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Scattering by a small object close to an interface.
II. Study of backscattering
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Scattering by a small object located close to an interface is analyzed according to the exact-image theory formula-
tion. The scatterer is assumed to be small compared with wavelength, permitting the electric-dipole approxima-
tion, and to have a scalar polarizability. After the derivation of the dipole moment, investigations concentrate on
far-field scattering. Backscattering enhancement and reversal of linear polarization are confirmed through statisti-
cal averaging over scatterer height and system orientation.

1. INTRODUCTION

In the preceding paper' exact-image theory formulation was
established for the problem of a small scattering object close
to an interface. The present paper concentrates on the
special case of an object with scalar polarizability and is a
natural continuation of Ref. 1.

In a recent paper on scattering by two small objects in the
electric-dipole approximation,2 backward enhancement was
seen to be accompanied by a reversal of linear polarization.
Both phenomena were verified in second-order scattering,
but, because of the small scattering cross section, they could
not be observed in total angular scattering. The other di-
pole scatterer is replaced here with a material half-space.
This increases the weight of second-order scattering so that
the phenomena also show up in total scattering.

The motivation for these backscattering studies comes
from two almost universal phenomena observed in scatter-
ing of sunlight from atmosphereless solar-system bodies.
These bodies, most probably covered with inhomogeneous
cosmic dust particles, exhibit opposition brightening, i.e.,
backscattering enhancement, and a reversal of linear polar-
ization near opposition.

As for the opposition brightening, Seeliger made the first
efforts to understand the brightening of the Saturnian sys-
tem in 1887.3 Rougier reported a wide collection of observa-
tions of the lunar phase curve in 1933.4 Lyot discovered the
reversal of linear polarization for Saturn's rings in 1923 and
published the linear polarization of the Moon in 1929.5
Both phenomena have also been observed for interplanetary
dust.

Various attempts to explain the observed phenomena
have been made during the past century. Only recently it
has been suggested that interference in multiple scattering
could be responsible for these phenomena.2' 6'7 The interfer-

ence mechanism is built into Maxwell's equations for elec-
tromagnetism and requires only that the scattering medium
be inhomogeneous. Backward enhancement already has
been investigated in the field of microwave scattering.8 9

In Section 2 the dipole moment of the scatterer is derived
from the general solution of Ref. 1. Far-field scattering for
an unpolarized incident field is presented in Section 3.
Backward enhancement and reversal of polarization are
studied in Section 4. Conclusions are summarized in Sec-
tion 5.

2. DIPOLE MOMENT

In the present scattering geometry the incident and the
reflected plane waves E' and Er propagate in the yz plane of
the fixed coordinate system xyz and scatter from an object
located at r = uzh (Fig. 1). The lower half-space is assumed
to be dielectric and nonpermeable with relative permittivity
e and with relative permeability u = 1. The coordinate
system x'y'z' is needed in the study of backscattering. It is
connected to the direction of the incident field so that the z'
axis points in the direction of the source.

The object is assumed to be small compared with wave-
length. In this case the induced electric-dipole moment
predominates over other multipole moments and gives an
accurate description of the scattering characteristics. The
incident and reflected fields at the object are

E'(uzh) = E0 exp(joih),

Er(uZh) = Ri(#i) E0 exp(-jf3ih),

= k cos Oi, k2
= 

2 Mofo, (1)

where Oi is the angle of incidence. The reflection dyadic 
can here be reduced [from Eqs. (5)-(7) of Ref. 1] to
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Q,(2h) = a + w 2itocK 2 (2h

'X = X CEO

(9)

The Q dyadic is termed the effective dyadic polarizability
since it replaces the polarizability dyadic a. It accounts for

el the interface through the Green's dyadic components Kt and
K,. The solution for the dipole moment resembles the one
obtained for two isolated dipole scatterers. 2

It is straightforward to spell out the relation between the
amplitude of the incident plane wave E0 and the induced

__ dipole moment p. Inserting Eq. (1) into Eq. (8), we readily
V obtain

Fig. 1. Scattering geometry. The incident and the reflected fields
propagate in the yz plane and scatter from a small object. Notice
the fixed and incidence-dependent (primed) coordinate systems.

