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1 Introduction to scattering theory

1.1 Extinction, scattering and absorption

Let us assume that medium surrounding the scattering particle is non-absorbing. The total
or extinction cross section is then the sum of the absorption and scattering cross sections:

O = 04+ 0, (1)
where
1
0'e = ——/dASe‘er,
I; Ja
1
Oy = —/dASsoer, (2)
I; J4

when A is a spherical envelope of radius r containing the scattering particle.
Let the original field be of e, -polarized form Ey = Fe,. In the radiation zone,

explik(r — 2)]
—ikr

e, X E, (3)

E. XE,.e X =0,

k

WL

H.,

where the vector scattering amplitude X is related to the amplitude scattering matrix as
follows:

X = (Sicos¢p+ Sysing)esy + (S2cos ¢+ Szsind)ey. (4)
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By making use of the asymptotic forms of the scattered field shown above and e_-polarized
original field, the so-called optical theorem can be derived: extinction depends only on scat-
tering in the exact forward direction,

47
Oc = ﬁRe[(X : ex)gzo]. (5)
In addition,
do
o5 = AﬁdeQ, (6)

where the differential scattering cross section is

do | X |?

Q k2 (7)
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Figure 3.6 Extinction by a collection of particles.
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The extinction, scattering, and absorption efficiencies are defined as the ratios of the
corresponding cross sections to the geometric cross section of the particle A; as projected in
the propagation direction of the original field:

qe - A_J_ ’
qS — A_L )
Oa
a — T . 8
q a, (8)

For an unpolarized original field, the cross sections are

g, = %(aél)+a£2)),
1
5 = o0 +0?), 0

where the indices 1 and 2 refer to two polarization states of the original field perpendicular
to one another.



"
@
N

G

1.

(a)

ERRR

54,0300 g DETECTOR

(b)

RRERRR
T

AIR SAMPLE AIR

Figure 2.3 Measurement of absorption: (a) in principle and (b) in practice.



2 Plane waves

The electromagnetic plane wave

E = Eoeik-w—iwt
H = Hoeik~$—iwt (10)

can, under certain conditions, fulfil Maxwell’s equations. The physical fields correspond to the
real parts of the complex-valued fields. The vectors Ey and H, above are constant vectors
and can be complex-valued. Similarly, the wave vector k can be complex-valued:

k=k+ik", k' k" e R (11)
Inserting (11) into equation (10), we obtain
E — Eoe—k"meik'w—z‘wt

H — Hoe—k"-mez‘k'-w—z‘wt (12)

In Eq. (12), Eoe kT and Hoe ® T are amplitudes and k' - & — wt = ¢ is the phase of the
wave.



Figure 2.2 Propagation of constant phase surfaces.



An equation of the form k - & =constant defines, in the case of a real-valued vector k, a
planar surface, whose normal is just the vector k. Thus, k' is perpendicular to the planes of
constant phase and k” is perpendicular to the planes of constant amplitude. If k' || k", the
planes coincide and the wave is homogeneous. If k' }y k", the wave is inhomogeneous. A plane
wave propagating in vacuum is homogeneous.

In the case of plane waves, Maxwell’s equaitons can be written as

k-E, = 0

k-Hy, = 0

kxE, = wpuH,
kxH, = —weFE, (13)

The two upmost equations are conditions for the transverse nature of the waves: k is
perpendicular to both Ey and H,. The two lowermost equations show that Ey and H, are
perpendicular to each other. Since k, Ey, and H( are complex-valued, the geometric interpre-
tation is not simple unless the waves are homogeneous.



It follows from Maxwell’s equations (13) that, on one hand,

kx (kx Ey) =wpk x Hy=—w?cuEy

and, on the other hand,

k x (k X E()) = k(k . Eo) — Eo(k . k) = —Eo(k . k),

so that

k-k=uwepn.



Plane wave solutions are in agreement with Maxwell’s equations if

k- Eo=k-Hy=FE,-Hy=0 (17)
and if

K2 — K" 4+ 2K - K = wiep. (18)

Note that € and o are properties of the medium, whereas k" and k" are properties of the
wave. Thus, € and g do not unambiguously determine the details of wave propagation.
In the case of a homogeneous plane wave (k'||k"),

k= (K +ik")e, (19)

where &’ and £” are non-negative and e is an arbitrary real-valued unit vector.



According to Eq. (16),

(K +ik")? = W?ep = : (20)

where ¢ = 1/,/€oj1o is the speed of light in vacuum and m is the complex-valued refractive
index

€L ,
m=,/—— =m, +1im;, my,m; > 0. (21)
€o o
In vacuum, the wave number is w/c = 27 /A, where A is the wavelength. The general homo-
geneous plane wave takes the form

2mm;s . 2mmps s

E=FEje ~x "1 (22)

where s = e - . The imaginary and real parts of the refractive index determine the attenua-
tion and phase velocity v = ¢/m,. of the wave, respectively.



3 Poynting vector

Let us study the electromagnetic field E, H that is time harmonic. For the physical fields
(the real parts of the complex-valued fields), the Poynting vector

S=FExH (23)
describes the direction and amount of energy transfer everywhere in the space.

