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Abstract-We model the shapes of irregular small particles using multivariate lognormal 
statistics (Gaussian random shape), and compute absorption and scattering cross sections, 
asymmetry parameters, and scattering phase matrices in the ray optics approximation. The 
random shape is fully described by the autocovariance function, which can be conveniently 
modeled by two statistical parameters: the standard deviation of radius and the correlation 
length of angular variations. We present an efficient spherical harmonics method for 
generating sample Gaussian random particles, and outline a ray tracing algorithm that can 
be adapted to almost arbitrary, mathematically star-like particles. We study the scattering and 
absorption properties of Gaussian random particles much larger than the wavelength by 
systematically varying their statistical parameters and complex refractive indices. The results 
help us understand, in part, light scattering by solar system dust particles, and thereby 
constrain the physical properties of, for example, asteroid regoliths and cometary comae. 

1 .INTRODUCTION 

Light scattering by spherical and infinite circular-cylindrical particles can be studied using exact 
electromagnetic solutions. ‘v2 Strictly, natural small particles never exhibit such simple shapes, nor 
any other deterministic shapes. We adopt a different, statistical approach to light scattering by 
small particles by describing their shapes using multivariate lognormal statistics. We emphasize 
that, in the spherical geometry, the Central Limit Theorem3 holds for the lognormal probability 
density. In the present context, we consider the ray optics approximation and assume that the 
particles are much larger than the wavelength of incident light. 

Peltoniemi et al4 formulated the ray optics approximation for light scattering by stochastically 
rough particles using a Markovian approach: the ray path was assumed independent of the history 
beyond the previous interaction. They provided approximate propagation probabilities, and 
studied a wide selection of statistical parameters and refractive indices. As for the scatteuing 
phase matrix, their approach was constrained to computing the scattering phase function and 
degree of linear polarization. Here we provide a new spherical harmonics method for generating 
three-dimensional Gaussian random shapes, and compute full 4 x 4 scattering phase matrices 
accounting for the entire history of the ray paths. 5,6 We systematically vary the statistical 
parameters and refractive indices to learn general characteristics of light scattering by irregular 
particles much larger than the wavelength. 

The ray optics approximation for irregular particles has also been studied by Mukai et aJ7 
Schiffer and Thielheim,’ Bottlinger and Umhauer,9 and Hovenac. lo Hovenac constrained his studies 
to spherical and nonspherical axisymmetric particles. Bottlinger and Umhauer presented a ray 
tracing algorithm and a method for three-dimensional reconstruction of particle shapes. Schiffer 
and Theilhein studied the effects of rough surface shadowing on the scattering characteristics of 
single particles. Mukai et al provided a one-dimensional radiative transfer approach to scattering 
by large particles with a random rough surface. 

Schiffer”-‘3 has further studied light scattering by statistically irregular particles. However, he 
described the irregular shapes using Gaussian rather than lognormal statistics. Such a shape model 
is realistic only for small standard deviations of radius and small correlation lengths of axqular 

tTo whom all correspondance should be addressed. 
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variations. The same restricting assumption was made by, e.g., Mukai et al,’ Bahar and Fitzwater,14 
Schertler and George,15 and CCsar et al.16 

Light scattering by roughly wavelength-sized Gaussian random particles is an important future 
research topic. Valuable insight into light scattering by wavelength-sized and somewhat larger 
nonspherical particles has already been gained by applying the T-matrix method (Waterman”), in 
particular, to axially symmetric spheroidal and Chebyshev particles (e.g., Mishchenko,‘* and 
references therein), and via the separation of variables techniques for spheroidal particles (e.g., 
Asano and Sato,lg Voshchinnikov,” and references therein). 

Lumme and Rahola,” Michel,” and Peltoniemiz3 have worked on the discrete-dipole 
approximation, a distorted wave approach based on the Dyson and Bethe-Salpeter equations, and 
a variational volume integral technique, respectively, for light scattering by irregular particles. With 
additional programming effort, the T-matrix algorithms’8*24 could become applicable to non- 
axisymmetric particles. The various methods could be utilized for studying electromagnetic 
scattering by wavelength-sized Gaussian random particles. 

In Sec. 2, we present the Gaussian random shape in detail, and Sec. 3 summarizes the ray optics 
approximation. Section 4 concentrates on the numerical methods for shape generation, ray tracing, 
and computation of forward diffraction. We show the main results in Sec. 5, and close the article 
by discussing the future prospects in Sec. 6. 