)= uxu2 RTE(#3) + uYuYRTM(,) - uzuRTM(B3), (2)

with Fresnel coefficients

RTE(#3) / p p
1i +1I'

RTM(O,) = - efli - I #1 = k e-1 + '21 (3)

For a sphere of radius a and scalar polarizability a, the
dyadic polarizability

a = caS = reo + 2 a Y, (4)

where es is the relative permittivity and .7 is the unit dyad-
ic.10 Note that the vacuum permittivity c0is included in the
polarizability a.

In Eq. (30) of Ref. 1 the electric-dipole moment was seen
to be related to the incident and the reflected fields by

p = [j- W2,coa - I(u,2h) * @]-1 a- [E'(uzh) + Er(u~h)],

(5)

where the mirror dyadic @ is

@I = St -

t= uu, + Uuy. (6)

Accordingly, St is the transverse unit dyadic. The Green's
dyadic 1t accounts for the influence of the interface,

S(uz2h) = .hKt(2h) + uzu2 K2(2h), (7)

and its complex-valued components Kt and K2 depend on
the permittivity of the lower half-space and are presented in
detail in Eq. (34) of Ref. 1. They are oscillating functions of
kh that asymptotically approach zero with increasing kh.

After inserting Eqs. (4), (6), and (7) into Eq. (5) and
inverting the diagonal dyadic, we obtain

(8)p = 6Q(u22h) [E'(uzh) + Er(uzh)],

where the 62 dyadic is

62(u,2h) = StQ,(2h) + uzuQ,(2h),

Qt(2h) = a
1 - W

29oaKt(2h)'

p = exp(jg3h)Q + exp(-j ih)Q ARi E0. (10)

The interaction between the scattering object and the lower
half-space has been collected into the dyadic in front of the
incident amplitude. The order of scattering is defined ac-
cording to the powers of the polarizability and Fresnel coef-
ficients. Thereby, the dyadic Q includes terms starting
from the first order, whereas the dyadic Q * Ri is already of
the second order.

3. SCATTERED FAR FIELD

The scattered field consists of the fields from the object and
the image. The far field of the object can be obtained from
the current density J with the help of the free-space Green's
dyadic gii

El(r) = -jwo | dV"(r - r") * J(r")

= -,o | dV"9(r - r") * wp6(r" - uzh)

- w2y 0G(r)exp(1,3h)J 8 * p, kr >> 1,

where the Green's functions are explicitly

9(r) = + 1 VV - G(r),

G(r) exp[-jkD(r)] D12 (rr) 2 .G 4r = rD(r) D r-r 

(11)

(12)

Using the spherical coordinates t, so of the xyz coordinate
system, we see that

5 s = UOUO + uPu<,

as = k cos . (13)

Thus s is the unit dyadic transverse to the scattering direc-
tion.

The scattered far field of the image can be obtained from
the mirror current density J, with the help of the Green's
dyadic 1 as in Eq. (27) of Ref. 1:

E2
8 (r) = -memo j t dV"N(r - r") * J,(r')

= A0 fI dV"Y(r - r") -6 * jwpb(r" + u~h)

w c 2A0G(r)exp(-j#h) 5 (1,$) p, kr >> 1, (14)

where the reflection dyadic R, is
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R,(#,) = [uquoRTM(,) + U U1RTE(#,:)] . (15)

The far fields in Eqs. (11) and (14) resemble each other to a
great extent. In the far field of the image, the unit dyadic
has been replaced with a reflection dyadic, and the phase
factor is the complex conjugate of the one in Eq. (11).

The total scattered far field is the sum of the fields from
the scatterer and the image,

Es(r) = ElS(r) + E2s(r)

= W2yoG(r) [exp(j#,3h)Y, + exp(-jf3lh)B?(I3 8)] p

- W2 y0G(r)A1 (16)

including the definition for the scattering amplitude A.
Showing the dyadic operations explicitly, we find, with the
help of Eqs. (10) and (16), that

A = expLi(#i + #3,)h]VI. - ( + exp[-j(#i - #,)h]Y8.* Q 57%

+ exp[j(#i - #)h] * a: Q + exp[-j(3i + #,)h]R 8 .* fRi * E0.

(17)

Using Eqs. (3) and (15), we see that the scattering amplitude
vanishes for f38 = 0, i.e., in the xy plane.

