and TM polarizations have the same behavior for both cases, but the magnitude
for the TM case is higher than the magnitude for the TE case.

In Fig. 9 the normalized bistatic and backscattering cross sections are plotted
for two identical conducting spheroids A and B of axial ratio 5 and semi-major
axis length A/4, separated by a center-to-center distance of A/2 along the x axis
of A, with the rotation of B relative to A specified by the Euler angles 45°, 90%,

45°. The behavior of both the E-plane and the H-plane patterns is quite sim-

ilar. However, the backscattering cross section pattern for TM polarization has

more oscillations as compared to the pattern for TE polarization, with two min-

ima around ¥ = 35°, 145° and a maximum around % = 90°.
Numerical results for two identical dielectric spheroids A and B of axial ra-

tio 5, semi-major axis length A /4, and relative permitivity 3, in a parallel configu-

ration, are given in Fig. 10. The two spheroids are separated by a center-to-center
distance of A /2 along the x axis. In this case the E-plane pattern has a sharp min-

imum around ¥ = 90°, whereas the H-plane pattern presents some oscillation

about the same minimum point. The backscattering cross section has a minimum
around ¥; = 30° for both polarizations and exhibits a similar behavior, with a

higher magnitude for the TM case than for the TE case at higher angles of in-
cidence, as expected. Because of symmetry about ¥; = 90°, the variation of the

backscattering cross section is shown only for the range from @; = 0° to 9% = 90°.
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I. INTRODUCTION

The discrete dipole approximation—also referred to as the coupled dipole
approximation—is a flexible technique for studying scattering and absorption of
electromagnetic radiation by targets with sizes comparable to the wavelength. Ad-
vances in numerical techniques coupled with the increasing speed and memory of
scientific workstations now make it possible for calculations to be carried out for
targets with dimensions as large as several times the wavelength of the incident
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radiation. Although the technique is not well suited for targets with very large
complex refractive index m, it works well for materials with |m — 1| < 3 and
target dimension D < 5, where A is the wavelength in the surrounding medium.
The discrete dipole approximation (DDA) has been applied to compute scattering
and absorption by targets of size comparable to the wavelength in a broad range of
problems, including interstellar dust grains (Draine and Malhotra, 1993; Draine
and Weingartner, 1996, 1997; Wolff et al., 1998), ice crystals in the atmosphere of
the Earth (Okamoto et al., 1995; Lemke et al., 1998) and other planets (West and
Smith, 1991), interplanetary dust (Mann ef al., 1994; Kimura and Mann, 1998),
cometary dust (Okamoto ez al., 1994; Xing and Hanner, 1997; Yanamandra-Fisher
and Hanner, 1999), soot produced in flames (Ivezi¢ and Mengiic, 1996; Ivezi¢
et al., 1997), surface features on semiconductor devices (Schmehl et al., 1997;
Nebeker ef al., 1998), and optical characteristics of human blood cells (Hoekstra
etal., 1998).

The discrete dipole approximation was introduced by Purcell and Pennypacker
(1973) and has undergone a number of theoretical developments since then, in-
cluding the introduction of radiative reaction corrections (Draine, 1988), applica-
tion of fast Fourier transform techniques (Goodman et al., 1991), and a prescrip-
tion for dipole polarizabilities based on the lattice dispersion relation (Draine and
Goodman, 1993). The discrete dipole approximation was reviewed recently by
Draine and Flatau (1994).

II. WHAT IS THE DISCRETE
DIPOLE APPROXIMATION?

There has been some confusion about exactly what is being approximated
in the “discrete dipole approximation.” The actual approximation can be simply
stated:

The discrete dipole approximation consists of approximating the actual target by
an array of polarizable points (the “dipoles”).

This is the only essential approximation—once the location and polarizability of
the points are specified, calculation of the scattering and absorption of light by
the array of polarizable points can be carried out to whatever accuracy is required
(within the practical limits imposed by the computational hardware).