Let n be the unit normal vector of the planar surface element A. Electromagnetic energy
is transferred through the planar surface with power S - n A, where S is assumed constant
on the surface. For an arbitrary surface and S depending on location, the power is

W = —/ S - ndA, (24)
A

where n is the outward unit normal vector and the sign has been chosen so that positive W
corresponds to absorption in the case of a closed surface.
The time-averaged Poynting vector

sy =1 / o SYd! T >> 1w (25)

T

is more important than the momentary Poynting vector (cf. measurements).



The time-averaged Poynting vector for time-harmonic fields is

(S) = %Re{E « H*} (26)

and, in what follows, this is the Poynting vector meant even though the averaging is not
always shown explicitly.
For a plane wave field, the Poynting vector is

1 E x (kK* x E*
S = “Re{E x H*} = Re{ ( )}, (27)
2 2wp*
where
Ex (k"xFE')=K"(E-E*)—FE*(k"-F). (28)
For a homogeneous plane wave,
k-E=k"-E=0 (29)
and
o 1 \/F,“’ 2 _4rIm(m)z .
5 = 5Re{ ¥ }|E0| i e (30)



4 Stokes parameters

Consider the following experiment for an arbitrary monochromatic light source (see Bohren
& Huffman p. 46). In the experiment, we make use of a measuring apparatus and polarizers
with ideal performance: the measuring apparatus detects energy flux density independently
of the state of polarization and the polarizers do not change the amplitude of the transmitted
wave.

Denote

E = Eepe™ ™  Ey=Ee + B

E” = (l”e_i(s” ap,ap =0, 01, (5” eR (31)

Experiment I
No polarizer: the flux density is proportional to

|Eo|* = E\Ef + ELE} (32)

Experiment II
Linear polarizers || and L:
1) |: the amplitude of the transmitted wave is F and the flux density is B\ Ey
2) L : the amplitude of the transmitted wave is £'; and the flux density is £} E}

The difference of the two measurements is [ — I, = E||E|"|‘ — F,E7.
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Figure 2.11 Vibration ellipse.
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Figure 2.12 A series of snapshots of the electric field.



Figure 2.13 Vibration ellipse with ellipticity b/a and azimuth y.
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Figure 2.14 The detector measures the irradiance of the beam transmitted by the polarizer P.



Experiment III
Linear polarizers +45° ja —45°: The new basis vectors are

e_ = %(é” —e))
and
EO — E+é+ + E_é_
1
E., = —(Ey+FE
+ \/5( | J_)
1
E_. = —(Ey—E)).
\/5( | — Ev)
1) +45°: the amplitude of the transmitted wave is £, and the flux density is
E\E; = 5(EyEf + EyE} + ELEf + E, EY)
2) —45°: the amplitude of the transmitted wave is £_ and the flux density is

E_E* = }(E\E; — E\E} — E\E} + E, EY)

The difference os the measurements is [, — I = Ey L] + £ Ey.



Experiment IV
Circular polarizers R and L:

. L. Ax
ep = %(e” +ie)) ep-ep =1
A 1 A . A A A % A ¥
e; = %(e”—zel) er-e;p =1 ep-e; =0
and
E, = FEgperp+ Ereg
1 .
1 .
EL — E(E”_*_/IE_L)
1) R: the amplitude of the transmitted wave is Er and the flux density is ErE}p
s(B\Ef —iErEy +iETE) + ELEY)
2) L: the amplitude of the transmitted wave is Ep and the flux density is EpE}
%(E”EIT + iEﬁ‘Ei —iETEy+ ELEY)

The difference of the measurements is Ip — Iy, = i(E] E) — E’l’lk El).



With the help of Experiments I-IV, we have determined the Stokes parameters I, ), U,
and V:

= E”E'T—I-E_LEI :aﬁ+a2l

— EllElT_EJ-EI :aﬁ—ai

EWET + ELE['[ = 2aja  coso

= i(EyEL - ELE)) = 2ajaLsind 0 =0 —0L (33)

< SO ~
I
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Figure 2.16 Rotation of basis vectors.

are rotated through an angle y (F 1g. 2.16), the transformation from

(LO U V)
to Stokes parameters (1, Q’, U’, V') relative to the rotated axes e

and & is
Er L ] 0 D03 id
e 0 cos2y sin2y 0 Q
gt B0 i 2y cos2y 0 P8 (2.83)
| V’) \O 0 0 1) | V}



Table 2.2 Stokes Parameters for Polarized Light

Linearly Polarized

0° 90°
© I
| wmi g
1 -1
0 0
0 ety

Circularly Polarized

+45°
N

1
0
1
0

—45°
7

Left

—_—0 O -
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- Figure 2.17 e, and e, specify the axes of an
€, ideal linear retarder.
retarder:

[ 1 0 0 0)
0 C?+ S%cosé SC(1 — cos8) —Ssiné

U _SCll—cos8) 23008 i

| 0 S'sin 8 —Csiné cos 8 |

where C = cos28, S = sin 2[, and the retardance § is 0, -8
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