After calculating the scattering amplitude for incident
polarizations perpendicular (TE) and parallel (TM) to the
yz plane of incidence, we obtain the scattering function S for
unpolarized incident field:

S(sP) 1 ATE12 + ATM12
2 1E01

2 (18)

In Figs. 2-4 the total and second-order scattering functions
are shown for normalized scatterer heights kh = 7r/2, 7r, 2r
and for the incidence angle i = 45°. The present second-
order function includes contributions from the second and
third terms in Eq. (17). Figure 2 indicates an interesting
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Fig. 3. Same as Fig. 2 for kh = r. Note the asymmetry of total
scattering in the yz plane of incidence.
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Fig. 4. Same as Fig. 2 for kh = 2r. Notice the formation of
backward enhancement in second-order scattering.

artifact: near a 900 scattering angle, the second-order in-
tensity exceeds the total one. Thus great care must be taken
when separating different orders of scattering without re-
gard to phase, i.e., in a geometrical optics sense. Note the
gradual increase of backscattering for the second order,
shown in Figs. 3 and 4.
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Fig. 2. Total and second-order scattering by a spherical object at
kh = 7r/2 according to Eq. (18) for an unpolarized incident field with
incidence angle Oi = 45°. See text for scattering into grazing angles.

4. BACKWARD ENHANCEMENT AND
POLARIZATION REVERSAL

In order to reach an understanding of the backscattering
phenomena observed for inhomogeneous particulate media,
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we introduce statistical averaging over surface slopes and
over the height of the scattering object. The probability
density for height is assumed to be a gamma distribution
with integer y (Ref. 12):

Ph(h)dh = ( y )( h8'Y exp(- h dh,
Ph ,yd - 1k!hoI ho (19)

where ho is the mean height. For this distribution, the
standard deviation of height is ho//; and decreases with
increasing y. The gamma distribution is an appropriate
choice since it decreases the effect of long-range interac-
tions, which tend to be shadowed in a real dust layer. Orien-
tation averaging is then carried out by making use of the
isotropic Gaussian probability density for slope (t = tan Oai;
e.g., see Ref. 9):

pt(t)dtdq5i = 12 exp( - t )tdtdo

1 (tan 2 O sin 0oi

22 p 1 2p2 )cos3

The averaged scattering function and degree of linear po-
larization for an unpolarized incident field are defined as

S(O) = I I (A TE 12 + IAoTM12 + IA TE12 + IA TMI2),
21E01 

P(O) = - (IAOTEI2 + IATMI2 - IAOTEI2 - IA TMI
2

(IAOTE12 + IAOTM12 + IATEI 2 + IA TMI2)'

where, for example,

(IA oTE12 ) = dhph(h) dt J doipj(t, Pi)IAOTE12.
0 o fo

1.3

1.25

(20)

where p is the standard deviation of slope. Thereby, only
normal incidence to a rough surface is considered. The
gamma and Gaussian distributions have been selected be-
cause of their simplicity. The emphasis here is not on de-
tailed but rather on broad-minded modeling of natural cir-
cumstances.

Let us define the amplitude components:

AO 01 expLj(fi + f3)h] + 02 exp[-j(fli - 03)h]

+ 03 exp(Pi - #3,)h] + 04 exp[-j(oi + f3)h],

A = 4 expL(Oi + #,5)h] + P2 exp[-j(i -)h]

+ (b3 expU(ji - /3,)h] + `4 exp[-j(3I + fl)hI, (21)

where 0 and 0 are spherical coordinates in the x'y'z' system
(Fig. 1). This definition permits the investigation on the
influence of different phase factors. The coefficient func-
tions can be obtained from Eq. (17) through corresponding
scalar product operations, for example,

01 = u0 Q - Eo,

02 = Uo Q .*7i * Eo,

03 = Uo * Js .-Eo,

04 = UO'571. * * fti Eo. (22)

1.2

N 1.15

1.1

1.05

(24)

(25)
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(°)

Fig. 5. Slight backward enhancement in averaged total scattering.
The enhancement is due mainly to second-order scattering.
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T

The evaluation of these functions requires knowledge of the
coordinate transformations

sin t9 cos ep = sin 0 cos 5,

sin ?9 sin eP = sin 0 sin P cos 0i - cos 0 sin 0',

cos = sin 0 sin 0 sin Oi + cos 0 cos 0i

0.15

0.1

0.05
(23)

between the xyz and x'y'z' coordinate systems. Note that.
the x'y'z' system has been defined in such a way that the
transformations in Eqs. (23) are independent of 0i. This is

justified by the fact that, for normal incidence, averaging

over the incidence angle Oi can be replaced by averaging over
the scattering angle (.

