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Scattering by a small object close to an interface.
I. Exact-image theory formulation
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Exact-image theory is applied to the problem of electromagnetic wave scattering from a small dielectric object above
an interface separating two isotropic and homogeneous media. The object is assumed to be electrically small and
far enough from the interface so that its internal field can be assumed to be uniform. The approach is applicable to

any scatter that can be represented by an electric dipole.

INTRODUCTION

The solution for electromagnetic scattering by dielectric ob-
jectsisolated in space and illuminated by a plane wave is well
established. For example, the Mie solution has provided

" the basis for understanding the light-scattering properties of .
isolated spherical dielectric objects.!®> More recently, nu-
merical techniques have been developed for obtaining scat-
tering results for nonspherical objects, such as spheroids*
and more general shapes.56

Almost all the available scattering solutions require that
the scattering object be isolated in space; i.e., no other ob-
jects or surfaces should be in close proximity. Itisbecoming
increasingly important that one be able to calculate the
scattering by objects on or near a dielectric surface.

Two similar solutions for the scattering by a dielectric
sphere on or near a dielectric surface have recently been
published.”® However, a general solution suitable for prob-
lems involving nonspherical objects is not yet available.

The image method is an attractive approach to solving
scattering problems involving objects over an interface sepa-
rating two half-spaces, because it permits half-space solu-
tions based on existing solutions for isolated objects. How-
ever, the simple procedure of replacing the material half-’
space by a suitable image of the object, while possible for
objects over a perfectly conducting half-space, is not possi-
ble for the dielectric half-space problem. A more general
approach, the Sommerfeld solution,? can be applied to the
dielectric half-space problem. However, this solution de-
pends on the evaluation of the Sommerfeld integrals,'® a
task that is possible only for a limited class of problems.

The exact-image theory (EIT) was introduced in 198411-13
as a conceptually and computationally simple means of ac-
counting for an interface of two media in electromagnetic
problems, otherwise treated with Sommerfeld integrals.!¢
EIT has since been applied, for example, to computing im-
pedances of antennas above the ground!® and extended to
more complicated problems such as multilayered media.l®
For the most recent account of the theory, see Ref. 17.

EIT can potentially be applied to a broad class of prob-
lems involving scattering objects above a dielectric half-
space. In the present paper EIT is used for deriving a
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generalized Green function that takes into account the pres-
ence of a nearby interface.

In a companion paper!8 the present theory will be applied
to the analysis of scattering from spherical objects above an
interface with discussion on polarization effects.

THEORY

Consider a planar interface z = 0 separating two media: free
space, where z > 0 with the parameters ¢, o, and ground,
with the parameters eeg, uuo. The problem could easily be
generalized for any combination of parameters on either side

of the interface.

The incident field is a plane wave in air with the electric
field

Ei(r) = E, exp(—jk - 1), (1)

where the harmonic time dependence exp(jwt) is assumed.
The effect of the ground is to produce the reflected field

E'(r) = R - Eg exp(—jk,r). ©)

The subindex ¢ denotes the mirror-image operation through
the mirror dyadic

€ =J—2uu, ®3)

which changes the sign of the z component of the vector in
question:

k,=€-k=k—2u,(u,-k). 4)
The reflection dyadic 7 can be written in terms of its TE
and TM parts for the plane wave as follows:

uu, ;<< kk RTE kk § (uzuz § kk)] (5)

(u, X k)? k*(u, X k)?

R=0- [RTE
where the double cross product u.u, ¥kk = (u, X k)(u, X k).

RTE and R™ are the (scalar) Fresnel coefficients for an
incident wave with the electric field polarized either perpen-
dicular (TE) or parallel (TM) to the plane of incidence (the
plane containing k and u,) as shown in Fig. 1:
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Fig. 1. Geometry of the problem: a scatterer above an interface
separating two half-spaces of different media with the definition of
TE and TM field vectors.

T = ’:;—Jrg—i, ®)
ma- 22t
where
8= K-, xWT,
By = [enk® = (u, X W], ®
1 = ey, ©)

with w being the angular frequency. R defines the reflected
electric field for any combination of TE or TM incident
waves.

The scatterer is a dielectric object located at position r =
u.h. It is assumed to be sufficiently small that its scattered
field can be approximated by the field arising from a dipole
with the dipole moment

P=a- Et) ’ (10)

where «, a dyadic, is the tensor dielectric polarizability.
Explicit expressions for « are available for isotropic and
anisotropic spheres and ellipsoids.? Ef, the total field at the
location of the scattering object, is the sum of the electric
field of the original plane wave, its reflection from the inter-
face, and the net reflected field due to the polarized dielec-
tric object itself. The last component is unknown, and the
EIT can be applied to its computation.

