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ABSTRACT: The discrete dipole approximation (DDA) is a
widely used method for simulation of various optical properties of
nanoparticles of arbitrary shape and composition. We present a
modification of the DDA to rigorously treat particles located
above the plane homogeneous substrate. The modification is
based on discretization of only the particle itself and retains the
three-dimensional fast Fourier transform acceleration scheme of
the free-space DDA; hence, it has the same order of computa-
tional complexity. It is implemented in the recent version of the
open-source ADDA code, available for anyone to use. The
method shows extremely good accuracy (better than 0.4%) in test simulations of far-field scattering for spheres and spheroids
above transparent and metallic substrates, using the T-matrix method as a reference. An example of near-field calculation is
presented for a silver sphere on a glass substrate.

■ INTRODUCTION

Theoretical simulations of optical properties of nanoparticles
have become an indispensable part of nanoscience. Among
various existing methods1,2 the discrete dipole approximation
(DDA) is a frequency-domain volume-discretization method to
simulate the interaction of electromagnetic waves with particles
of arbitrary shape and composition.3−5 Although the original
applications of the DDA were related to cosmic dust and
atmospheric aerosols,3,4 the last 2 decades witnessed its wide
application to nanoparticles, mostly plasmonic ones, starting
from the works of Schatz and co-workers.6,7 Those applications
presented certain numerical challenges,8,9 but also led to
extension of the DDA to new physical phenomena. The latter
include surface-enhanced Raman scattering (SERS),6 metal-
enhanced fluorescence,10,11 electron-energy-loss spectrosco-
py,12−14 cathodoluminescence,15,16 near-field radiative trans-
fer,17,18 nonlinear absorption,19 and scattering of short
pulses.20,21 The main advantage of the DDA is its conceptual
simplicity combined with relatively good computational
efficiency. The latter is determined by the solution of the
large system of linear equations, which is performed by the
conjugate-gradient iterative solver with matrix-vector product
computed using the fast Fourier transform (FFT) on a regular
grid.22 Although historically the DDA contains “approximation”
in its name, it is a direct consequence of Maxwell’s equations5

and, hence, is a “numerically exact” method;23 that is, it reaches
any specified accuracy for any problem given sufficient
computational resources. Moreover, wide use of the DDA is

facil itated by a number of available open-source
codes.4,13,14,24,25

While the DDA is mostly applied to finite particles in a
homogeneous medium, there are a multitude of applications,
where a particle is located near a plane surface (substrate). The
rigorous extension of the DDA (or similar methods) to such
problems is possible10,17,25−30 but introduces two additional
issues. The first one is the technical difficulty of calculation of
interaction of two dipoles near the substrate, related to the so-
called Sommerfeld integrals.31 Efficient evaluation of such
integrals is still a field of active research.32,33 However, there
exist reliable routines,31 which were used in previous DDA
implementations.25−27 The second issue is the lack of the
translational symmetry of the dipole−dipole interaction
(Green’s tensor), which breaks the above-mentioned three-
dimensional (3D)-FFT acceleration. As a result, existing DDA
implementations either do not use FFT at all25 or use only two-
dimensional (2D) FFT due to the remaining translational
symmetry parallel to the surface.27 The computational
complexity of the method is then O(NiterN

2) or O(NiterN
4/3

log N), respectively, where N is the number of dipoles (volume
elements) in particle discretization and Niter is the number of
iterations required for the convergence of the iterative solver
(typically, Niter ≪ N). A 3D-FFT acceleration for such cases
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with complexity O(NiterN log N), same as for the free-space
DDA, was mentioned for similar volume-integral equation
methods,29,34 but has never been implemented in a DDA code.
While this difference in computational time may seem purely
technical, it quickly becomes prohibitive for large N. For
instance, when N > 106, as typically required for satisfactory
accuracy in plasmonic nanoparticles,8 the difference between
the 2D- and 3D-FFT schemes is more than 100 times.
Those issues explain why the DDA has been used rarely for