0

= 2.4
y = 2
p = 0.5

kh = 10

kh = 90

0 2 4 6 8 10 12 14 16 18 20

O(0)

Fig. 6. Backward enhancement in averaged second-order scatter-
ing. Note the sharpening of the peak with increasing mean height.
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when ka < 0.1, Es < 2.4, and kh > 1. If these conditions are
satisfied, the interaction dyadic is practically the same as the
dyadic polarizability Q a. The only height dependence is
now in the exponential phase factors, and averaging over
height can be carried out analytically:

(1A 0
2 )h = l012 + 10212 + 10312 + 10412 + 2Rel(0 1*0 2 + 03*04)

X (exp(j2lih))h + (01*03 + 02 *04)(exp(-j2fSh))h

+ 01*04(exp[Ij2(fi + fl)h])h + 02*03 (expU2(fli - 0l)h])hl

(27)

and similarly for (IAl2) h. The averaged phase factors can
be evaluated from

(exp(j2f3h) )h = f dhph(h)exp(2h)

I I I I 1
12 14 16 18 20

1( 1 2/ho '-i
ly

(28)

Fig. 7. Reversal of linear polarization i
The horizontal lines indicate zero-polari
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I I I I I
2 4 6 8 10

0(0)

n averaged total scattering.
ization levels. which is the characteristic function of the gamma distribu-

tion. As seen from Eq. (28), statistical averaging cancels the
incoherent intensity components. The last term in Eq. (27)
and the corresponding term in (IAI2)h cause the backward
enhancement and the polarization reversal. The factor =
fi- f vanishes at the exact backward direction, causing
coherent backscatter. However, it differs from zero for 0i s'-
z7, so that the weight of the corresponding terms rapidly
decreases. The reversal of linear polarization arises from

10 the different peak widths in the azimuthal and polar direc-
tions.

Figures 5-8 show the effects of backscattering enhance-
ment and reversal of linear polarization in total and second-

30 order scattering. The second order consists of terms includ-
ing only 02, 03, 42, or 3. Like two dipole scatterers,2 first-
order scattering decreases the magnitude of negative
polarization. However, in the present case, negative polar-
ization and backward enhancement show up also in total
scattering, which did not happen for two discrete dipole
scatterers. Still, it is worth emphasizing that the specular
reflection component has been excluded. Negative polar-
ization branch grows wider with increasing standard devi-
ation of slope. For p = 0.5, shadowing and boundary phe-
nomena (see Figs. 2-4) play a negligible role.

Fig. 8. Reversal of linear polarization in averaged second-order
scattering. Note the widening of the negative branch with decreas-
ing mean height.

As mentioned above, the integration over qbi can be replaced
by an integration over 0. It is obvious that shadowing plays
a major role in the case of high standard deviation p. In
order to avoid that difficulty, we use rather small standard
deviations p < 0.5 in the following orientation averaging.

As for height averaging, using the Green's function de-
rived in Ref. 1 (see Figs. 2-5) and the definition for scalar
polarizability in Eq. (4), we have

2 3 2 Kt (26)W2 toaK, = 4irk'a3 <10 «1 (26)
gE8 + 2 k

5. CONCLUSIONS

An analytical solution has been presented for electromag-
netic scattering by a small scatterer with scalar polarizabili-
ty located close to an interface. The exact-image theory
formulation of the problem has proved to be an efficient and
practical way of treating scatterers in the neighborhood of a
dielectric half-space.

Backscattering enhancement and reversal of linear polar-
ization have been quantitatively verified in averaged total
scattering. The widths of the calculated branches of nega-
tive polarization are smaller than the ones observed for so-
lar-system objects. Qualitatively, this suggests that the pre-
dominating contribution to opposition phenomena comes
from interactions between small-scale inhomogeneities

I 

I
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rather than interactions between small-scale inhomogenei-
ties and smooth-surface elements.

The present results offer a valid basis for the modeling of
light scattering from atmosphereless solar-system bodies,
planetary rings, and interplanetary and cometary dust.
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