
1 Electromagnetic field by a localized source

Consider the electromagnetic fields caused by time-dependent charge and current densities
localized in a constrained region of space. Here we will mainly study the fields by an electric
dipole. Later, the analysis is extended to the full multipole expansion.
Assume harmonic time dependence e−iωt—arbitrary time dependences can be dealt with using
Fourier analysis of their components. The charge density ρ and current density j are

ρ(x, t) = ρ(x)e−iωt

j(x, t) = j(x)e−iωt

and the physical quantities correspond to the real parts of the complex quantities. The elect-
romagnetic potentials and fields are also time-harmonic and the sources are assumed to be
located in an otherwise empty space.

Let us start from the vector potential A in Lorentz gauge,

A(x, t) =
µ0

4π

∫
d3x′

∫
dt′

j(x′, t′)

|x− x′|
δ(t′ +

|x− x′|
c

− t) (1)

and, by writing A(x, t) = A(x)e−iωt, we obtain

A(x) =
µ0

4π

∫
d3x′j(x′)

eik|x−x
′|

|x− x′|
, k =

ω

c
(2)

The magnetic field is, according to definitions, H = 1
µ0
∇×A and, outside the source region,

the electric field equals E = iζ0
k
∇×H, where ζ0 =

√
µ0/ε0 is the impedance of free space.
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When the current density j(x′) is given, the electromagnetic field can be calculated from
the integral above, at least in principle. Let us study the case where the source region (size
d) is much smaller than the wavelength: d� λ = 2πc/ω. We can distinguish three regimes of
interest:

(i) Near zone (static regime): d� r � λ
(ii) Intermediate zone (induction regime): d� r ∼ λ
(iii) Far zone (radiation regime): d� λ� r

In the near zone (i) kr � 1 and the exponential part of the integrand for the vector
potential can be set to unity, and the inverse distance can be presented using series of spherical
harmonics Ylm:

lim
kr→0

A(x) =
µ0

4π

∑
l,m

4π

2l + 1

Ylm(θ, ϕ)

rl+1

∫
d3x′j(x′)(r′)lY∗lm(θ′, ϕ′) (3)

We can see that the near fields vary harmonically in time but are static in their character: no
wave solution follows for the spatial dependence. Above, we have made use of the relation

1

|x− x′|
= 4π

∑
l,m

1

2l + 1

rl<
rl+1
>

Y∗lm(θ′, ϕ′)Ylm(θ, ϕ) (4)
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In the far zone (iii), kr � 1 and the exponential part of the vector potential varies strongly
and dictates the character of the vector potential. We can approximate

|x− x′| ≈ r − n̂ · x′, n̂ =
x

|x|
=

x

r
(5)

When the leading term is desired in kr, the inverse distance can be replaced by r. The vector
potential is of the form

lim
kr→∞

A(x) =
µ0

4π

eikr

r

∫
d3x′j(x′)e−ikn̂·x

′
(6)

Therefore, the vector potential behaves like an outgoing spherical wave (eikr/r) with angular
dependence. It can be shown that the electromagnetic field is also of the form of a spherical
wave and thus is a radiation field. (Note that this part of the analysis is valid for localized
source regions of arbitrary size.)
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Now that kd� 1 the integral can further be developed into series:

lim
kr→∞

A(x) =
µ0

4π

eikr

r

∑
n

(−ik)n

n!

∫
d3x′j(x′)(n̂ · x′)n (7)

where the magnitude for the nth term is (1/n!)
∫
d3x′j(x′)(kn̂ ·x′)n and thus becomes rapidly

smaller with increasing n. In this case, the main contribution to radiation comes from the
first non-vanishing term in the sum.

In the intermediate zone (ii), all powers of kr need to be accounted for, and no simple
limits can be taken. The vector potential is then written with the help of the expansion for
the exact Green’s function in the form

A(x) = µ0ik
∑
l,m

h
(1)
l (kr)Ylm(θ, ϕ)

∫
d3x′j(x′)jl(kr

′)Y∗lm(θ′, ϕ′) (8)

where we have made use of the expansion
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eik|x−x
′|

4π|x− x′|
= ik

∞∑
l=0

jl(kr<)h
(1)
l (kr>)

l∑
m=−l

Y∗lm(θ′, ϕ′)Ylm(θ, ϕ) (9)

where r< = min(r, r′), r> = max(r, r′), and jl and h
(1)
l are the spherical Bessel and Hankel

functions.
Again when kd � 1, the jl-functions can be approximated and the result is of the same

form as the near zone result, when the following replacement is carried out:

