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Abstract. This paper reviews scattering theory required for analysis of light reflected by planetary
atmosphéres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates
the dependence of single-scattered radiation on the physical properties of the scatterers. Section 3
describes several methods to compute the effects of multiple scattering on the reflected light.

1. Description of Radiation

Sunlight incident on the Earth’s atmosphere is scattered by molecules and particles,
giving rise to our blue skys, white clouds and striking optical phenomena such as
rainbows, halos and glories. The physical and mathematical descriptions of these
scattering processes have been pursued for centuries, and this work has contributed
greatly to our understanding of both light and the atmosphere.

Now, with the advent of instrumented space probes to the planets and meteorologi-
cal satellites of the Earth, light scattering in planetary atmospheres has taken on a
renewed interest. Reflected sunlight is remarkably rich in potential information on
planetary atmospheres, and may prove to be the most valuable of our tools for remote
analysis of clouds and aerosols.

Retrieval of the potential information in reflected sunlight requires a thorough
understanding of the relationship between the radiation characteristics and the physi-
cal properties of the scattering particles. This task is made easier by an appropriate
description of radiation. Although we employ a variety of ways to mathematically
represent radiation, it is valuable to use a simple physical description in terms of the
intensity, linear polarization (its degree and direction) and circular polarization.

1.1. BRIEF DESCRIPTION

The intensity of electromagnetic radiation is the rate of energy flow across a unit area
perpendicular to the direction of propagation. If light were a scalar wave like sound,
the intensity would provide a full description. However the transverse nature of light
waves * allows the phenomenon of polarization which requires additional parameters
for a complete description.

* The high intensity of sunlight allows us to restrict our description to the wave aspects of electro-
magnetic radiation. However, in Section 3 the concept of photons is employed as a convenient way
of describing multiple scattering processes. The quantum side of the dual character of light must
also be invoked to explain the nature of gaseous absorption and emission.

** By a simple wave we mean a plane-wave solution of Maxwell’s equations; cf., van de Hulst (1957)
and Born and Wolf (1959).
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Light consists of many simple waves** with frequencies ~10'*s~! and with the
duration of coherent wave trains <1078 s. These simple waves are each monochro-
matic and completely (elliptically) polarized. Their geometric description is contained
in many texts. In a plane perpendicular to the direction of light propagation the end-
point of a vector representing the electric field at a fixed point in space traces out an
ellipse with time. Special cases of the ellipse are a straight line and a circle, corre-
sponding to linear and circular polarization, respectively.

Light which is commonly measured is the net effect of many simple waves, and in
general it is partially polarized. The light is completely polarized only if the orienta-
tion and ellipticity of the polarization ellipses are identical for each simple wave.
Natural light, such as direct sunlight from the whole solar disk, represents the other
extreme: it is a mixture of uncorrelated simple waves, and over a time period for
usual measurements the electric vector exhibits no preferred direction of vibration.

An arbitrary beam of light of intensity / consists of an unpolarized part and a totally
polarized part,

I = Iunpol + Ipol . (11)

The degree of polarization is defined as the ratio I,,,/I. The polarized part of the beam
is in general elliptically polarized, and it can be further separated into a linearly

polarized part of ‘intensity’ I;, and a circularly polarized part of ‘intensity’ I.,, where

Lo = (I, + Iczp)llz- (1.2)
Precise definitions of 7, and I, are given below.

1.2. ANALYTIC REPRESENTATION

Consider a parallel beam of light of circular frequency w traveling in a certain direc-
tion which we choose to call the positive z direction. The components of the electric
field in any two mutually perpendicular directions (represented by unit vectors r and I)
may be wriften in terms of the amplitudes (a; and a,) and phases (¢, and ¢,) as

i(wt—kz—
E, = g’ k=

Er =a ei(wt—kz—s,.). (13)

t represents time, i=(—1)"/2, and k is the wave number, 27/A. r x 1 is in the direction of
propagation. In problems involving a single scattering event r is chosen perpendicular
to the plane of scattering, which is defined as the plane containing the directions of
incidence and scattering.