Suppose we have an array of points X;, j =1,...,N, each with complex
polarizability tensor e, and with a monochromatic incident wave Einc, je_i“” at
each location, where  is the angular frequency and 7 is time. Each of the dipoles
is subject to an electric field that is the sum of the incident wave plus the electric
fields resulting from all of the other dipoles. The self-consistent solution for the

dipole moments P je""‘” satisfies a system of 3N linear equations, which can be
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where the elements A;; are 3 x 3 matrices (see Draine and Flatau, 1994). The
diagonal elements A;; = o&; ! where & is the 3 x 3 complex polarizability tensor
(see Section VI). The off-diagonal elements A depend only on k = w/c, where
¢ is the speed of light, and the vector displacement r;; = X; — X;. Equation (1) is
a system of 3N complex linear equations; the computational challenge is to find
the solution P; satisfying this equation.

Once the solution P has been found, it is straightforward to calculate the com-
plete scattering matrix for the target, as well as other quantities, such as the ab-
sorption and extinction cross sections, the intensity and polarization of scattered
radiation, and the force and torque exerted on the target by the electromagnetic
field (Draine and Weingartner, 1996).

There are some obvious issues surrounding the discrete dipole approximation:

written as

1. How many dipoles are required for the dipole array to adequately
approximate the target?

2. If a given lattice is to approximate a given continuum target, what choice
of dipole polarizabilities will result in the most accurate approximation?

3. For a given target geometry, size, complex refractive index m, and incident
wavelength A, how accurate is the discrete dipole approximation?

4. What are the computational requirements of the discrete dipole
approximation?

These are addressed next.

I1I. THE DDSCAT SCATTERING CODE

DDSCAT is a portable f77 code developed by B. T. Draine and P. J. Flatau
to carry out calculations using the discrete dipole aproximation. The DDSCAT
code is publicly available! (Draine and Flatau, 1994), and a comprehensive user
guide is now available (Draine and Flatau, 1997). The calculations reported in the
following discussion were carried out using the current “release,” DDSCAT.5a8.

Lhttp://astro.princeton.edu/~draine/, or anonymous ftp to astro.princeton.edu, directory draine/
scat/ddscat.
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IV. DIPOLE ARRAY GEOMETRY

Equation (1) applies for any array geometry. For general geometry, there are
(3N)? distinct complex elements of the matrix A; when considering N > 10
dipoles, it is apparent that computing this matrix would be very central process-
ing unit (CPU) intensive, and storing the elements for reuse would require large
amounts of random access memory (RAM). For example, in the following dis-
cussion we show results computed for a target with N &~ 200,000 dipoles; storing
the complete A matrix, with 8 bytes per complex number, would require 2.8 TB!
There are great advantages to be gained if the dipoles are located on a lattice,
because now many different pairs i, j have identical r; j» and hence identical A;;.

Because of this, DDSCAT requires the target array to reside on a cubic lat-
tice. It is then possible to use fast Fourier transform (FFT) techniques to evaluate
matrix—vector products A -v (Goodman et al., 1991); because they allow evalu-
ation of the product in O[(3N)In(3N)] rather than O[(3N)?] operations, FFT
techniques allow use of much larger values of N.

DDSCAT includes routines to generate dipole arrays for a variety of target
geometries, including ellipsoids, rectangular prisms, hexagonal prisms, and tetra-
hedra; it can also accept a user-supplied list of occupied lattice sites. The target
material can be anisotropic and the target can be inhomogeneous.

V. TARGET GENERATION

There is some arbitrariness in the construction of the array of point dipoles in-
tended to represent a solid target of specified geometry. DDSCAT uses a straight-
forward procedure: In the “target frame,” construct a target of volume V. Let the
target centroid define the origin of coordinates. Choose a “trial” lattice spacing d
and construct a lattice (x, y,z) = (ny, ny,nz)d + (ox, 0y, 0;)d, where the n;
are integers and the “offset” vector (o, 0y, 0;) allows the target centroid to be
located at a lattice point or between lattice points, as appropriate.

