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Abstract
We present a modification of the discrete dipole

approximation (DDA) to simulate light scattering by
particles of arbitrary shape and composition located above
the plane homogeneous substrate. The modification
retains the 3D-FFT acceleration scheme of the free-space
DDA and hence its computational complexity. The
modification is implemented in the recent version of the
open-source ADDA code, available for anyone to use. The
test simulations, compared with the T-matrix method,
confirm the correctness of the implementation.

1 Introduction
The DDA is a general method to simulate light

scattering by particles of arbitrary shape and composition
[1]. It is mostly applied to finite particles in a
homogeneous medium (e.g. vacuum). However, there are
a multitude of applications, where a particle is located near
a plane surface. The extension of the DDA to such
problems is possible [2,3] but has two problems. First one
is the calculation of interaction of two dipoles near the
substrate, related to so-called Sommerfeld integrals [4].
Efficient evaluation of such integrals is still a field of active
research, but we do not discuss it here. Instead we use the
reliable albeit probably not the fastest routines [4], which
were also used in previous DDA implementations.

Second problem is the lack of the translational
symmetry of the dipole-dipole interaction (Green’s tensor),
which breaks standard 3D-FFT acceleration of the matrix–
vector products used in the DDA [5]. As a result, existing
DDA implementation either do not use FFT at all [3] or use
only 2D-FFT due to the remaining translational symmetry
parallel to the surface [2]. The computational complexity of
the method is then O(NiterN2) or O(NiterN4/3logN)
respectively, where N is the number of dipoles used to
discretize a particle and Niter is the number of iterations
required for the convergence of the iterative solver
(typically, Niter << N). A 3D-FFT acceleration for such cases,
with complexity O(NiterNlogN), was presented for a similar
volume-integral equation method [6], but has never been
implemented in a DDA code.

In this extended abstract we present a way to retain 3D-
FFT acceleration for the DDA applied to particles above
the substrate, and describe the details of its

implementation in the open-source ADDA code [7]. We
also performed test simulations and compare the results
with that of the T-matrix method.

2 DDA formulation
In principle, generalizing the DDA to particles on

surface boils down to replacing the free-space Green’s
tensor G by RG  , where R is the “reflected” part. The
main DDA equations [1] then become:
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where iα and Pi is the polarizability and total polarization
of the dipole i, inc

iE is the incident field at dipole position ri.
To determine the unknown vector P, system of linear
equations (1) is solved by an iterative solver. Then the
main computational bottleneck is the evaluation of matrix–
vector product, the main part of which is the sum in
Eq. (1).

The first part of the sum is the same as in the free-space
DDA [1] and is evaluated using the translational
symmetry
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where we assumed that dipoles are located on a uniform
cubical grid, and i, j are vector indices. )( diGGG i0i 
for |i|  n ( 0G0  ) and is assumed periodic with period
2n along axis μ (d is the dipole spacing, nμ is the size of the
dipole grid). The sum is transformed into a discrete
convolution
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where P′ is the periodic (same as G ) zero-padded
extension of P:
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Finally, the convolution is evaluated as:
 ,)()(][ 1 PGPG   FFFij

(5)

where F and F−1 are the direct and inverse discrete Fourier
transforms applied to each component of the vector or
tensor independently.

We limit ourselves to particle being fully above the
semi-infinite substrate, which surface is assumed to be the
xy-plane. Then the reflected part is a function of the
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distance between evaluation point and the image of
source:

),,(),,(),( Zzzyyxx ρRRrrR  (6)
where ρ is the distance along the surface. The simplest
approximation is that of a single image dipole:
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where zzz ee ˆˆI is a projector on the z-axis and εs is the
complex electric permittivity of the substrate. The rigorous
expression for the reflection term is
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where H
I , H

I , V
I , and V

zI are the Sommerfeld integrals [4]
that depend on ρ, Z, and εs.