The Stokes parameters are the time averages

I =<EE] + EE') =<a + a})
Q =<EE[ — EE}) =(a} —al)
U =<EE} + E,E'> = 2{a,a, cos 6>
V =i<EE} — E,E}y =2{a,a, sind>

(1.4)
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where 6 =¢,— ¢, and the asterisk represents the complex conjugate. / is the intensity *
(say in erg s~ ! cm™2) and the other parameters have the same dimension. A constant
factor common to all four parameters is omitted from (1.4) for convenience. The
Stokes parameters of a mixture of independent waves are the sums of the respective
Stokes parameters of the separate waves.
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Fig. 1. Tllustration of the angle w. The direction of propagation is into the page.

The significance of the individual Stokes parameters can be appreciated as follows.
Suppose that E, is subjected to a constant retardation & with respect to E; and let
I(y, ¢) be the intensity of light due to vibrations in the direction making an angle
with the 1 direction (Figure 1). It can be shown that **

I(W,e)=4[1+ Qcos2y + (Ucose + Vsing)sin2y], (1.5)
and thus we can obtain the Stokes parameters from the following ‘measurements’
I1=1(0°0)+1(90°0)=1,+1,,
Q=1(0°%0)-1(90°0)=1I -1,
U=1(45°0) —1(135%0),
V =1(45° n/2) —1(135° n/2).

(1.6)

* In Sections 1 and 2 we use the definition of intensity usually employed in physics, which is the
rate of energy flow across a unit area perpendicular to the direction of energy flow (say in erg s—1
cm~2). In Section 3 we follow the common practice in multiple scattering theory of using the same
term and symbol (intensity, /) to represent the photometric brightness (erg s—! cm~2 sterad—1); cf.,
Born and Wolf (1959, Section 4.8). Furthermore, in either case the intensity may refer to any specified
spectral interval or to the monochromatic intensity; the units for monochromatic intensity include
an additional factor, say um~1.

** Chandrasekhar (1950) has the opposite sign preceding V sine. This arises from the definition of
phase differences used in his Equation (154), p. 28, which is inconsistent with the definition of phase
he employs for the Stokes parameters.
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I is the total intensity. Q is the excess in intensity of light transmitted by a polarizer
which passes linear polarization in the 1 direction (¥ =0°), over the intensity of light
transmitted by a polarizer which passes linear polarization in the r direction (i =90°).
U has an analogous interpretation with the intensity for y =45° compared to that for
Y =135° V is the excess in intensity of light transmitted by an instrument which
passes right-handed circular polarization*, over that transmitted by an instrument
which passes left-handed circular polarization.
For monochromatic light a,, @, and 6 are independent of time and it follows from
(1.4) that
[=(Q*+ U*+ V*)/2, (1.7)

corresponding to complete polarization. For polychromatic light (1.7) must in general
be replaced by the inequality

I>(0*+ U*+ V)2, (1.8)
It is clear that an arbitrary beam of radiation can be mathematically decomposed
into two parts, one unpolarized with Stokes parameters {I—(Q?+ U?+ V?)!/2,0, 0, 0}

and one elliptically polarized with Stokes parameters {(Q*+U?*+V?)'2, Q, U, V}.
Thus the intensity of polarized light is

Iy =(Q*+ U* + V)12 (1.9)
and the degree of (elliptical) polarization is

vIBg] _ (Q2 + U2 + VZ)l/Z

I i (1.10)
We further define the intensity of linearly polarized light as
I, =(Q*+ U2, (1.11)
and the intensity of circularly polarized light as
I,=V, (1.12)

from which (1.2) follows. The degree of linear polarization is I;,/I and the degree of
circular polarization I,,/I.

It is valuable to also employ a geometric description for the polarization of a beam
of radiation. The endpoint of the electric vector of the polarized part of the beam
traces out an ellipse in time (Figure 2). If we let @ and b be respectively the semi-major

* We say that the polarization is right-handed if, to an ‘observer’ looking in the direction of prop-
agation, the endpoint of the electric vector moves in the clockwise sense. Thus for right-handed
polarization the end of the electric vector, when it moves in the direction the light is moving, moves
in the direction that a right-handed screw turns. This convention is adhered to in most modern physics
books and by van de Hulst (1957), but note that the opposite convention is used by Born and Wolf
(1959), Shurcliff (1962) and Deirmendjian (1969).
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and semi-minor axes of the ellipse, then the ellipticity can be specified in terms of an
angle f§ as

tan B = + b/a (— n/4 < B < n/d). (1.13)

The sign of B distinguishes the two senses in which the ellipse may be described, with
positive B corresponding to right-handed polarization. As an example, the values
1, 0 and —1 for tan B correspond, respectively, to right-handed circular polarization,
linear polarization and left-handed circular polarization. The angle which the major
axis makes with the / direction is represented by the angle y, (0<y<n).