2. GAUSSIAN RANDOM PARTICLE 

2.1. Radius statistics 

Assume that the random variables s = (s,, . . . , s~)~ for given spherical coordinates 

Q = (31, ‘PIG . * . ; 9,, cpN)T obey multivariate normal statistics nN with zero means and covariance 
matrix X, (T is transpose):3 

&(S, X:,) = 
1 

(@--)NJ_ exp( -:sT&-‘s). 

The covariance matrix elements are 

IE,,ii=~2Cs(y,), i,j= 1,. . . , N, 

where pz is the variance, C, is the autocorrelation function, and yii is the angular distance between 
the directions i and j. We require that C, be positive definite, C,(O) = 1, Cl(O) = 0, and that 

C,(Y) = C& + 27r). 
We relate the random radius r = r(9, cp) to s = ~(9, cp) through 

The random variables r = (r, , . . . , rN)T then obey multivariate lognormal statistics 1, with equal 
means a, equal variance a2a2, and covariance matrix Cr.3*6 

1 
&@,a, %) = (fi)Nr, . . . rNJmexP(-fsTG’s). 

The elements of the matrices & and C,, the corresponding autocorrelation functions C, and C,, 
and the variance a2 and j?’ are interrelated through 

C,, = a*[exp(&) - 11, i, j = 1, . . . , N, 

a2C, = exp(B’C,)- 1, 

a2 = exp(p’) - 1. (5) 

Equations (I)(5) completely describe the statistics of the Gaussian random shape. Thus, when the 
radius r is lognormally distributed, the ‘logradius’ s is normally distributed. 
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We establish a local coordinate system on the particle surface by the outward unit normal vector 
e,, and the unit tangent vectors e, and eY, 

er= 
s,e, - sSsVeS + (8; + 1) sin 9e, 

(s;+ l)s2,+($+ 1)2sin29 ’ 

e, = 
sin Se, - sg sin 9eg - s,e, 

(s’,+ l)sin29 4-s: ’ 
(6) 

where e,, e, and e, are the unit vectors in the global spherical coordinate system, and sg and s, 
are the partial derivatives of the logradius. Note that the local unit vectors are completely 
determined by the logradius partial derivatives: introducing the logradius appears to be the natural 
way to model shapes in the spherical geometry. 

The two perpendicular slopes 

1 ar 
sg=--, 

r Z? 

-s =-!A 1 

sin 9 ’ rsin 9 @I ’ (7) 

are independent Gaussian random variables with zero mean and standard deviation (surface 
roughness) 

where 1, is the correlation length. Furthermore, the slopes do not correlate with the logradius. 

2.3. Shape in spherical harmonics 

Three-dimensional Gaussian random shapes can be generated using a spherical harmonics 
expansion for the logradius, and a Legendre expansion for its autocorrelation function? 

s(S, cp) = 5 i Py(cos 9)(a,, cos mcp + b, sin mcp), 
I=0 m=O 

G(Y) = f c,P,(cos Y), 
I=0 

(9) 

where P;ls and P,s are associated Legendre functions and Legendre polynomials, respectively. 
Making use of the addition theorem for spherical harmonics, it can be shown that, if the coefficients 
a,m and bl, are independent Gaussian random variables with zero means and equal variances 

the logradius will be normally distributed with zero mean and autocovariance function j?*C, (c$,,, 
is the Kronecker symbol). 

A convenient choice for the autocorrelation function is the spherical ‘Gaussian’ function 

, 

(11) 
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where F is the correlation angle-thus we obtain 

c,=(21+ 1)exp 
( >() 

-1 i, $ 
c c 

, I=O,...,co, (12) 

i, being a modified spherical Bessel function. The stochastic shape is thus parameterized by e and 
F, the relative standard deviation and the correlation angle. Note that, in our nomenclature, the 
correlation length and correlation angle generally differ from each other, and correlation lengths 
I > 2 do not correspond to real angles. Among other possible autocorrelation functions are the 
spherical ‘Lorentz’ and ‘exponential’ functions, which can be constructed analogously to the 
Gaussian autocorrelation function. In particular, fractal Gaussian random particles can be 
produced using the exponential function. 

3. RAY OPTICS APPROXIMATION 

The ray optics treatment derives from that by Muinonen et aL2’ Muinonen,26 and Peltoniemi 
et al.4 We describe the particle size by the mean-radius size parameter x = ku, where k is the 
wavenumber. As for the geometric optics part, a Mueller matrix is related to every ray and, at a 
boundary surface, reflection and refraction take place according to Snell’s law and Fresnel’s 
reflection and refraction matrices. As for the forward diffraction part, the two-dimensional 
silhouette is numerically computed for each sample shape, and diffraction is then ensemble- 
averaged in the Kirchhoff approximation. 