Having chosen d and (oy, 0y, 0;), the target array is now taken to consist of
the lattice points located within the target volume; let N be the number of such
points. With these N lattice points now determined, we make a small adjustment
to the lattice spacing and set d = (V/N)'/3 (when N is large, the d so obtained
is nearly the same as the original “trial” d).2

In Fig. 1 we show an N = 59,728 dipole representation of a sphere. The array
fits within a 48 x 48 x 48 region on the lattice. In Fig. 2 we show an N = 61,432

2Because each dipole “represents” a volume d° of material, we require the array volume Nd3 = V.
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)

sphere
N=59728

Figure 1 N = 59,728 dipole array representing a sphere.

dipole representation for a regular tetrahedron. In this case the dipole array fits
within a 78 x 82 x 96 region on the lattice.
It is convenient to characterize the target size by the “effective radius”

AU NLE s
=f— =[— d; 2
wr=(z) = () ®

aefr is simply the radius of a sphere of equal volume. DDSCAT reports dimen-
sionless scattering, absorption, and extinction efficiency factors, Qsca, Qabs, and
Qext—these are simply the corresponding cross sections divided by nazﬁ.
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Figure 2 Array of N = 61,432 dipoles representing a regular tetrahedron.

VI. DIPOLE POLARIZABILITIES

After constructing a target array with lattice spacing d, it remains to specify
the dipole polarizabilities ;. In the limit d/A — 0, the Clausius—Mossotti pre-
scription would apply: @™ = (3d3/47)(e — 1)/(e + 2), where & = m? is the
complex dielectric constant. For finite d/A, however, this is not the best choice.
It is important to include radiative-reaction corrections, which are of O[(kd)*)
(Draine, 1988). However, there are also corrections of O[(kd)?], and there has
been some controversy about what these should be taken to be (Goedecke and
O’Brien, 1988; Iskander et al., 1989a; Hage and Greenberg, 1990; Dungey and
Bohren, 1991; Lumme and Rahola, 1994; Okamoto, 1995). Because it is intended
that the dipole array mimic a continuum material of dielectric constant &, a nat-

N
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ural way to specify the polarizabilities « is to require that an infinite lattice of
points with this polarizability should have the same dispersion relation k(w) as
the continuum material it is intended to mimic. Using this “lattice dispersion re-
lation” (LDR) approach, Draine and Goodman (1993) obtained a prescription for
assigning dipole polarizabilities, including O[(kd)?) and O[(kd )3] corrections to
the Clausius—Mossotti estimate. DDSCAT.5a8 uses these LDR polarizabilities.

For targets with large size parameters, Okamoto (1995) advocates approxi-
mating the target as a cluster of spherical monomers, with each monomer then
approximated by a point dipole, but with a polarizability obtained from Mie the-
ory. This approach (Okamoto and Xu, 1998) is similar in spirit, though different
in detail, from that of Dungey and Bohren (1991).

VIL. ACCURACY AND VALIDITY CRITERIA

It is intuitively clear that one validity criterion should be

Imikd S 1 ©)

because we would like to have the “phase” vary by less than approximately 1 rad
between dipoles. It is also clear that we would like to have N as large as feasible,
in order that the dipole array accurately mimic the target geometry.

What accuracies are obtained using the discrete dipole approximation? One
way to answer this question is to apply the discrete dipole approximation to com-
pute scattering and absorption by a sphere, for which exact results are readily
available.

In Fig. 3 we show fractional errors in the absorption and scattering cross sec-
tions Cabs and Csea for a sphere with refractive index m = 1.7 + 0.1i. For
N = 17,904, accuracies are better than 2% up to x = 9.6, and accuracies of
better than 1% are attainable for size parameter x = ka as large as 21.4 using
N~2x10° dipoles, where a is the radius.

The accuracy does depend on the refractive index m; for smaller values of
|m — 1| the accuracy for a given N and |m|kd is generally better. Draine and
Flatau (1994) show accuracies for m = 1.33 +0.01i,1.74+0.1i,2+i,and 344,
and comparison to exact results for touching spheres has been made by Flatau et
al. (1993).

VIII. SOLUTION METHOD

When considering N = 10%, it is apparent that direct solution of Eq. (1) by
standard techniques, requiring approximately O[(3N )] operations, is utterly in-
feasible. However, iterative techniques exist that find excellent approximations
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Figure 3 Fractional errors for scattering and absorption cross sections for an m = 1.7+0.1i pseudo-
sphere for different numbers N of dipoles. For each N, results are shown up to the value of x for which
imlkd ~ 1 [i.e., x = (3N /4m)'/3/|m]]. In the “target frame,” the incident radiation is propagating
along the (1, 1, 1) direction and polarized along the (2, —1, —1) direction.