particles on substrate and mostly in combination with different
approximations. First to mention is the so-called image
approximation: that is, the exact surface-induced part of
Green’s tensor is approximated by interaction with an image
dipole (see eq 7 below).6,13,35 While this approximation is exact
in the static case (all characteristic geometric lengths are much
smaller than the wavelength) or when the substrate is a perfect
reflector, it is almost impossible to quantify the error for a
particular nanoparticle a priori.26 Moreover, no FFT accel-
eration has been reported in combination with this approach. A
second, even less accurate approximation (never exact), is that
of replacing the substrate by a homogeneous medium with an
effective refractive index.36−38 Finally, the third approximation
is based on brute-force discretization of a block of
substrate.7,39−42 It allows one to easily consider multilayered
or inhomogeneous substrate40 and to use standard free-space
DDA codes, but requires much longer simulation time and
additional consideration of hard-to-control convergence with
respect to the block size.
In this paper we present a way to retain 3D-FFT acceleration

in the DDA with rigorous consideration of particle-substrate
configuration (discretizing only the particle), and describe the
details of its efficient implementation in the open-source
ADDA code,24 which supports parallelization on modern
hardware. We performed test simulations for spheres and
spheroids and verify the results of far-field scattering against
that of the T-matrix method. An example of near-field
computations is also presented. A preliminary version of
these results was presented previously as a conference talk.43

■ THEORY

DDA Basics. The DDA is based on the discretization of the
volume-integral electric-field equation, where each of the
volume elements can be considered a dipole.5 Generalizing
the DDA to particles near a surface boils down to replacing the
free-space Green’s tensor G̅ by G̅ + R̅, where R̅ is the
“reflected” (surface-induced) part. Here, we limit ourselves to
nonmagnetic isotropic materials and particles completely above
the substrate, but discuss possible generalizations below. The
main DDA equations5 then become (see Supporting
Information for details)

∑α̅ − ̅ + ̅ =− P G R P E( )i i
j

ij ij j i
1 inc

(1)

where α̅i and Pi are the polarizability and total polarization of
the dipole i, respectively, and Ei

inc is the incident field at dipole
position ri. The latter field is in the presence of substrate, that
is, it is either a sum of incoming (if no surface is present, e.g. a
plane wave) and reflected or a transmitted one, depending on
the direction of propagation of the incoming field (Supporting
Information, eqs S14−S16). Moreover, we postulate G̅ii ≡ 0̅,
that is, the proper treatment of the corresponding singularity is
traditionally included in the expression for α̅i (see Supporting

Information, eq S12). To determine the unknown vector P,
system of linear eq 1 is solved by an iterative solver. Then the
main computational bottleneck is evaluation of the matrix−
vector products (the sum in eq 1). The key for handling this
bottleneck is transforming the sum into a convolution that is
further evaluated with the FFT. In the following we describe
this procedure separately for the tensors G̅ and R̅.

Evaluation of the Direct-Interaction Part. The first part
of the sum in eq 1 is the same as that in the free-space DDA.5

We briefly repeat its evaluation here as an introduction to the
subsequent evaluation of the reflected part. The main
ingredient is the following translational symmetry,

̅ = ̅ = ̅ − ≡ ̅ ′−G G r r G r r G( , ) ( )ij i j i j i j (2)

where we assumed that dipoles are located on a uniform cubical
grid and i, j are vector indices. G̅i′ ≡ G̅i0 = G̅(id) for |iμ| ≤ Nμ

(G̅0′ ≡ 0 ̅) and G̅i′ is assumed periodic with period 2Nμ along the
axis μ (d is the dipole spacing and Nμ is the size of the dipole
grid). Then the sum is transformed into a discrete convolution,

∑ ∑ ∑̅ = ̅′ = ̅ ′ ′− −
= = =

G P G P G P
j

N

ij j

N N N N N N

j
i j j

j
i j j

1 (1,1,1)

( , , )

(1,1,1)

(2 ,2 ,2 )x y z x y z

(3)

where P′ is the periodic (same as G̅′) zero-padded extension of
P:

μ
′ =

∀ ≤ ≤μ μ

⎪

⎪⎧⎨
⎩

j N
P

P

0

, : 1 ;

, otherwise.
j

j

(4)

Finally, the convolution is evaluated using the Fourier calculus
as

̅ = ̅ ′ ′−F F FG P G P[ ] ( ( ) ( ))ij
1

(5)

where F and F−1 are the direct and inverse discrete Fourier
transforms applied to each component of the vector or tensor,
independently, and [G̅ij] denotes the matrix built up by varying
indices i and j.