4

Fig. 2. llustration of the polarization ellipse. The direction of propagation is into the page, and
the indicated sense of rotation corresponds to right-handed polarization.

The shape and orientation of the polarization ellipse can be found from the Stokes
parameters as follows

sin2f = V/(Q* + U? + V)12, (1.14)
tan2y = U/Q. (1.15)

The convention is to choose the principal value of sin2f, —n/4<f<m/4, as indicated
in the paragraph above. Then from the two values of y which are in the interval
0< y < and satisfy (1.15), the one must be chosen which makes cos2y have the same

sign as Q.
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1.3. OBSERVED QUANTITIES

It is apparent that four quantities are required to describe radiation. For numerical
computations in multiple scattering problems it is convenient to employ the Stokes
parameters. However, measurements and the results of computations are usually
presented in the form of more intuitive quantities. Thus most textbooks employ the
intensity, degree of polarization, direction of polarization and ellipticity. Alterna-
tively, we can use the intensity, degree of linear polarization, direction of polariza-
tion and degree of circular polarization. This latter choice is advantageous in plan-
etary studies, because it is common to measure either the linear polarization or the
circular polarization rather than the complete (elliptical) polarization.

In remote investigations of planetary atmospheres scattered solar radiation can be
measured as a function of wavelength and scattering geometry (with the directions
of both the Sun and observer as variables), and of course as a function of time and
location on the planet. The goal is to use the observed dependence of the radiation
on these variables to extract information on the atmospheres by means of compari-
sons with theoretical computations and laboratory observations.

The intensity is the quantity most commonly measured, and it can be effectively
used in a variety of ways. The visual brightness of a planet, including its variation
with phase (Sun-planet-observer) angle and its variation across the planetary disk,
provides an indication of the thickness of the atmosphere and can also reveal the
presence of clouds. The spectral variation of the intensity at low resolution can be
used to determine limits on the possible composition of planetary surfaces and cloud
layers. Observations of absorption lines at high spectral resolution can provide the
identification of gaseous constituents. Information on the vertical atmospheric struc-
ture is also attainable because of the dependence of absorption lines on the temper-
ature and pressure distributions. However the reliability with which the atmospheric
composition and structure can be obtained from the intensity of reflected sunlight
depends in part on knowledge obtained in other ways on the nature and distribution
of scatterers.

The linear polarization is less commonly measured than the intensity, perhaps in
part because less work has been done in interpreting the polarization than in the case
of the intensity. However the linear polarization can be obtained from a relative
measurement with a high accuracy, and it has been demonstrated with laboratory
and theoretical work that the errors of measurement can be kept much smaller than
the characteristic features in the polarization of light scattered by small particles. For
this reason the linear polarization can be effectively used for determining the nature
of cloud and aerosol particles. The large difference between the polarization for gas
molecules and that for typical cloud and aerosol particles makes the linear polariza-
tion also a potentially valuable tool for investigating the altitude and vertical distri-
bution of atmospheric particles.

The circular polarization of sunlight reflected by planets has recently been measured
and found to be very small (Kemp et al., 1971a, b). However, with the very high
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accuracies of measurement which have been demonstrated, the circular polarization
has become an additional means for remote investigations of planets and a thorough
investigation of its information content can be anticipated.

2. Single Scattering

The theoretical modeling of light scattering in planetary atmospheres is usually di-
vided into two parts: single scattering by small volume elements in the atmosphere
and multiple scattering by the entire atmosphere. This division requires that the scat-
tering particles be sufficiently separated that they may be treated as independent scat-
terers, a condition which is met in planetary atmospheres.* An example is the reflec-
tion and transmission of sunlight by a water cloud: the Mie theory can be used to
compute the single scattering by a small volume element containing a representative
size distribution of cloud particles, and then the multiple scattering solution can be
obtained from the equation of transfer or one of the other methods described in
Section 3.

The aim in this section is to present definitions and illustrations which help to
provide an understanding of single scattering by independent particles. Greater detail,
including the rationale for some statements made here without proof, can be found
in the books of van de Hulst (1957), Kerker (1969) and Deirmendjian (1969).