The scattering phase matrix P relates the Stokes vector of the incident and scattered light; for 
the Gaussian random particle 

(13) 

where esea is the scattering cross section and P,, is the scattering phase function. For particles large 
compared to the wavelength, the scattering cross section and phase matrix can be divided into the 
forward diffraction and geometric optics parts (superscripts D and G), 

(14) 

In our ray optics approximation, we strictly require 

a:, = 0 >, 

0 ext = gabs + C’s, = X4 >, (15) 

where a,,, and c&$ are the extinction and absorption cross sections, and (A) is the ensemble- 
averaged cross-sectional area. The absorption cross section is solely due to geometric optics: 
0 abs = c&. The geometric optics single-particle albedo w and the asymmetry parameter g are 

G 

w=$ 

g= E s 4n 4x 
cos 8P,, ) (16) 

where ~9 is the scattering angle. The asymmetry parameter can be divided into the forward 
diffraction and geometric optics parts gD and gG as in Eq. (14) for the scattering phase matrix. 
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In the Kirchhoff approximation, 26,27 the forward diffraction phase matrix can be written as 

PDCC &a@, 4)1*x1 + cm Q21, 

2n s s r(F) 

46 4) = d4’ dr’r’ exp[ - ikr’ sin 8 cos(4 - 4’)], (17) 
0 0 

where the ensemble average leaves no dependence on 4, 1 is the 4 x 4 unit matrix, and r(d’) 
describes the silhouette of a sample Gaussian shape. The scattering phase matrix PD is finally 
normalized according to Eq. (14). 

As for the geometric optics part, we designate the complex refractive index of the scatterer 
relative to the surrounding, nonabsorbing medium by m. For external incidence, we apply Snell’s 
law in the form 

sin I = Re(m) sin t, (18) 

where I and 7 are the angles of incidence and refraction, respectively. When determining 7, we thus 
make use of Re(m) only, and assume that Im(m) has either negligible influence on 7 or is large 
enough to entirely eliminate internal ray propagation. 

For external incidence, the Mueller matrices of the reflected and refracted rays (subscripts R and 
T) can be obtained from 

MR=R’K.Mi”,, 

MT=T.K.Mi”,, (19) 

where K is the rotation to the plane of incidence, and R and T are the Fresnel reflection and 
transmission matrices, 

rr,,r~ +r,ri: qrf +r,rf 0 0 1 
r,,rr + r,rY qrf + r,rY 0 0 

R+ 0 0 2 r Re(r,, Y 1 2 r Im(r,, T 1 
0 0 -2Im(r,,rf) 2Re(r,,r:) 

t,,t: + t,tl: t,,t:- t,tf 0 0 

t,,tf - t,t: t,,tf + t,tf 0 0 
T+ 

0 0 2 Re(t,, t Y) 2 Im(t,, C) 
0 0 -2Im(t,,tf) 2Re(t,,ff) 

where $ is the rotation angle, and r,, , rl, t,,, and tl are Fresnel’s coefficients: 

mcos i -cost cos 1 - m cos 7 
rli = 

mcosl +cosr’ 
rl = 

cosl +mcosr’ 

2cos 1 2COSl 
fll = 

mcosl +cosr’ 
t, = 

cos 1 + m cos 7 ’ 

WV 

(21) 

Since the Mueller matrices in Eq. (19) interrelate flux densities that are not conserved, in practical 
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ray tracing, we establish the energy conservation by renormalizing the refraction coefficients in T 
so that 

lr,,V + Re(;;scps r ) jr,, 12 = 1, 

Ir, I2 + Re(;os”ys *) It, 12 = 1. (22) 

We treat the internal incidence analogously except that, inside the particle, rays can be totally 
reflected and attenuated due to absorption. Our condition for total internal reflection is 
sin I > l/Re(m), again depending on Re(m) only. We assume exponential absorption 
exp( -2 Im(m)k Ar) along the ray path (Ar is the path length), and apply the exponential 
attenuation factor to the entire Mueller matrix. 

To summarize, rays are traced until the flux decreases below a specific cutoff value or the ray 
has undergone a specific number of internal or external reflections. Scattered rays carry Mueller 
matrices that contribute to the geometric optics scattering phase matrix. Ultimately, the cross 
sections and phase matrices are ensemble averages 

(23) 

where the random variables {a,,} and {b,,,,} are the spherical harmonics coefficients of the logradius 
in Eq. (9). 