Evaluation of the Substrate-Induced Interaction. We
define the surface to be aligned with the horizontal plane (z =
−hs) at distance hs below the origin; the latter is traditionally
placed in the particle center. Then the reflected part is a
function of the distance between the evaluation point and the
image of source:

ρ̅ ′ = ̅ − ′ − ′ + ′ + = ̅x x y y z z h ZR r r R R( , ) ( , , 2 ) ( , )s
(6)

where ρ and Z are the components of the distance parallel and
perpendicular to the surface, respectively. The simplest
approximation to R̅ is that of a single image dipole,

ρ ρ
ε
ε

̅ =
−
+

̅ ̅ − ̅Z ZR G I I( , )
1
1

( , )( 2 )zim
s

s (7)

where Iz̅ = eẑeẑ is a projector on the z-axis, ez is the unit vector
along the z-axis, and εs is the complex electric permittivity of
the substrate. Here and further on, we use carets above two
vectors (not necessarily unit ones) to denote a dyadic
constructed from them. The accuracy of the image-dipole
approximation improves with increasing Z and/or |εs|. By
contrast, the rigorous expression for the reflected term is
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ρ

ρ

ρρ
ρ

ρ ρ
ρ

̅ = ̂ ̂ + − ̅ − ̅ +
̂ ̂ − ̂ ̂

+ ̅ + ̅

ρ φ φ ρZ I I I
e e

I

I Z

R I I

I R

( , ) ( ) ( )

( , )

z
z z

z z

2
H H H V

V
im (8)

where Iρ
H, Iφ

H, Iρ
V, and Iz

V are the Sommerfeld integrals31 that
depend on ρ, Z, and εs.
To exploit the specific symmetry over the z-axis in eq 6, we

define the auxiliary vector [cf. eq 2]

̅ ′ = ̅ = ̅ +i d i d i d hR R R( , , 2 )x y zi i{0,0,0} 1 (9)

for |ix,y| ≤ Nx,y, 0 ≤ iz < 2Nz − 1. Additionally, R̅i′ ≡ 0 for iz =
2Nz − 1 and is further extended periodically (same as G̅′). h1 is
the distance from the lowest dipole layer (dipole centers) to the
surface. The sum over the z-axis is now a discrete correlation,
which can be transformed into a convolution by inverting the
order of z-components of P,

∑ ∑̅ = ̅ ′ ̃−
= =

R P R P
j

N

ij j

N N N

j
i j j

1 (1,1,1)

(2 ,2 ,2 )x y z

(10)

where

̃ =

≤ ≤ =

≤ ≤

< ≤
+ −

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

j N j

j N

N j N
P

P

P

0

, 1 and 1;

, 1

and 2 ;

, otherwise.

j j x y x y z

j j N j x y x y

z z z

j

{ , ,1} , ,

{ , ,2 2 } , ,

x y

x y z z

(11)

Conveniently, P̃ satisfies

̃ = ′−F F F FP P( ) ( )z y x
1

(12)

where Fμ is the 1D discrete Fourier transform along the axis μ.
Combining eqs 5, 10, and 12, we finally obtain the main result
of this paper:

̅ + ̅ = ̅ ′ + ̅ ′ ′− −F F F F F F FG R P G R P[ ] (( ( ) ( ) ) ( ))ij ij z z x y
1 1

(13)

Since F(G̅′) and F(R̅′) need to be calculated only once, the
computational time for matrix−vector product is only slightly
(by approximately 30% if Nx = Ny = Nz) larger than that for the
free-space DDA. In particular, it has the same complexity order
O(N log N).
Scattered Fields. Certain changes in the formulas to

calculate the scattered fields (based on the determined P) are
also required, but they are straightforward and are discussed in
the Supporting Information (eqs S20−S22). These fields are
commonly represented through the amplitude or Mueller
scattering matrices, which are independent of the distance to a
detector and describe all states of incident and scattered
polarizations.44 However, generalization of these concepts to
the cases when either incoming or scattered field is in the
substrate has not been discussed in the literature. Therefore, we
propose such a generalization and describe it in detail in the
Supporting Information (eqs S28−S29). In particular, if we
consider scattering into a substrate only for nonabsorbing one,
the Mueller matrix, relating the incoming (in) and scattered
(sca) Stokes vectors, is defined as