1

rl+1
→ eikr

rl+1
[1 + a1(ikr) + a2(ikr)2 + . . .+ al(ikr)

l] (10)

The coefficients ai derive from the explicit expansions of the Hankel functions. This end result
allows us to see the transition from the near-zone kr � 1 static field to the far-zone kr � 1
radiation field.
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2 Electromagnetic field of an electric dipole

If only the first term in kd is kept in the expansion of the vector potential, one obtains

A(x) =
µ0

4π

eikr

r

∫
d3x′j(x′) (11)

which holds everywhere outside the source region (this follows from the intermediate-zone
results above). With the help of partial integration,∫

d3x′j = −
∫
d3x′x′(∇ · j) = −iω

∫
d3x′x′ρ(x′) (12)

where the substitution term disappears (the source region is constrained) and, according to
the continuity equation, iωρ(x′) = ∇ · j(x′). The vector potential is thus

A(x) = −iµ0ω

4π
p
eikr

r
, (13)

where p is the electric dipole moment p =
∫
d3x′x′ρ(x′).
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The electromagnetic fields are

H =
ck2

4π
(n̂× p)

eikr

r
(1− 1

ikr
)

E =
1

4πε0

(
k2(n̂× p)× n̂

eikr

r
+ (3n̂(n̂ · p)− p)(

1

r2
− ik

r
)
eikr

r

)
We note that the magnetic field is always transverse but that the electric field has both
longitudinal and transverse components.

In the far zone,

H =
ck2

4π
(n̂× p)

eikr

r
E = ζ0H× n̂

which shows the typical form of a spherical wave.
In the near zone,

H =
iω

4π
(n̂× p)

1

r2

E =
1

4πε0
(3n̂(n̂ · p)− p)

1

r3

The electric field is, except for the harmonic time dependence, that of a static electric dipole.
The field ζ0H is smaller, by a factor of kr, than the field E so, in the near zone, the field is
electric in its nature. In the static limit k → 0, the magnetic field disappears and the near
zone extends to infinity.
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The power radiated by the vibrating dipole moment p as per solid angle is

dP

dΩ
=

1

2
Re(r2n̂ · E×H∗)

=
c2ζ0

32π2
k4|(n̂× p)× n̂|2,

where n̂× p)× n̂ gives the polarization state. If all components of p are in the same phase,

dP

dΩ
=

c2ζ0

32π2
k4|p|2 sin2 θ (14)

which is the typical radiation pattern of an electric dipole (θ is here measured from the
direction of p). Independently of the phases of the components for p:n, the total radiated
power is

P =
c2ζ0k

4

12π
|p|2 (15)
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3 Scattering by small spherical particles in the electric

dipole approximation

Light scattering by particles clearly smaller than the wavelength can be studied in the ap-
proximation, where the incident field induces an electric dipole moment to the particle. The
dipole fluctuates in a certain phase with the incident field and thus scatters radiation in di-
rections differing from the propagation direction of the incident field. In this case, the dipole
moments can be computed using electrostatic methods.

Assume that a monochromatic plane wave is incident on a small scatterer located in free
space. Let the propagation direction and polarization vector of the incident field be n̂0 and
ε̂0:

Ei = ε̂0E0e
ikn̂0·x

Hi = n̂0 × Ei/ζ0

where k = ω/c and the time dependence has been assumed harmonic (e−iωt). These fields
induce a dipole momentn p in the small particle and the particle radiates energy in (almost)
all directions. In the far zone, the scattered fields are of the form

Es =
1

4πε0
k2 e

ikr

r
((n̂× p)× n̂)

Hs = n̂× Es/ζ0

where n̂ is the dirction of the observer and r the distance from the scatterer.
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The power scattered in direction n̂ with polarization ε̂ per unit solid angle divided by the
incident flux density is the so-called differential cross section

dσ

dΩ
(n̂, ε̂, n̂0, ε̂0) =

r2 1
2ζ0
|ε̂∗ · Es|2

1
2ζ0
|ε̂∗0 · Ei|2

(16)

where the complex conjugation of the polarization vectors is important for proper treatment
of circular polarization. Furthermore,

dσ

dΩ
(n̂, ε̂, n̂0, ε̂0) =

k4

(4πε0E0)2
|ε̂∗ · p|2, (17)

where the n̂0, ε̂0 -dependence is implicit in p. We can see that the differential and total cross
sections of the dipole scatterer are both proportional to k4 and λ−4 (Rayleigh’s law).
Assume that the scatterer is a small sphere (radius a) with the relative permittivity εr = ε/ε0.
According to electrostatics, the dipole moment of the sphere is

p = 4πε0

(εr − 1

εr + 2

)
a3Ei (18)

so that
dσ

dΩ
= k4a6|εr − 1

εr + 2
|2|ε̂∗ · ε̂0|2 (19)