4. NUMERICAL METHODS 

As for generating sample Gaussian random particles, we fixed the maximum degree I,,,, in the 
spherical harmonics and Legendre expansions by requiring a five-decimal-place agreement between 
the logradius autocorrelation function in Eq. (11) and its Legendre expansion in Eq. (9). We 
obtained the following simple rule for Imax: 

1 
275” 

max x r + 2.5. 

Ray tracing was carried out within the circumscribing sphere of radius a, defined so that a 
negligible proportion of sample particles crossed the boundary. We typically assumed 

a> = a(1 + 40). 
We developed a variable numerical step for ray tracing. The first goal was to bracket the 

interaction point, whereafter it could be efficiently determined using a bisectional search.2s For 
external rays, because of star-like shapes, there is exactly one point on the surface between the 
origin and the ray location. Thus, if the ray were propagating toward the origin, the interaction 
point would be immediately bracketed by the initial location and the origin. Generalizing from this 
observation, we modeled the step using an ellipse that extended from the origin through the ray 
location to a, with the semimajor axis a, /2. We read the step size from the intersection of the 
line of propagation and the ellipse. After trial and error, we found that the semiminor axis O.lT/rr 
led to satisfactory results in most cases. For internal rays, the ellipse was taken to extend from one 
side of the circumscribing sphere to the other. In this case, the semimajor axis was a, and we used 
the same semiminor axis as for external rays. As compared to a fixed step size, the variable step 
speeded up the computations, though faster steps can probably still be developed. 

The cross-sectional shape for diffraction computation was determined by incorporating, for the 
necessary set of azimuthal angles, a golden section search2* for the maximum projected radius. The 
relevant region was found by systematically varying the $-angle. The r/-integral in Eq. (17) was 
computed analytically, and the remaining q/-integral numerically using equally spaced azimuths. 

We incorporated 100,000 rays in the geometric optics computations, which secured good 
accuracy for the scattering and absorption cross sections and asymmetry parameters. Some 
statistical noise remained in the matrix elements. We allowed 9-19 internal reflections (10-20 
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internal chords), the smaller numbers corresponding to lower refractive indices. We found that 
allowing l-2 external reflections sufficed for the present parameters. The entire ‘ray trees’ were 
traced until the relative fluxes of the ‘branches’ decreased below 10-4. The errors due to ray 
termination, bracketing, and impossible normals altogether never exceeded 5% of the total energy. 
We used a two-degree resolution for the angular bins. 

Finally, the CPU-time consumption sensitively depended on the characteristics of the particles: 
smaller correlation angles required longer spherical harmonics expansions and slower computation 
of radii, and larger radius standard deviations resulted in more frequent misses for the incident 
rays. The computing times for a single case varied from a few hours to two weeks on a 90 MHz 
Pentium Linux-workstation. 

5. RESULTS 

Peltoniemi et al4 studied the effects of small and large roughness, refractive index, and absorption 
on the scattering phase function Pz and degree of linear polarization - PE/PE in the Markovian 
approximation. We extend their approach to the entire scattering phase matrix accounting for the 
full propagation history in ray tracing. We have good overall qualitative agreement with the results 
by Peltoniemi et al, and will carry out a detailed comparison in another context. In the following, 
parts of the earlier results appear among the new results. 

For Gaussian random particles, the scattering phase matrices have six degrees of freedom, and 
maximum eight nonzero elements. The six independent matrix elements are P';; , Py2, P$, P$, P$, , 
and Pz. The two remaining elements are P2, - ’ - Py2 and Pz = -PF4. The other matrix elements 
were correctly found to vanish in the numerical computations. 

In Fig. 1, we show three sample Gaussian random shapes generated using Eqs. (3) and (19). The 
standard deviation of the radius is c = 0.10 for all three shapes, and the correlation angle gradually 
decreases from I’ = 90 to 10” introducing more and more pronounced fluctuations on the particle 
surface. We note the simple truth that decreasing cr and increasing F lead toward the spherical 
shape. 

We studied absorption for the refractive index and size parameter combinations Re(m) = 1.55 
and Im(m) x = 0.0, 0.1, 0.3, and 0.9, the radius standard deviations cr = 0.05, 0. IO, and 0.20, and 
the correlation angle r = 10, 30, and 90“. In order for these results to hold, we need to have 

1 

0.5 

Fig. la 

Fig. l-continued overleaf 
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-1 

Fig. lb 

.5 

Fig. Ic 

Fig. 1. Sample Gaussian random shapes with the relative standard deviation of radius CT = 0. IO and 
correlation angle (a) r = 90”, (b) r = 30”, and (c) r = 10”. 