=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

I

Q

U

V

k r

S S S S

S S S S

S S S S

S S S S

I

Q

U

V

1

sca

sca

sca

sca

sca
2 2

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

in

in

in

in (14)

where ksca is the wave vector for the scattering direction (always
real), r is the distance to the detector, and we assume the
standard textbook definitions of the Stokes vector through the
electric fields,45 which contain the real part of the medium
refractive index.

■ SOFTWARE IMPLEMENTATION
The developed approach has been implemented in the open-
source code ADDA. In particular, these algorithms are included
in the version 1.3b4, available online.46 Moreover, they are fully
integrated with other parts of ADDA, including employed
parallelization technologies. In particular, MPI parallelization
allows solving huge problems (up to 1 billion dipoles24) using a
large computer cluster. OpenCL mode allows significant
acceleration for moderately sized problems using a modern
video card (GPU).47 These features also distinguish current
implementation from existing alternatives, described in the
Introduction. Details of the implementation are described in
the manual.48 Of special interest is the capability to calculate
the decay-rate enhancement for a point emitter near nano-
particles of arbitrary shape,11,49,50 which is relevant for rigorous
treatment of SERS and metal-enhanced fluorescence. Now such
simulations can be easily performed above the plane substrate.

■ RESULTS AND DISCUSSION
In the following we consider three test cases. The first one
corresponds to Figure 4.10 of ref 51a silver sphere (radius R
= 50 nm, refractive index 0.25 + 3.14i) placed on a glass
substrate (ms = 1.5), illuminated by a plane wave propagating
from below at 60° relative to the surface normal (evanescent
illumination, see inset in Figure 1a). The wavelength is 488 nm,
and ADDA v.1.3b4 was used with two levels of discretization
(64 and 128 dipoles per sphere diameter, which is equivalent to
Nx defined above). To further improve the accuracy, we
employed an empirical linear extrapolation (to zero dipole
size): f(extrap) = 2f(Nx = 128) − f(Nx = 64) for any computed
value f, for example, for the intensity scattered at a specific
angle. This approach is a simplified version of a previously
studied quadratic extrapolation;52 however, in this paper we
postulate it as it is and judge it purely by its results below.
Figure 1 shows perpendicular and parallel scattering intensities
(Iper = S11 − S12 and Ipar = S11 + S12, respectively) in the main
scattering plane in comparison with the reference T-matrix
results. The latter were calculated using NFM-DS 1.153 and
renormalized to the definition of eq 14.
Second test case is the same as the first one, but for the

above-substrate illumination (also 60° relative to the surface
normal)corresponding results are shown in Figure 2. For
both test cases the DDA accuracy is good and smoothly
decreases with refining discretization, which explains even
better accuracy of the extrapolation results. We had to use
relatively fine discretization to obtain such high accuracy, which
is not surprising for metallic nanoparticles.8 Still, the computa-
tional speed is perfectly suitable for large-scale applications,
thanks to the efficient 3D-FFT implementation. The DDA
simulation for Nx = 64 took only 5 min on a single core of a
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laptop processor (Intel Core i7-2630QM), while the
extrapolated results with relative accuracy better than 0.4%
were obtained within 1 h.
The third test case corresponds to Figure 4.7 of ref 51an

