-
kano and Asano?® have compared the Fraunhofer dif-
fraction by hexagonal scatterers to the diffraction by
spheres. In the present context, the precision of the
equal sphere approximation is satisfactory, and this
choice for the diffraction calculation is consistent with
the treatment of the reflected and transmitted waves.

IV. Numerical Analysis

The geometric optics ray tracing in the present cal-
culations is similar to that presented in Paper 1 up to
the stage where the ray leaves the crystal. There, a
Monte Carlo technique has been introduced for the
scattering process stated in Eq. (20). For a unit initial
irradiance, a cutoff value of 10~* and a ray index maxi-
mum of one hundred have been used, which has al-
lowed a computational loss of <0.1% of the initial
energy. The number of rays traced in each case has
been around 5 X 108, which has taken ~5 h of CPU time
on a VAX 8800. The estimated relative accuracy for
the computations has been better than 2%. A 1° angu-
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0° 30° 60°
Fig.3. Comparison between the exact (solid line) and approximate
(dotted line) scattering functions for the square element S; in Fig. 1
in the x’-2’ plane. The size parameter is kR = 10. Notice the
gradual deterioration of the approximation with increasing angle of
emergence.

lar resolution has been found to be satisfactory for the
particle sizes included elsewhere than in the exact
forward and backward directions, where a resolution of
0.05° has been used. The size parameter distribution
for the diffraction calculation has been computed dur-
ing the ray tracing. If necessary, a more effecient
treatment can be achieved by computing the scattering
by crystals of different sizes simultaneously during a
single ray tracing procedure.

V. Results

The scattering phase functions and degrees of polar-
ization for hexagonal plates with ¢:2a = 1:2 and cubic
crystals of water ice for mean size parameters of 25,
100, and 400 are presented in Figs. 4 and 5, respective-
ly. The asymmetry factors, the phase function values
at 0 and 180°, and the polarization minimums and
maximums are summarized in TableI. Similarities to
the results obtained by Hansen and Travis for
spheres?! and Takano and Tanaka for circular cylin-
ders?2 are obvious.

Due to the corner retroreflection capability of the
cubic crystals, their asymmetry factors are smaller
than those of the hexagonal ones. A slight increase of
the asymmetry factor with increasing size parameter is
also observed for both crystal types. This arises par-
tially from sharpening of the diffraction with increas-
ing size parameter. . :

For the plate, the major size parameter dependenc
of the phase function is concentrated on the peak and
halo regions. For the smallest size parameter, it is
evident that neither the 22 or 46° halos are distinguish-
able from the diffraction ripple structure. The back-
scattering peak is spread over a wide interval, and one
can hardly speak about any peak at all. For the medi-
um size parameter, the geometric optics effects are
already clear. The halos and backscattering peak
show up in the pattern, although some diffraction rip-
ple structure disturbs the otherwise smooth curve.
For the largest size parameter, the calculations lead to
a pattern that closely resembles ray optics results.
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Fig.4. Scattering phase function (a) and degree of polarization (b)

for hexagonal ice plates. The halos and peaks in the phase function

sharpen, and the amplitude of the polarization increases with in-

creasing size parameter. For better display of the results, the phase

functions have been multiplied by factors of 50.0, 5.0, and 0.5, and

the constants 0.8, 0.4, and 0.0 have been added to the polarization of
the order of increasing size parameter (see Table I).

The neutralization of the polarization with decreas-
ing size parameter can be readily recognized. The
neutral polarization is in qualitative agreement with
the experiments by Perry et al.23 for NaCl particles.
MKA predicts that the derivatives of the polarization
patterns at the forward and backward directions are
continuous, which means that the first derivatives
must vanish. Because of the wide angular display
interval, this can be seen only for the lowest size pa-
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Fig.5. Scattering phase function (a) and degree of polarization (b)

for cubic ice crystals. Notice the diffraction ripple structure and

backscattering peak formation. The display is the same as in Fig. 4
(see Table I).

Table l. Asymmetry Factors g, the Phase Function Values at 0 and 180°,
and the Polarization Minimums P, and Maximums Py, for Ice Cubes and
Plates with Given Size Parameter x

Ice plates
x =100 x =400

Ice cubes
x=25 x=100 x =400

x =25

g 0.72 0.73 0.74 0.78 0.79 0.79
P;1(0°) 8.7X10%6.0X10% 9.5X10* 40X 102 63X 10° 1.0X10°
P;;(180°) 1.2X10° 1.6 X 10! 25X 102 29X 107! 8.6X 107! 3.5 X 10°
Priin -0.13 -0.26 -0.37 —0.09 —0.21 -0.31
Prax 0.04 0.10 0.12 0.09 0.14 0.16
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rameter. The negative polarization branch in the
backward domain grows wider with the increasing size
parameter.

For the cube, effects similar to those for the hexago-
nal plate show up in the patterns. However, the
trough retroreflection forms only some background
contribution in the phase function because of the pre-
dominance of the corner retroreflection. On the other
hand, the former affects the polarization considerably,
and the influence increases with increasing size param-
eter.

The smoothing of the curves due to the finite size of
the scatterers is the most important improvement to
ray optics. Still, ray optics predicts the overall behav-
ior of the phase function and the polarization, exclud-
ing the halo and peak regions, surprisingly well, which
is mostly due to the locally planar character of the
crystal surface.

VI. Conclusions

A modified Kirchhoff approximation, or MKA, has
been developed for the scattering of light by randomly
oriented crystals. MKA includes a particle size de-
pendence superior to ray optics, as has been demon-
strated via the calculation of the scattering phase func-
tion and the degree of linear polarization for hexagonal
and cubic ice crystals. The main results were a slight
decrease of the asymmetry factor, a spreading of the
peaks and halos in the phase function, and the neutral-
ization of polarization, all with decreasing mean size
parameter.

MEKA has been developed especially for randomly
oriented crystals. The method approaches ray optics
with increasing size parameter, while for small size
parameters isotropic scattering is predicted. Howev-
er, MKA is applicable only to large crystals, i.e., crys-
tals with the mean size parameter larger than ten, and
experimental verification of the validity of MKA is
clearly needed. At the moment, the treatment for
light scattering by crystals in the complete Kirchhoff
approximation requires too much computer time, but
it may be possible in the future.

Ithank Kari Lumme, Jouni Peltoniemi, and William
M. Irvine for valuable suggestions. This work was
supported by NASA grant NGL 22-010-023.
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