Im(m) c 0.01, and, x $- 1 and 2x)m - 1 I b 1. Examples of ci, PG are shown in Fig. 2, and the 
single-particle albedos nr and asymmetry parameters gG are presented in Tables 1 and 2, 
respectively. We continued by computing forward diffraction for the size parameters x = 50, 100, 
and 200, the radius standard deviations CJ = 0.05, 0.10, 0.15, and 0.20, and the correlation angles 
r = 10, 20,30,60, 90, and 180”. The forward diffraction asymmetry parameters are given in Table 
3. We then computed geometric optics results for the refractive indices m = 1.33, 1.55, and 2.00, 
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1 q, r‘ 
0.05 0.10 0.20 

10" 30" 90" 10" 30" 90" 10" 30" 90" 
0.0 0.42 0.60 0.63 0.27 0.51 0.62 0.28 0.36 0.60 
0.1 0.51 0.64 0.65 0.36 0.58 0.64 0.36 0.46 0.63 
0.3 0.57 0.65 0.64 0.45 0.61 0.64 0.45 0.54 0.63 
0.9 ) 0.42 ) 0.36 0.47 0.48 1 0.45 0.46 0.47 

Table 3. The forward diffraction asymmetry parameter gn as a 
function of the size parameter x = 2na/A, standard deviation of radius 

u, and the correlation angle r. 

10" 20" 30" 60" 90" 
50 0.05 0.990 0.990 0.990 

0.10 0.989 0.990 0.990 

0.15 0.989 0.990 0.990 

0.20 0.989 0.990 0.990 

loo 0.995 0.995 0.995 0.995 

0.994 0.995 0.995 0.995 

0.995 0.995 0.994 0.995 

0.994 0.995 0.991 0.995 

200 0.998 0.997 0.998 0.998 

0.997 0.997 0.998 0.998 

0.15 0.997 0.997 0.998 0.997 0.998 0.998 

0.20 j 0.997 0.998 0.998 0.994 0.995 0.998 

Table 4. The geometric optics asymmetry parameter gG as a 
function of the refractive index m, standard deviation of radius 

c, and correlation angle r. 

m u I- 
i 10" 20' 30" 60" 90" 180" 

1.33 0.05 0.55 0169 0.73 0.76 0.77 0.77 
0.10 0.47 0.56 0.64 0.74 0.76 0.77 
0.15 0.49 0.51 0.59 0.72 0.75 0.76 
0.20 0.51 0.50 0.56 0.70 0.74 0.76 

1.55 0.05 0.42 0.57 0.60 0.63 0.63 0.63 
0.10 0.27 0.41 0.51 0.60 0.62 0.62 
0.15 0.26 0.31 0.42 0.57 0.61 0.62 
0.20 0.28 0.29 0.36 0.54 0.60 0.62 

2.00 0.05 0.26 0.39 0.41 0.42 0.43 0.43 
0.10 0.11 0.25 0.34 0.39 0.41 0.42 
0.15 0.10 0.15 0.24 0.37 0.40 0.42 
0.20 0.09 0.12 0.18 0.34 0.38 0.41 
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and the same radius standard deviations and correlation angles as for diffraction above. Examples 
of the geometric optics scattering phase matrices P” are given in Figs. 2-5, and the asymmetry 
parameters are collected in Table 4. We thus have results for altogether 99 different comb- 
inations of the parameters (Tables 1, 2, and 4, accounting for the overlap for non-absorbing 
particles). 

The asymmetry parameters gD for forward diffraction systematically increase for increasing 
mean-radius size parameter x (Table 3). gD is quite independent of the statistical parameters. 
However, toward larger standard deviations (T and for the correlation angle r = 60”, the asymmetry 
parameters differ from the neighboring values. Why this happens requires further studies: it could 
be an artifact due to insufficient statistical averaging. 