iron oblate spheroid (semiaxes 25, 25, and 50 nm, refractive
index 1.35 + 1.97i) placed on silicon substrate (ms = 4.37 +
0.08i), illuminated by a plane wave with wavelength of 488 nm
propagating from above at 45° relative to the surface normal
(see inset in Figure 3). In this case the reference T-matrix
results are obtained by digitizing Figure 4.7 of ref 51, which is
expected to have worse accuracy than those used in the first
two cases. Moreover, the absolute magnitude of those results is
unknown, so we scaled them to have the same maximum value
as the extrapolated DDA (for each curve). The comparison of
DDA results (Nx = 64 and extrapolated one) with this T-matrix
data is given in Figure 3. The agreement for perpendicular
scattering intensity is within 4% for values larger than 10−4,
which is perfect given the digitization in a logarithmic scale.
There is a certain disagreement for parallel scattering intensity
near its minimum, but it may well be due to uncertainty of the
original T-matrix result. In particular, the comparison of the
latter with the discrete sources method51 showed differences
comparable to that in Figure 3.
Finally, we provide an example of near-field calculation for

configuration of the first test case (see Figure 1a). For that we
considered a 300 × 100 × 200 nm box around the sphere
(Figure 4) and filled it (except the sphere) with virtual dipoles

with refractive index of 1.00001 (corresponding to almost
vacuum). The dipole size is the same as that for Nx = 64
discretization of the original sphere. Then the solution of the
DDA problem for the whole box automatically provides the
field inside it, which, in turn, is internal and near-field for the
original sphere. While this workaround is not as efficient as
specialized routines for the free-space DDA,54 it also benefits
from the 3D-FFT acceleration and has computational time of
the same order of magnitude (35 min on the same processor).
In particular, it is much faster than the direct evaluation of near
fields from the determined P independently for each probe

Figure 1. Perpendicular and parallel scattering intensities for a Ag
sphere on a glass substrate, illuminated by a plane wave from the
substrate in evanescent configuration. DDA simulations are compared
with the reference T-matrix results. (a) Direct assessment of Nx = 64
DDA results in a logarithmic scale (other DDA variants are not shown
for clarity). (b) Relative differences between the three DDA variants,
including the linearly extrapolated one, and the reference.

Figure 2. Same as Figure 1, but for the above-substrate illumination.

Figure 3. Perpendicular and parallel scattering intensities (in a
logarithmic scale) for a Fe spheroid on a Si substrate, illuminated by a
plane wave, computed with the DDA and the T-matrix method. The
latter data has been digitized from ref 51 and scaled.
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point, which requires computation of sums similar to the one in
eq 1 and has O(N2) complexity. Figure 4 shows the intensity of
these fields in the central cross section through the sphere. All
cross sections through the box are presented as an animation in
the Supporting Information. As expected, far from the sphere
the field follows an exponential decay of the evanescent wave
along the z-axis. The maximum field values occur near the
boundary of the sphere, although the values are not that large
due to the nonresonance wavelength.

■ CONCLUSIONS

We presented a reliable, fast, open-source, and easy-to-use tool
to simulate interaction of electromagnetic fields with particles
of arbitrary shape and composition located on or near a semi-
infinite plane substrate. In particular, only the particle itself
needs to be discretized and the simulation time is only slightly
larger than that when no substrate is present. Several simulation
examples prove the correctness of the implementation and
demonstrate high accuracy. However, a systematic accuracy
study, similar to those performed for the free-space DDA,8,55,56

is yet outstanding and an important topic for future research.
The tests were performed only for isotropic particles, but

anisotropic ones with diagonal refractive-index tensor can also
be handled by the existing code. However, anisotropic substrate
is much more complicated to handle since it breaks some of the
symmetry, and hence the FFT acceleration. It is also possible to
consider particles wholly inside the nonabsorbing substrate by
dividing all refractive indices (and the wavelength) by that of
the substrate. We believe this tool may find many applications
in nanoscience and other fields, for example, for simulation of
optical properties of biological particles absorbed on a substrate
and of large dust particles with surface roughness.
Further ideas for development of the approach presented

here includes particles inside an absorbing substrate, or near a
multilayered substrateboth require only the calculation of a
different tensor R̅(ρ, Z). Consideration of a particle intersecting
with the surface, or more generally, a multiparticle config-
uration placed in different media, would require a separate
consideration of interaction between different parts. Some of
them will have the same symmetry as in eq 6, others as in eq 2.
Therefore, the order of computational complexity, correspond-
ing to 3D-FFT, can be retained.
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