The polarization dependence is purely that of electric dipole scattering. The scattered radia-
tion is polarized in the plane defined by the dipole moment ε̂0 and the vector n̂.
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For unpolarized incident radiation, the differential cross sections in different polarization
states of the scattered field are

dσ‖
dΩ

=
k4a6

2
|εr − 1

εr + 2
|2 cos2 θ

dσ⊥
dΩ

=
k4a6

2
|εr − 1

εr + 2
|2

where θ is now the scattering angle.
The degree of polarization is

P (θ) =
dσ⊥
dΩ
− dσ‖

dΩ

dσ⊥
dΩ

+
dσ‖
dΩ

=
sin2 θ

1 + cos2 θ
= −S21(θ)

S11(θ)
(20)

and the differential cross section summed over the polarization states of the scattered field is

dσ

dΩ
= k4a6|εr − 1

εr + 2
|2 1

2
(1 + cos2 θ) ∝ S11(θ) (21)

where S11(θ) and S21(θ) are elements of the scattering matrix. The total scattering cross
section is

σ =

∫
(4π)

dσ

dΩ
dΩ =

8π

3
k4a6|εr − 1

εr + 2
|2 (22)

The scattered radiation is 100% positively polarized at the scattering angle θ = 90◦. It was
the polarization characteristics of the blue sky that got Rayleigh interested in scattering by
small particles.
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4 Scattering by an ensemble of small particles in the

dipole approximation

Consider an ensemble of numerous small particles which have fixed locations in space and
the scattering amplitudes of which can be expressed in the dipole approximation. Assume
presently that the particles do not interact with each other. Since the induced dipole moments
are proportional to the incident field, the moments will depend on the phase factor eikn̂0·xj ,
where xj is the location of the jth scatterer. When the observer is located far away from the
scatterer, the exponential part of the Green’s function results in an additional phase factor
for the jth scatterer, e−ikn̂·xj . In the dipole approximation, the ensemble of particles scatters
as follows:

dσ

dΩ
=

k4

(4πε0E0)2
|
∑
j

ε̂∗ · pjeiq·xj |, q = k(n̂0 − n̂) (23)

Except for the forward-scattering direction (q = 0), scattering will depend sensitively on how
the small particles are located in space.

Assume now that all the particles are identical so that p = pj for all j and

dσ

dΩ
=

k4

(4πε0E0)2
|ε̂∗ · p|2F (q), (24)

where F (q) is the so-called structure factor,

F (q) = |
∑
j

eiq·xj |2 =
∑
j,j′

eiq·(xj−xj′ ) (25)

If the small particles are located in random positions, the terms j 6= j′ will cause a
negligible contribution to the sum. Only the terms j = j′ are significant and F (q) = N , where
N is the number of scatterers. In this case, the total scattering is the incoherent superposition
of the individual contributions.

12



If the small particles are regularly located in space, the structure factor disappears almost
everywhere except for the proximity of the forward-scattering direction. Therefor, large regular
arrays of small particles do not scatter (for example, individual transparent crystals of rock
salt and quartz).

Consider scatterers located in a regular cubic lattice. The structure factor can be calculated
analytically, since∣∣∣∣∣∑

j

eiq·xj

∣∣∣∣∣
2

=

∣∣∣∣∣
N1−1∑
j1=0

eiq1j1a
N2−1∑
j2=0

eiq2j2a
N3−1∑
j3=0

eiq3j3a

∣∣∣∣∣
2

=

∣∣∣∣(1− eiq1N1a

1− eiq1a
)(

1− eiq2N2a

1− eiq2a
)(

1− eiq3N3a

1− eiq3a
)

∣∣∣∣2
= N2[(

sin2 1
2
N1q1a

N2
1 sin2 1

2
q1a

)(
sin2 1

2
N2q2a

N2
2 sin2 1

2
q2a

)(
sin2 1

2
N3q3a

N2
3 sin2 1

2
q3a

)], (26)

where a is the lattice constant (distance between the lattice points) and where N1, N2, and
N3 are the numbers of lattice points in each direction hilapisteiden so that the total number
of lattice points equals N = N1N2N3 (this was utilized to obtain the final result above). The
components of the vector q in each direction are q1, q2, and q3.