to the true solution P in a modest number (often only 10-100) iterations (Draine,
1988; Flatau, 1997). Each iteration involves computation of a matrix—vector prod-
uct ij:l A;jv;j or Z?;] A,ij j» where v; is a 3N-dimensional vector and AT
is the Hermitian conjugate of A. The products are evaluated using FFT tech-
niques, as described previously. Hoekstra et al. (1998) have demonstrated that
the FFT calculations can be parallelized. A number of different iterative pro-
cedures of the complex conjugate gradient type are available (Flatau, 1997).
Draine (1988) originally employed the method of Petravic and Kuo-Petravic
(1979), which DDSCAT retains as an option. Lumme and Rahola (1994) and
Nebeker et al. (1998) recommend the “quasi-minimum residual” method (Fre-
und, 1992) as the most computationally efficient. Flatau (1997) compared a num-
ber of different methods and recommends the “stabilized bi-conjugate gradient”

-
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method (van der Vorst, 1992) with preconditioning, available as an option within
DDSCAT.
For an approximation P, we define the fractional error to be
|[\l)'— Ehncl
er=——- —, 4)
|Einc|
where P and Ej, are 3N-dimensional vectors and A is the 3N X 3N matrix from
Eq. (1). We routinely iterate until err < o,

IX. COMPUTATIONAL REQUIREMENTS

Numerical techniques for computing scattering by irregular bodies are com-
putationally intensive, and their utility may be limited by computational require-
ments.

A. MEMORY

Because of the use of FFT techniques, the memory requirements of DDSCAT
are proportional to the number Nt = NxNy N, of sites in the “computational
volume”—an Ny x Ny x N region of the lattice containing the “occupied” lattice
sites.3 For a rectangular target, Nerr = N, but for other targets Ngrr > N. For
spherical targets, Ngrr ~ (6/7)N;; for a tetrahedron, Nggr ~ 6N.

Using 8 bytes per complex number, DDSCAT requires approximately 1.0 +
0.61(Ngpr/1000) MB. Thus a 323 computational volume requires only 21 MB,
but a 643 volume would require 161 MB.

B. CENTRAL PROCESSING UNIT TIME

Most of the computing time is spent iterating until the solution vector P satis-
fies Eq. (1) to the required accuracy. The time spent per iteration scales approx-
imately as Ngpr. For a given scattering problem (target geometry, refractive in-
dex m, and x = kaefr), the number of iterations required is essentially independent
of Ngrr, so the overall CPU time per scattering problem scales approximately lin-
early with Nggr.

For example, for an m = 1.7 +0.1i sphere and x =9, solving for two incident
polarizations using a 167-MHz Sun Ultrasparc required 1400 CPU-s for the N =
17,904 sphere and 14,800 CPU-s for N = 140,408.

3When Temperton’s (1992) “generalized prime factor algorithm” is used, Ny, Ny, and N; must
each be of the form 2P395", with p, ¢, r integers.
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X. BENCHMARK CALCULATIONS:
SCATTERING BY TETRAHEDRA

In addition to the discrete dipole approximation, there are other approaches
that can be used to calculate scattering and absorption by irregular targets, includ-
ing the “extended boundary condition method,” often referred to as the “7'-matrix
method” (Barber and Yeh, 1975; Mishchenko, 1991a; Chapter 6); the “finite dif-
ference time domain method” (e.g., Yang and Liou, 1996a; Chapter 7); and the
“yolume-integral method” (e.g., Eremin and Ivakhnenko, 1998; Chapter 2; and
references therein).

The DDA has been compared to some of these other methods for various target
shapes, including spheroids, cylinders, and bispheres (Hovenier et al., 1996) and
cubes (Wriedt and Comberg, 1998).
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Figure 4 Scattering of unpolarized incident light by a tetrahedron with m = 1.33 + 0.017 and
kaegs = 5. The incident radiation is propagating in the x direction, and K2z 11 is shown for scattering
in the x—y plane. Axis @) of the tetrahedron (see Fig. 2) is in the x—y plane at an angle & = 30° from
the x axis. Axis @ of the tetrahedron is in the x—y plane. The broken line labeled kz(Z“) is k2711
averaged over all scattering directions for this orientation. The peak at © = 240° is from “specular”
reflection. Accurate results for Z; are obtained for |m|kd ~ 0.5, which appears to be sufficient for
good accuracy.
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Figure 5 Same as Fig. 4, but for kaef = 10. The specular reflection peak at © = 240° has become
more pronounced. Once again, good accuracy is obtained for |m|kd ~ 0.5.