The goal is to solve for the unknown dipole moment vector
p. The corresponding current density vector can be written
as

J(r) = jopd(r — wh). 1)

The image current due to the interface can be written from
the EITY as

Jir, 9 = [ffM(w + %g(ouzuz % W] - J(x), (12)

Vol. 8, No. 3/March 1991/J. Opt. Soc. Am. A 473

where both fTM(¢) and g({) are functions of ¢ and u, the
electrical parameters of the half-space!®20;

FE) = jBfu p) + 2L 5,(0), (13)
n+1l
F™(8) = —jBf(e, p) — <=+ 5,(p), ' (14)
e+1
wl=1 . -1,
g =— iBf(, p) — <=L jBf(e, p), (15)
ulu — €) ele, p)

___ 8 - 'y—l"Jzn(P)
fonp == S (L) e, a9

n=1
with
p=JB{ an
and B = k(ue — 1)/2, Here, §,(p) is a delta function with the
singularity point at { = 0, such that
6,(0) =0, (18)

and U.(p) is the corresponding unit step function. In the
Bessel functions J3,(p), the complex variable { is chosen so
that the argument p = jB{ is real, thereby ensuring that the
Bessel functions converge.

The mirror image of the current dipole is

J,(r)=@-J€-r) = (J —2u,u,) - jupd(r + w,h). (19)

The total electric field at the object, needed for the deter-
mination of the dipole moment, can be written as

Ei(r) = E(r) + E'(r) + E¥(x), (20)
where the field Es from the image of the dipole is

ES(x) = —joong JV L 9(r — v +u, - I, pdvids, (1)

where V denotes the integration volume of the mirror image
and C is a line in the complex ¢ plane to be defined later,
ranging from the origin to infinity in such a way that the
image function integrals converge. § denotes the free-space
Green dyadic

o(r) = (7 + % VV)G(r), (29)

exp[—jkD(r)]
4zD(@x) ’

Since the image source point does not coincide with the field
point at the object, the order of differentiation and integra-
tion can be interchanged and the integration over the ¢
variable can be carried out. Thus it is possible to define two
new Green functions

K™(r) = L G(r + 0™, (24)

G@) = D(x)=yr-r. (23)

L) = L G(r + u,02(9ds (25)

and a corresponding Green dyadic
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H(r) = (y + % vv)l(’M(r) +os X VOLE. (26

The field from the image source can now be expressed more
concisely as

E(r) = —jouq fv H(r — ) - I @)V, @7)

Inserting the proper mirror-image current function from Eq.
(19), we have

E‘(r) = o’ugH(r +u,h) - (7 — 2u,u,) - p, (28)

which contains the unknown dipole moment vector p, for
which a final equation can now be formed. In fact, combin-
ing Eqgs. (10), (20), and (28) for the point r = u,h, we arrive at
an algebraic equation for the moment vector:

p = a- E{(u,h) = a- [E(u,h) + E'(0,h)]

+ wz/.toa < HQ@uh)-C-p. (29)
This has the solution
= [J = wPupa - H(2u,h) - €)' - - [Ei(u,h) + E(u,h)].

(30)
In numerical integrations, it is important to choose the
- integration path in the complex ¢{ plane in such a way that
the Bessel functions of the image currents converge as men-
tioned above; i.e., their argument p = jB{ has to be real.

This entails that { has to proceed to infinity along a path
such that

arglf} = —n/2 — arglyep — 1}, (31)

For the integrations in the complex plane, see Ref. 20.

EVALUATION OF THE GREEN FUNCTION

In evaluating the total dipole moment of the scatterer [Eq.
(30)], the essential step is to enumerate the Green function
F(r) in Eq. (26) for r = 2u,h.

Making use of the fact that this dyadic is not dependent on
the transverse directions and will be evaluated at the z axis
and the fact that, with the origin excluded, the double gradi-
ent of a function with a Green-function-type r dependence
[see Egs. (23)] is

Vi) = [—kzu,.u, — (J - 8u,u,) L +2j kr]/(r), (32)
r

we can write the # dyadic in the form

H(zw,) = .7t(KTM(z) + fc GG + ;){m

™M
T Sb)}[fT © +g(md;)

1
2u,u, ( jc Gz + O{[ik(z T Or

J — u,u, denotes the two-dimensional unit dyad-

}FM(nd;)

(33)

Jk(z + )

where J; =
ic.
For the nonmagnetic-ground case (u = 1), Eq. (33) be-
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comes, after transformation to a real integration parameter

b,
H(zu,) = 7:(— z [1 + 1+—ﬂw:|
(k)
(26 +1)

8¢

62—'

[1+jkz—jp/B)| < (e - 1)n J2(D)
ik(z — jp/B))® } ZO" +1) p ¥
_ -1 1+ jkz 86
1+ jk(z — jp/B) ( ) Jo,(D) Il 2
lik(z - jp/B))? ,;) e+1 P 34

The components of this Green dyadic are K;(z) and K,(z),
and, for the enumeration of the total dipole moment, the
dyadic must be evaluated for the argument z = 2h:

H(zu,) = I,K,(2) + w,u,K,(2). (35)

In Figs. 2-5 the Green function components are calculated
for the relative permittivity values ¢ = 1. 7 and € = 2.4 of the
ground as functions of kh.