Similar to Eq. (2) we define the auxiliary vector
)2,,( 1}0,0,0{ hdididi zyx  RRR ii

(9)

for |ix,y|  nx,y, 0 ≤ iz < 2nz−1, 0iR for iz = 2nz−1, and is
further extended periodically (same as G ). h1 is a distance
from the lowest dipole layer (their centres) to the surface.
The sum over z-axis is now a discrete correlation, but it can
be transformed to a convolution by inverting the order of
z-components of P:
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Conveniently, P~ satisfies
),()~( 1 PP  
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where Fμ is the 1D discrete Fourier transform along the
axis μ. Combining Eqs. (5), (10), and (12) we finally obtain
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Since )(GF and )(RF need to be calculated only once,
the computational time for matrix–vector product is only
slightly (by 1

zF and a few O(N) operations) larger than
that for the free-space DDA. In particular, it has the same
complexity order O(NlogN).

Certain changes in formulae to calculate the scattered
fields (based on the determined P) are also required, but
they are straightforward and were published previously
[2,3,8]. Less clear is the definition of the scattering
matrices, e.g. the Mueller one [9], when either incident or
scattered field is in the substrate. To the best of our
knowledge, this issue is not covered in the literature. We
propose to generalize the standard definition of the
Mueller matrix as
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where ksca is the is the wave vector for the scattering
direction, and we consider scattering into substrate only
for non-absorbing one, i.e. ksca is always real. The
definitions of the Stokes vector (both incident and
scattered) through the electric fields can be found in
textbooks [9,10]. Important is that this definition contains
the refractive index of the medium m as factor Re(m) [10].

3 Software implementation
The formulae described in Section 2 were implemented

in the open-source code ADDA. In particular, these new
features are included in the recently released version 1.3b4,
available online [11]. Moreover, they are fully integrated
with other parts of ADDA, including employed
parallelization technologies. In particular, MPI
parallelization allows one to solve huge problems (up to 1
billion dipoles [7]) using a large computer cluster. OpenCL
mode allows one to significantly accelerate the code for
moderately-sized problems using a modern video card
(GPU) [12]. And a special (non-FFT) mode is available for
very porous particles [13]. Details of the implementation
are described in the manual [14].

4 Test simulations
We consider a single test case – an Ag sphere (radius

R = 50 nm, refractive index 0.25 + 3.14i [15]) placed on glass
substrate (ms = 1.5), illuminated by plane wave from below
propagating at 60° relative to the surface normal
(evanescent illumination). Wavelength is 488 nm, and
ADDA v.1.3b4 was used with two levels of discretization
(64 and 128 dipoles per sphere diameter).

Figure 1 shows perpendicular and parallel scattering
intensities (S11 − S12 and S11 + S12 respectively) in the main
scattering plane (0° correspond to upward vertical
direction) in comparison with the reference T-matrix
results. The latter correspond to Fig. 4.10 of [15], but were
recalculated by Vladimir Schmidt using NFM-DS 1.1 [16].
Moreover, the raw results of the NFM-DS, differential
scattering efficiencies for unity amplitude of the incident
electric field, were multiplied by a factor
π(kR)2/ms = 0.86800, where k is the free-space wave vector.

The DDA accuracy is good – relative errors of angle-
resolved quantities are within a few percent. Moreover, the
errors for nx = 128 are almost exactly twice smaller than
that for nx = 64, which indicates a smooth convergence. The
latter can also be used to increase the accuracy using the
extrapolation technique [17]. We had to use relatively fine
discretization to obtain such accuracy, but that is not
surprising for metallic nanoparticles [18]. The main
practical problem, however, is that it is hard to predict the
accuracy of the DDA for such problems a priori. No
detailed accuracy studies exist for particles on surface,
while transferability of free-space benchmarks is at least
questionable.
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Figure 1 (a) Light-scattering intensity for Ag sphere on a glass
substrate under evanescent illumination (see text for details); (b)
relative errors of DDA results in comparison with the T-matrix
method.

5 Conclusions
We presented a reliable, fast, open-source, and easy-to-

use tool to simulate interaction of electromagnetic fields
with particles of arbitrary shape and composition located
on or near a semi-infinite plane substrate. In particular,
only the particle itself needs to be discretized and the
simulation time is not principally larger than that when no
substrate is present. We believe this tool may find many
applications in different fields, ranging, for example, from
nanostructures on substrate to surface roughness on large
dust particles.
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