In what follows, we analyse the cross sections, asymmetry parameters, and geometric optics 
scattering phase matrix elements in detail as functions of the refractive index m, radius standard 
deviation CT, and correlation angle r. However, we first summarize some general results. When 
varying the standard deviation of radius CJ, we observed the following (cf. Fig. 3): 

l For absorbing particles, increasing Q decreases IU (Table 1). 
l For both absorbing and non-absorbing particles, gG practically always decreases for increasing 

(r (Tables 2 and 4). 
l Increasing d efficiently destroys the rainbow features. 
l For small r and increasing o, the matrix elements become insensitive to changes in CJ. It 

remains to be seen whether the elements, in fact, converge toward some limiting patterns for 
large 6. 

l There are nodes in some of the matrix elements, i.e., angles where the elements are practically 
independent of 6. 

l Toward larger r, changing rr less affects the matrix element ratios PT/PE. 
l Increasing (T shifts features forward in scattering angle, in particular, for small r. The only 

exception is P$/Ps for m = 2.00, for which backward scattering features tend to move 
backward. 

l Increasing CJ flattens the matrix elements, in particular, for small r: the minima and maxima 
become shallower. Furthermore, the ratios -Pz/PF; and Pg/PE become shallower for 
increasing cr. 

l In the matrix element ratios, the forward scattering regime is insensitive to changes in (T. The 
exception is PE/PE for m = 2.00, in which case increasing (T decreases the curves. 

When varying the correlation angle r, we observed the following (cf. Fig. 4): 

l For absorbing particles, increasing r typically increases m (Table 1). 
l For both absorbing and non-absorbing particles, gG usually increases for increasing r (Tables 

2 and 4). 
l Increasing r shifts features backward in scattering angle, as the random shape approaches a 

sphere. 
l Increasing r tends to enhance features in the matrix element ratios. The exceptions are PF2/PE 

and P”,IPE, which tend toward unity and zero, respectively, that are the values for a 
non-absorbing sphere in the geometric optics approximation. 

When varying the refractive index m, we observed the following (cf. Figs. 2 and 5): 

l Naturally, m decreases for increasing absorption (Table 1). 
l For increasing Im(m)x, gG first increases and then decreases (Table 2). 
l For increasing Re(m), gG always decreases (Table 4). 
l For increasing absorption, the matrix elements become simpler and converge toward those 

from external reflection only. 
l Increasing Re(m) tends to shift features backward in scattering angle. 
l Increasing Re(m) decreases forward scattering and increases backward scattering, gener&lly 

neutralizing the scattering phase function. 



0 

‘:d/t;d - 

0 
N 
t-- 

0 
d- 



I I I I I I I I I 

T I I I I 

0 



1 
.o

 
I 

I 
I 

I 
I 

I 
I 

I 
7 

0.
8 

- 

1.
0 

0.
8 

0.
6 
- 

0.
6 

0.
4 
- 

0.
2 
- 

0.
4 

0.
2 

u=
 

5 
0.
0 

a 
-0
.2
 

u=
 $ 

o-
0 

a 
-0
.2
 -
 

-0
.4
 -
 

-0
.6
 -
 

-0
.8
- 

e.
 

-0
.4
 

-0
.6
 

-0
.8
 

I 
I 

I 
I 

I 

-.
...

...
...

...
...

...
...

...
...

...
...

. 

f. 

0 
20
 

40
 

60
 

80
 
.l
OO
 
12
0 

14
0 

16
0 

18
0 

0 
20
 

40
 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

18
0 

Fi
g.

 3
e 

Fi
g.

 3
f 

Fi
g.

 3
. 

G
eo

m
et

ri
c 

op
tic

s 
sc

at
te

ri
ng

 p
ha

se
 m

at
ri

ce
s 

fo
r 

th
e 

re
fr

ac
tiv

e 
in

de
x 

m
 =

 1
.5

5 
an

d 
co

rr
el

at
io

n 
an

gl
e 

r 
=

 3
0”

. T
he

 d
if

fe
re

nt
 l

in
es

 c
or

re
sp

on
d 

to
 t

he
 s

ta
nd

ar
d 

de
vi

at
io

ns
 u

 =
 0

.0
5 

(-
),

 
0.

10
 (.

 .
 

),
 

0.
15

 (
--

--
), 

an
d 

0.
20

 (
‘-

‘-
‘-

.-
).

 
(a

) 
PE

, 
(b

) 
-P

$P
y,

, 
(c

) 
P

g/
P

:, 
(d

) 
P

$/
P

E,
 

(e
) 

P
E/

P
f, 

an
d 

(0
 P

z/
P

z.
 