Let a small** volume (dv) containing particles be illuminated by parallel radiation
(Figure 3). The intensity of the incident radiation, complete with polarization, may
be represented by ' I,={I,, Qo, Uy, V,}. The scattered intensity at a distance R in
the far-field (i.e., at R> 1) is

ko PL, - 2.1

scal 10 4 B3> (2.1)

where the two quantities describing the single scattering properties of the volume

element are: k. ,=scattering coefficient, dimension length™!, and P =phase matrix,
four rows and four columns of dimensionless numbers.

k., 1s the scattering cross-section per unit volume, i.e.,

v

1
ksca = o-sca/dv = ;iu X Gsca,h (2'2)

i

where the sum is over all particles in dv and o, ; is the scattering cross-section of

* The assumption of independent scattering requires that interference of light scattered by different
particles be undetectable. A rough rule of thumb is that the particles must be separated by a few
times their radius (van de Hulst, 1957).

** The volume should be small enough that the fractional attenuation of the light beam passing
through it is much less than unity.

T The Stokes parameters form a vector (column matrix) of four terms, but to conserve space we
sometimes write them horizontally. The phrase ‘intensity complete with polarization® refers to the
full Stokes vector. Boldface letters are used to represent 4-vectors and 4-by-4 matrices.
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the ith particle. o, ;is an area such that the total energy scattered by the ith particle
is equal to the energy of incident radiation falling on o, ;. It is useful to also intro-
duce the efficiency factor for scattering, Q,.,, which is the dimensionless ratio of scat-
tering cross-section to geometrical cross-section. For a single particle

Qsca, i asca, i/Gi s (23)

where G, is the geometrical cross-section of the ith particle; for a unit volume

Z asca, i
i

(o
o = 2 = : 2.4
Q ¢~ Y6 (2.4)
N
7
~
el

7

Fig. 3. Illustration of small volume element, dv, and scattering angle, a.

P gives the angular distribution and polarization of the scattered light, for any
polarization of incident radiation. The element in the first row and first column, P!,
is the phase function or scattering diagram; this represents the probability for scat-
tering of unpolarized incident light in any given direction. P is normalized such that

dQ .
JP“——:I, (2.5)
4r

4r

where dQ is an element of solid angle. The shape of the phase function can be use-
fully characterized by a single number,

dQ

{cosa) = Jcoscx pi! i’ (2.6)
4n

where « is the scattering angle and {cosa) is called the anisotropy parameter. {coso)
varies between 1 and — 1, and is O for isotropic scattering.

k.., and P define the light scattered by a small volume element, but for the solution
of multiple scattering problems it is essential to also know a third quantity:

@ = single scattering albedo, dimensionless.
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@ is the fraction scattered, of the total energy removed from the incident beam.
Since energy is removed by absorption as well as scattering, it is convenient to define
Kb Tans and Q. in exact analogy to the above definitions for scattering. With the
total removed energy defined as the extinction,

kext = ksca + kabs9
Oext = Osca + Oabs > (27)
Qext= Qsca + Qabs'

In terms of these quantities

~ ksca O-SCa QSCa
O=-—= =

kext aext Qext.

In general k,.,, P and @& depend upon the orientation of the volume dv to the di-

rection of incidence. However in many practical applications k., and @& can be taken

as constants and P as a function of only the scattering angle, with at most six inde-
pendent parameters:

(2.8)

Pll P21 0 0
P21 P22 0 0
P@) =1, o p@  _po (2.9)
0 0 P43 P44

This special case is valid for (1) randomly oriented particles, each of which has a
plane of symmetry, (2) randomly oriented asymmetric particles, if half of the par-
ticles are mirror images of the others, and (3) an even more artificial case (No. 4,
p. 50, van de Hulst, 1957). Also included in (2.9) are Rayleigh scattering (Section 2.2)
and Mie scattering (Section 2.3).

The immediate aim of theoretical work on single scattering is to provide compu-
tations of k,,, @ and P for different particles. The ultimate goal, however, is a sys-
tematic understanding of the manner in which scattered radiation depends on the
nature (shape, size distribution and optical properties) of the particles. For spherical
particles a complete quantitative understanding is possible. For non-spherical par-
ticles a partial understanding of the scattering behavior is available, based on (1)
physical interpretations of features in the radiation scattered by spheres and the de-
pendence of these features on particle shape, (2) theoretical computations for a few
specific nonspherical particles, and (3) laboratory and field observations.