+

] Gz — Jp/B){l + 2t D

j G(z - jp/B)

ASYMPTOTIC TESTS

Consider three special cases for the scattering problem
above a nonmagnetic ground (u = 1). First, let h — =.
Here, the # dyadic in Eq. (33) can be approximated by its

W e = 1.7
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Fig. 2. Real parts of the Green dyadic #(zu,) components of Eq.
(34) as functions of the normalized scatterer height kh for ground
parameters 4 = 1 and ¢ = 1.7. Note that for large kh values K,
decays faster than K. Also, the asymptotic dependence of the
Green dyadic is according to Eq. (36).
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Fig. 3. Same as Fig. 2 for the imaginary part.
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Fig. 4. Same as Fig. 2 for ¢ =2.4.

first term because the other terms from the { integration
yield terms of the order of h~2 and h~3:

exp(—jk2h) . M
Splfh) [c exp(—jkO™(ds

= G(2h)R™(R), (36)

and both integrations over the image functions in the trans-
versal and normal components of the dyadic are of the order
of h=2. Therefore, to the leading order, only the transversal
component [the term in expresswn (36)] remains.

The last step in expression (36) is due to the definition of

K™(2hu,) ~
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the image function fT; see, for example, Ref. 13. The whole
¥ dyadic is therefore

#(2hu,) =~ G(2h)R™(k)J,, (37)

which is what one would anticipate. Note that for this case
of interaction through normally incident wave components,
the reflection coeficient is
E™() = RTE(r) = L= (38)
1+ e
For example, the total TE dipole moment can be written
from Eq. (80). Because G(2h) is small and because the
mirror-image operator @ does not affect a transverse dyadic,
the dipole moment in the case of a scalar scatterer polariz-
ability (a = a.7) is
p = ¢l — w’ugaK™(2hu,)] "(E! + E")
=~ o1 + w?ueR™G(2h)](E + E")
= a(E' + E") + 0*ugaR™G(2h)a(E + E"), (39)

which can be interpreted as the sum of the dipole moment in
free space and that due to the first-order interaction [the
image dipole being a(E + EN)R™M],

The case € = 1, in which the interface becomes transpar-
ent, simplifies the image functions of Eqs. (14) and (15):

vl

e—>l (E

() = liﬂ[—jBf(e, JBY) -

) §=0, (40)

) = lim[— 1L opge, ch)] —tim =0, @)
e—1 € 1 €+ 1

Interpreted in words, the integration over { shrinks to a
point because B = 0, which multiplies { in the argument of
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Fig.5. Same as Fig. 3 fore = 2.4,
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the Bessel function, and, at that very point, the image func-
tions are 0, giving rise to no scattered field over the whole
integration path.

The case € = « also forces B to infinity, and the integral in
Krm(t) gives

M _ exp(=jk2h) [ [ exp(=jk{) | am
K™ghw,) == o jcl:1+(§‘/2h):|fr (Odf. (42

In performing this integral, the transformation § = —jp/B
has to be made. The bracketed term in the integrand tends
tol:

exp(—jk) am _ [ ™ Mgy -
jcl+(§‘/2h)fr (©d¢ LfT (©)ds = R™(0) = -1,

(43)

Hence this limit case is correct because only the mirror
image is left from the Green function corresponding to the
case of ideally conducting plane.

One could also wonder what happens as the height k de-
creases to 0. A superficial look at Eq. (30) and Figs. 2-5
might give the impression that there is no scattered field as
the scatterer is located at the ground, because for h = 0 the
Green dyadic # goes to infinity, forcing the total dipole
moment to 0. However, a spherical scatterer cannot be
pushed closer to the boundary than its radius, and, if one
wishes to decrease h even from that value, the radius has to
be decreased, and then also the polarizability (being propor-
tional to the volume of the scatterer) decreases toward 0,
keeping the product a - # finite.

CONCLUSIONS

The result of the theory presented in this paper culminates
in the Green dyadic [Eq. (34)], which, with Eq. (30) permits
one to determine the fields scattered by a polarizable parti-
cle in the presence of an interface. The Green dyadicisnota
multiple of the unit dyadic, meaning that through Eq. (30)
scalar polarizability of a scatterer is transformed to dyadic

polarizability that takes the boundary into account. From .

this follows, for example, that a sphere close to an interface is
equivalent to a uniaxial ellipsoid in free space.

The result is an approximation with the assumption that
the scatterer with the nearby ground can be replaced by an
electric dipole. This approximation is valid for small scat-
terers for which the internal field is close to constant. Itis
clear that as the scatterer is not too close to the interface, the
approximation holds. With decreasing kh, the assumption
starts to fail, and at some point it cannot be used at all. This
occurs when the higher multipoles are strong compared with
the electric dipole. To take these multipoles into account,
we can make the first improvement by taking two parallel
vector equations, one for the electric and the other for the
magnetic dipole, and solving them. A more general ap-
proach would be to derive an integral equation for the polar-
ization current and solve that. However, the range of valid-
ity (in terms of kh) of the electric-dipole approximation
presented in this paper cannot be determined until a more
accurate method of solving the problem is discovered. The
corresponding example of thin horizontal eylindrical dipoles
above ground!® did not fail until reaching heights of the
order of the diameter of the dipole.

In a companion paper!8 this theory is applied to the study
of the scattering properties of spherical objects in the pres-
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ence of the ground, with special emphasis on the effect of
backscattering enhancement.
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