M 0 F3 

6 6 d 

( L;d)"'601 ’ 



I -0 

09 
0 

cu 
0 

hl 

d 
I 

03 

d 
I 

I I I I 

1 0 
0 



1 
.o

 

0.
8 

0.
6 

0.
4 

0.
2 

0=
 

$ 
0.
0 

L1
 -0

.2
 

-0
.4
 

-0
.6
 

-0
.8
 

-1
.0
 c I 

e.
 I 

I 
I 

I 
I 

I 
I 

I 

0.
8 

0.
6 

0.
4 

0.
2 

u=
 

<
 

0.
0 

ut
 

11
 

-0
.2
 

-0
.6
 

-0
.8
 

-1
.0
 

1 
f. 

I 
I 

I 
I 

I 
1 

I 
I 

0 
20
 

40
 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

18
0 

0 
20
 

40
 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

18
0 

8 
r>
 

8 
r>
 

Fi
g.

 4
e 

Fi
g.

 4
f 

Fi
g.

 4
. 

G
eo

m
et

ri
c 

op
tic

s 
sc

at
te

ri
ng

 p
ha

se
 m

at
ri

ce
s 

fo
r 

th
e 

re
fr

ac
tiv

e 
in

de
x 

M
 =

 1
 .S

5 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

0 
=

 0
. I

O
. T

he
 d

if
fe

re
nt

 l
in

es
 c

or
re

sp
on

d 
to

 t
he

 c
or

re
la

tio
n 

an
gl

es
 r

 
=

 I
O

” (
--

), 
20

” 
( 

),
 

30
”(

--
--

),
 

60
”(

.-
-,

-.
-,

-)
, 

W
(-

-.
.-

),
an

d 
18

0”
(-

--
).

T
he

m
at

ri
xe

le
m

en
ts

ar
ea

si
nF

ig
. 

3.
 



8 
-7 s 

- til 

om .ic 
al 



.’ I 

i I 

: I 
: > 

\ d 
‘ 
/ , I I I I I I I I 

0 a3 

d 
co 
d 

cv 
d 

N 

d 
d- 

6 
co 

I 
d 
I 

al 

d 
I 

-0 
0 

I 



I I I I _ 

? 
‘(: 
lj .; 
1: 
;: 
: 

i 
3 

5 

a 1; 
I I I I 

N 

Q 
d- 

Q 
c9 
0 
I 



Ray optics approximation 599 

5.1. PY, 

For increasing standard deviation C, the scattering phase function PE tends to decrease in the 
forward scattering regime, in particular, for small correlation angles r. Also for increasing o, the 
minimum at the intermediate scattering angles becomes shallower, the changes being smaller for 
larger o. For small r, increasing 0 tends to decrease the phase function in the backward scattering 
regime. [cf. Fig. 3(a).] 

Increasing the correlation angle r systematically increases the phase function in the forward 
scattering regime, deepens the minimum at the intermediate scattering angles, and strengthens the 
backward regime. For the refractive index m = 1.33, backward scattering begins to decrease for 
the largest r: there is no glory for water droplets in the geometric optics approximation. For small 
(T, increasing r hardly affects the phase function. [cf. Fig. 4(a).] 

Increasing Re(m) systematically decreases Py, in the forward scattering regime, and makes 
the minimum at the intermediate scattering angles shallower [Fig. 5(a)]. Increasing Im(m) 
systematically flattens the minima and maxima [Fig. 2(a)]. 

5.2. - Pf.JP$ 

For increasing standard deviation (T, the first and second polarization maxima at 5CL90L and 
lOO-160”, respectively, decrease, and the second maximum finally disappears. [cf. Fig. 3(b).] 

In general, the correlation angle r strongly affects the shape of the polarization curve at the 
intermediate and backward scattering angles, whereas it hardly affects the forward scattering 
regime. For increasing r, the first maximum increases and moves backward. [cf. Fig. 4(b).] 

Increasing Re(m) systematically neutralizes the polarization maxima [Fig. 5(b)], whereas 
increasing Im(m) leads to opposite behavior: the primary maximum increases [Fig. 2(b)]. 

5.3. Pf;lP$ 

For increasing standard deviation (T, Pg/PE fairly systematically decreases. a affects the curve 
shapes more for small refractive indices m. [cf. Fig. 3(c).] 

The forward scattering regime is rather insensitive to changes in the correlation angle r and, in 
general, r affects the curve shapes less for larger m. For small m, the biggest changes due to r 
take place near the backward direction. [cf. Fig. 4(c).] 

Increasing Re(m) destroys the local maximum at the intermediate scattering angles [Fig. 5(c)], 
whereas increasing Im(m) systematically increases the curve [Fig. 2(c)]. 