2.1. GEOMETRICAL OPTICS

Light scattering by large particles can be understood through the concepts of geo-
metrical optics. The technique of ray-tracing can be used in particular cases to obtain
accurate numerical results. However, the most useful function of such computations
is the physical explanation they provide for many of the features in light scattered by
particles of size 2 wavelength.
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Light incident on a particle which is larger than the wavelength may be thought
of as consisting of separate rays which pursue independent paths. If the particle size
is at least several times the wavelength it is possible to distinguish between rays
striking different local regions on the particle’s surface. The qualitative basis for the
localization of rays is contained in Huygen’s notion that all points on a wavefront
should be visualized as centers of secondary spherical waves; by adding the condition
that the secondary waves interfere according to their phase differences Fresnel ob-
tained a semi-quantitative description of ray localization (van de Hulst, 1957,
Chapter 3).

Figure 4 illustrates the terminology for the different contributions to light scattered
by a large particle. The division of rays into these components can be made for large
particles of any shape, but the fraction of light going into the different components
depends on the particle shape and orientation.

PHASE FUNCTION :
TERMINOLOGY FOR

oo
CONTRIBUTIONS TO .S P
, SCATTERED LIGHT : Pla) 150 £t
0 DIFFRACTION JFdw/an
4T
———
{~ EXTERNAL REFLECTION £ =133 n,=2.00
2- TWICE REFRACTED RAYS 0 .500 .500
_ I .033 .08l
3-ONE INTERNAL REFLECTION 2 a4z 364
4-TWO INTERNAL REFLECTIONS 3 .020  .043
4 .003 .008
>4 .002 .004

Fig. 4. Paths of light rays scattered by a sphere according to geometrical optics. P = P! is the phase

function, « the scattering angle, and y the incident angle on the sphere for rays which strike the particle.

The table on the right gives the fraction of the total scattered light contained in each value of / for
non-absorbing spheres with refractive indices 1.33 and 2.0.

The light rays which miss the particle (/=0) are partially diffracted into its geo-
metrical shadow. The amount of diffracted light is equal to the amount striking the
particle, independently of the particle shape and refractive index. Thus for a large
particle Q.,,=2, and if the particle is non-absorbing the diffraction constitutes ex-
actly half of the scattered light. The diffraction is concentrated in the forward direc-
tion (a~0°), with its exact angular distribution a function only of the particle’s geo-
metrical shadow. The polarization of light diffracted by large particles is the same
as that of the incident light.

The intensity and polarization of the light reflected and refracted by the particle
surface may be computed from the Fresnel reflection coefficients (Born and Wolf,
1959, Section 13.4):

,  (siny —u)® + v?
" (siny + u)? + 02’
[(n? — n?)siny — u]* + (2n,n; siny — v)?
T [(nF = nd)siny + ul* + (2n,n; siny + v)*’ (2.10)

IR,

IR,|?
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where

n? —n} —cos’y + [(n? — n? — cos®y)* + 4n?n?]V/2 /2
u= P
2
. {— (n} — n} — cos®y) + [(n? — i —cos’y)” + 4;1,2ni2:|1/2}1/2

2
(2.10)

|R,|* and |R,|* are the reflection coefficients for the components of the intensity
perpendicular and parallel, respectively, to the plane of scattering.

The intensity and polarization for reflection from the outside of the particle (/=1)
follow immediately from (2.10). For a nonabsorbing sphere with n, 1.5 the exter-
nally reflected light makes up only a few percent of the total scattered light, but the
fraction increases as n, or n; increases. For randomly oriented convex nonspherical
particles the angular distribution and polarization of the externally reflected light are
the same as for spheres.

The rays which are refracted twice without any internal reflections (/=2) make up
a large fraction of the scattered light for transparent or partially transparent spheres.
This is generally true for nonspherical particles, but the exact fraction does depend
on the particle shape even if the particles are randomly oriented.

The light which is internally reflected in particles (/>3) represents no more than
a few percent of the scattered light. However, for spheres the energy in the /=3 and
/=4 terms is sufficiently concentrated to give rise to the primary and secondary rain-
bows.