We note that, at short wavelengths (ka ≥ π), the structure factor has peaks when the
Bragg condition is fulfilled: qia = 0, 2π, 4π . . ., where i = 1, 2, 3 . . .. This is typical in X-ray
diffraction. At long wavelengths, only the peak qia = 0 is relevant, since max |qia| = 2ka << 1.
In this limit, the structure factor is a product of three sin2 xi/x

2
i -type factors (xi = 1

2
Niqia),

and scattering is confined to the region qi ≤ 2π/Nia, corresponding to the angles λ/L, where
L is the size of the lattice.
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5 Volume integral equation for scattering

In a uniform medium, the electromagnetic wave propagates undisturbed and wiythout chan-
ging its direction of propagation. If there are fluctuations in the medium depending on space
or time, the wave is scattered, and part of its energy is redirected. If the fluctuations in the
medium are small, scattering is weak and one may utilize methods based on perturbation
series.

Consider a uniform isotropic medium with electric permittivity εm and magnetic permea-
bility equal to the permeability of vacuum, µm = µ0. Fluctuations in the medium result in
D 6= εmE in some constrained region. Let us start from Maxwell’s equations in sourceless
space:

∇ ·B = 0 , ∇× E = −∂B

∂t

∇ ·D = 0 , ∇×H =
∂D

∂t

Then

∇× (D−D + εmE) = −εm
∂B

∂t
, (27)

so that

∇× (∇×D) = ∇× [∇× (D− εmE)]− εm
∂

∂t
µ0∇×H. (28)
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Moreover, after further manipulation,

−∇2D = ∇×∇× (D− εmE)− εmµ0
∂2

∂t2
D, (29)

which can be written in the form

∇2D− εmµ0
∂2D

∂t2
= −∇×∇× (D− εmE), (30)

that is the exact wave equation for the D-field derived without any approximations. Later,
the right-hand side of the equation is treated as a small perturbation.

If the right-hand side of the equation were known, the solution of the wave equation could
be written an a suitable integral of it. Although the right-hand side is usually unknown, the
integral form is useful, since it allows the derivation of important approximations.

Assume again harmonic time dependence e−iωt, in which case

(∇2 + k2)D = −∇×∇× (D− εmE)

k2 = µ0εmω
2, (31)

where εm is the permittivity corresponding to the angular frequency ω. The solution of the
undisturbed problem is obtained by setting the right-hand side equal to zero; denote this
solution by D(0). The formal complete solution is then, in an exact way,

D(x) = D(0)(x) +
1

4π

∫
d3x′

eik|x−x
′|

|x− x′|
∇′ ×∇′ × (D(x′)− εmE(x′)) (32)
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In a scattering problem, the integral on the right-hand side is taken over a constrained
region of space and D(0) describes the incident field. Then, in the far zone,

D(x)→ D(0)(x) +
eikr

r
As, (33)

where the scattering amplitude As is

As =
1

4π

∫
d3x′e−ikn̂·x

′∇′ ×∇′ × (D(x′)− εmE(x′)). (34)

After some partial integration and noticing that the substitution terms diappear, one obtains

As =
k2

4π

∫
d3x′e−ikn̂·x

′{[n̂× (D(x′)− εmE(x′))]× n̂}. (35)

The vector characteristics of the integrand can be compared with the field scattered by an
electric dipole: the contribution from the term D − εmE is precisely the field of the elect-
ric dipole so that the scattering amplitude is a vector sum from all induced electric dipole
moments. The differential cross section is

dσ

dΩ
=
|ε̂∗ ·As|
|D(0)|2

, (36)

where ε̂ is the polarization vector of scattered radiation. In principle, we have solved the
scattering problem for an arbitrary scatterer in an exact way. The caveat is that we do not
know the field inside the scatterer.

16



6 Rayleigh-Gans or Born approximation

The integral equation derived above allows for a solution via perturbation series, where the
internal field of the scatterer is first approximated by the incident field. What follows is
the so-called Rayleigh-Gans approximation or the first Born approximation based on the
corresponding integral equation in quantum mechanics.