Increasing the standard deviation a increases Py3/PE at the intermediate scattering angles, 
whereas changes in the backward regime are usually small. For large refractive indices m, a does 
not strongly affect the curve shape. [cf. Fig. 3(d).] 

In general, the correlation angle r strongly affects the curve shape at the intermediate and 
backward scattering angles, whereas it hardly affects the forward scattering regime. However, for 
large m, increasing r leads to systematic increase in the forward scattering regime, and also deepens 
the minimum at the intermediate scattering angles. Increasing r tends to decrease the curves in 
the backward scattering regime. [cf. Fig. 4(d).] 

Increasing Re(m) or Im(m) destroys the local maximum at the intermediate scattering angles 
[Figs. 2(d) and 5(d)]. 

For nonabsorbing particles, Pg/PE is a measure of total internal reflection. For changing 
standard deviation a, it does not behave systematically, though appears to be more insensitive for 
small refractive indices m. [cf. Fig. 3(e).] 

Both the forward and backward scattering regimes are rather insensitive to changes in the 
correlation angle r. For small refractive indices m and large a, the curves depend less on r. [cf. 
Fig. 4(e).] 

Increasing Re(m) or Im(m) destroys the local minimum at the intermediate scattering angles 
[Figs. 2(e) and 5(e)]. 
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For increasing standard deviation cr, P$/PE increases for large correlation angles r and, for 
small r, tends to decrease near the backward direction. The minimum at the intermediate scattering 
angles systematically’ increases for increasing cr. [cf. Fig. 3(f).] 

In general, the curves strongly depend on r. For increasing r, the forward scattering regime 
increases, the backward scattering regime decreases, and the minimum at the intermediate 
scattering angles deepens. Increasing r tends to less and less affect the curves. [cf. Fig. 4(f).] 

Increasing Re(m) or Im(m) destroys the local maximum at the intermediate scattering angles 
[Figs. 2(f) and 5(f)]. 

6. DISCUSSION 

A great variety of random shapes can be generated using the lognormal statistics: they vary from 
modestly irregular to rough and extremely spiky shapes. The random shape can be applied to such 
diverse objects as asteroids and potatoes, for example. Convex Gaussian random particles can be 
generated using the convex hull concept for ordinary Gaussian random particles. Such particles 
can exhibit crystal-like outlook for large standard deviations of radius and small correlation 
lengths. In the present article, we have constrained ourselves to the modestly irregular shapes. 

The concept of the Gaussian random particle is not limited to the spherical mean geometry. 
There are several ways of introducing elongation into the random particle. For example, elongated 
particles can be generated by giving larger standard deviations for the second-order spherical 
harmonics coefficients of the logradius. Or the basic random shape can be multiplied by an 
ellipsoidal shape. Furthermore, it is straightforward to extend the modeling to Gaussian random 
cylinders. Lognormal size distributions of spheres are often utilized for modeling scattering by small 
particles.29 But such a distribution is, curiously, a Gaussian random particle with the autocorrela- 
tion function equal to unity. 

In half-space problems, Gaussian statistics are often used to mark the boundary between the free 
space and particulate scattering medium. In full analogy, supported by the Central Limit Theorem, 
Gaussian random shapes can be used to describe the boundaries of fluffy single particles. After 
generating the boundary using the spherical harmonics method, the volume can be packed with, 
e.g., spheres of equal size, to the extent desired. Moreover, in the limit of small radius standard 
deviation and small correlation length, the lognormal statistics reduce to the Gaussian statistics. 
The Gaussian random surface in the planar geometry is thus a spherical case of the Gaussian 
random shape. 

We plan to compare our ray optics results for Gaussian random particles to the Markovian 
approximation by Peltoniemi et a1.4 That approximation is considerably faster, but is a priori 
limited to Gaussian particles with small correlation angles. We will vary the autocorrelation 
function and examine its effects on the scattering parameters. We will also work toward a faster 
code for small correlation lengths and small standard deviations of the radius. We further aim to 
introduce the criteria by Hovenier et a13’ to verify our scattering phase matrices. One of our goals 
is to explain experimental results (e.g., Kuik et a13’ and Sasse et a13’). 

It is straightforward to modify the present ray tracing algorithm for any mathematically star-like 
geometries. We already programmed a code for ellipsoidal scatterers in order to compare the ray 
optics approximation to the T-matrix method33 for light scattering by spheroidal particles.” We 
have recently established the Rayleigh and Rayleigh-Gans approximations for scattering by 
Gaussian random particles,35 and hope to address the anomalous diffraction36 and Kirchhoff 
approximations26.27 in due course. 
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