Here I present additional “penchmark” calculations that can be used to com-
pare different techniques. From the standpoint of the discrete dipole approxima-
tion, there are no “special”” shapes—a target is just a list of occupied lattice sites.

A regular tetrahedron is a simple target shape with “edges” that can be used
to test different approaches to computing light scattering. The orientation is as
shown in Fig. 2, with the tetrahedron axis tilted & = 30° away from the direction
of propagation of the incident radiation.

Scattering of incident unpolarized light is measured by Z1, one element of the
4 x 4 phase matrix (see Chapter 1). Figure 4 shows k2Z11 foranm = 1.33+0.01i
tetrahedron with kaegf = 5, for scattering in the x—y plane. Z1; measures the
scattered intensity for incident unpolarized light. Results are shown for different
numbers N of dipoles. For kaefr = 5, the tetrahedron side s = 2.616A.

Increasing the size of the target by a factor of 2 in linear extent, we obtain the
results shown in Fig. 5. A further increase to s = 7.8492 gives the scattering prop-
erties shown in Fig. 6. Figures 7 and 8 show the results for a different refractive
index.
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Figure 6 Same as Fig. 4, but for x = kaefr = 15. Notice that the specular reflection peak at @ =
240° has become more pronounced. The results are well converged where Z1; 2> 0.1(Z1), but do
not appear to be fully converged for directions where the scattering is weak.

Each plot shows the value of k2Z1, averaged over all scattering directions for
this orientation: k%(Z11) = k?Cacs /47w, where Cyc, is the scattering cross section.
We see that for |m|kd < 1 the fractional errors in Zj; are large only for scattering
directions where the scattering is relatively weak to begin with.

In each of these plots it is interesting to note the peak in Zj; at a scattering
angle © = 240°, corresponding to “‘specular reflection” off the face of the tetrahe-
dron upon which the radiation is incident. This specular reflection peak becomes
narrower and stronger as the target size is increased, as expected from diffraction
theory.

The CPU time required for these calculations is given in Table L. It will be of
interest to compare these scattering results for tetrahedra with the results of other
computational techniques.*

4For those wishing to repeat these benchmark calculations on their system, the ddscat.par files can
be obtained by anonymous ftp from astro.princeton.edu, directory draine/scat/ddscat/benchmarks.
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Figure 7 Same as Fig. 4, but for refractive index m = 1.7 + 0.1i. The results appear to be well
converged for [m|kd < 0.5.

Table I
Timings on Sun Ultrasparc 170 (167 MHz)

m = 1.33 + 0.01i tetrahedron: CPU time (s)

N kaegs =5 kaegs = 10 kactFa=il>
4,030 78 — —
13,426 311 565 —
31,598 776 1,390 2,280
61,432 1,580 2,850 4,650
105,832 3,600 6,320 11,300

m = 1.7 + 0.1i tetrahedron: CPU time (s)

N kdss—> ko — 10
13,426 767 —
31,598 1,920 4,180
61,432 4,080 8,420

105,832 9,590 19,800
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Figure 8 Same as Fig. 7, but for x = kaegr = 10. Notice the strong specular reflection peak at
© = 240°. The good agreement between the results for N = 61,432 and 105,832 indicates that
N = 105,832 gives a good approximation to the exact results.

XI. SUMMARY

The discrete dipole approximation is an effective technique for computing scat-
tering and absorption by irregular targets, provided the target dimension D < 5
and |m — 1| < 3, where m is the complex refractive index. The portable 77 code
DDSCAT can be used to apply the discrete dipole approximation to a broad range
of scattering problems. It is quite easy to apply DDSCAT to study new target
geometries.

A set of benchmark calculations has been proposed, using tetrahedral targets
with m = 1.33 4 0.01i and m = 1.7 + 0.1i. It is hoped that other methods for
computing scattering from irregular targets will be applied to these test problems,
as this will make possible direct comparison of the accuracy and computational
demands of the different numerical approaches.