Consider purely spatial fluctuations from an otherwise uniform medium and assume, in
addition, that the fluctuations are linear, D(x) = [εm + δε(x)]E(x), where δε(x) is small
compared to εm. The difference D− εmE showing up in the integral equation is proportional
to δε(x). In the lowest order,

D− εmE ≈ δε(x)

εm
D(0). (37)

Let the incident field be a plane wave so that D(0)(x) = ε̂0D0e
ikn̂0·x. Then

ε̂∗ ·A(0)
s

D0

=
k2

4π

∫
d3x′eiq·xε̂∗ · ε̂0

δε(x)

εm
q = k(n̂0 − n̂), (38)

the square of which, in absolute terms, gives the differential cross section. If the wavelength is
much larger than the size of the region where δε 6= 0, the exponent in the integral can be set
to unity. This results in the dipole approximation that was treated before for a small spherical
particle.
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Let us study the situation where the particle continues to be spherical and is located in
free space. Thus, δε 6= 0 inside a sphere of radius a. We obtain

ε̂∗ ·A(1)
s

D0

=
k2

4π
(ε̂∗ · ε̂0)

δε

ε0

∫
d3x′eiq·x

′

=
k2

4π
(ε̂∗ · ε̂0)

δε

ε0

∫ 2π

0

dϕ′
∫ π

0

dθ′ sin θ′
∫ a

0

dr′r′2eiqr
′ cos θ′

=
k2

2
(ε̂∗ · ε̂0)

δε

ε0

∫ a

0

dr′r′2/1
−1

1

iqr′
eiqr

′µ′ , µ′ = cos θ′

=
k2

4π
(ε̂∗ · ε̂0)

δε

ε0

1

iq

{
/a0r
′ 1

iq
(eiqr

′
+ e−iqr

′
)−

∫ a

0

dr′
1

iq
(eiqr

′
+ e−iqr

′
)
}

= k2 δε

ε0
(ε̂∗ · ε̂0)

(sin qa− qa cos qa

q3

)
, q = |q| =

√
2k
√

1− n̂ · n̂0.

In the limit a → 0, the term inside the parentheses approaches a3/3 so that, for scatterers
much smaller than the wavelength or for q approaching zero,

lim
q→0

(
dσ

dΩ
)R−G = k4a6| δε

3ε0
|2|ε̂∗ · ε̂0|2. (39)

This is in agreement with the long-wavelength limit studied earlier. The integral
∫
S
d3x′eiq·x

′

is commonly called the form factor.
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7 Why is the sky blue?

In the present context, we can consider the blueness of the sky and redness of the sunrises and
sunsets. Assume that the atmosphere is composed of individual molecules with locations xj
and that have the dipole moment pj = ε̂0γmolE(xj), where γmol is the molecular polarizability.
Then, the fluctuations of the electric permittivity can be described with the sum

δε(x) = ε0
∑
j

γmolδ(x− xj) (40)

The differential scattering cross section is of the form

dσ

dΩ
=

k4

16π2
|γmol|2|ε̂∗ · ε̂0|2F (q), (41)

where F is the structure factor treated before. For randomly distributed scatterers, F (q) is
directly the number of the molecules. For low-density gas, the relative permittivity is εr =
ε/ε0 = 1+Nγmol, where N is now the number of molecules in unit volume. The total scattering
cross section as per molecule is

σs ≈
k4

6πN2
|εr − 1|2 ∼=

2k4

3πN2
|m− 1|2, (42)

where m is the refractive index and |m− 1| � 1.

19



When the radiation propagates a distance dx in the atmoshpere, the relative change in its
intensity is Nσdx and I(x) = I0e

−kex, where ke is the so-called extinction coefficient:

ke = Nσs ∼=
2k4

3πN
|m− 1|2 (43)

This is called Rayleigh scattering that is incoherent scattering by gas molecules and other
dipole scatterers, where each scatterer scatters radiation based on Rayleigh’s 1/λ4 -law.

The 1/λ4 -law means that blue light is scattered much more efficiently than red light. In
practice, this shows up so that blue color predominates when looking in directions other than
the light source whereas, in the direction of the light source, red color predominates.

For visible light, λ = 0.41 − 0.65µm and, under normal conditions, m − 1 ≈ 2.78 · 10−4.
When N = 2.69 ·1019 molecules/cm3, we obtain for the mean free path 1/ke =30, 77, and 188
km at wavelengths 0.41 µm (violet), 0.52 µm (green), and 0.65 µm (red), respectively.

Polarization reaches its maximum of 75 % at the wavelength of 0.55 µm. The deviation
from 100 % derives from multiple scattering (6 %), the anisotropy of the molecules (6 %),
reflection from the surface (5 %, in particular, for green light in the case of vegetation), and
aerosols (8 %).

20