Numerical results for single scattering can be obtained in the approximation of
geometrical optics by considering a number of uniformly spaced rays striking a par-
ticle, computing the reflection and transmission coefficients from Fresnel’s equations,
using Snell’s law for the directions of the refracted parts of the rays and summing
the results over all incident rays and all significant components (/=0, 1, 2, etc.). In
the results for spheres illustrated in this section, obtained by Liou and Hansen (1971),
the contributions from the different rays and components were added without regard
to phase. This is acceptable because in nature there is usually a size distribution of
particles present which tends to wash out phase effects.

A comparison of geometrical optics and Mie theory* is illustrated in Figure 5,
where the results of computations for single scattering by spheres are shown for two
values of the refractive index, n,=1.33 and 1.50. These computations are for the
particular size distribution *

n(x) = x°exp (—9x/x.g), (2.11)

where 7 (x) dx is the number of particles with size parameter (2rr/1) between x and
x+dx. For the purpose of comparing geometrical optics and Mie theory the size

* Both Mie scattering and the influence of the size distribution on the scattered light are treated in
detail in Section 3.3.



538 JAMES E. HANSEN AND LARRY D. TRAVIS

7
10 T T T T° 1 - Lo Ty T T T T T e T r—“
Ny =1.33 i ne =1.50 i
6 -~ GEOMETRICAL !
-~ GE
10 OPTICS opg?gEsTRICAL

MIE THEORY

MIE THEORY

PHASE FUNCTION

— L - I L 1
o] 40 80 120 180 O 40 80 120 160

SCATTERING ANGLE SCATTERING ANGLE
100 | L |l 'l_\ T T T 1 A L A N
Np =133 ~ n,=1.50 H

i
80 f -~ -~ GEOMETRICAL | --— GEOMETRICAL |
OPTICS OPTICS P

t
|
t

MIE THEORY

-—— MIE THEORY !/
60 |

40

20

(o]

H
[e]

PERCENT POLARIZATION
N » n
o O [e] o [e]

i
N
o

- SR SR L L . )
o] 40 80 120 160 O 40 80 120 160
SCATTERING ANGLE SCATTERING ANGLE

Fig. 5. Comparison of geometrical optics and Mie theory. The phase function (upper figure) and

percent polarization (lower figure) are for single scattering of unpolarized light by spheres. Results

are shown for two real refractive indices and three values of xetr, which is the effective size parameter

for the size distribution (2.11). For the phase function the scale applies to the curves for xer = 600,
the other curves being successively displaced upward by a factor of 100.

distribution is adequately characterized by the effective size parameter, x.¢, which is
a certain average size parameter for the distribution. The width of the size distribu-
tion does have a noticeable influence on Mie results, for which phase effects are ex-
actly computed. However, the width of the distribution (2.11), is sufficient to wash
out interference effects except for one mentioned below.

The concentration of light near «=0° is the diffraction (/=0), which is unpolarized
for the assumed case of unpolarized incident light. The external reflection (/=1) does
not leave any apparent feature in the intensity, but it is strongly polarized and causes
the broad positive polarization for a~80-120°. The energy contained in the twice
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refracted rays (/=2) is concentrated in the forward-scattering hemisphere and is
negatively polarized.

The features at o ~137° and 130° for n,=1.33 (157° and 93° for n,=1.5) are the
primary and secondary ‘rainbows’. Rainbows occur for />3 when the scattering
angle has an extremum as a function of the incident angle on the sphere, y (Figure 4).
For example, for n,=1.33 as y varies from 90° (central incidence) to 0° (grazing in-
cidence) the scattering angle for rays internally reflected once, computed with Snell’s
law, decreases from 180° until it reaches ~137° (the angle of ‘minimum deviation’)
from which it then increases. The resulting concentration of energy at 137° and just
greater angles is the primary rainbow. Similarly the second rainbow arises from /=4
rays at an angle of maximum deviation.*

The minor feature on the large scattering angle side of the primary rainbow is the
first ‘supernumerary bow’. This is not rendered by the geometrical optics computa-
tions of Figure 5 because it is an interference feature. At these scattering angles there
are /=3 rays with two different incident angles emerging with the same scattering
angle; these rays optically interfere causing the supernumerary bows. The number
and strength of the supernumerary bows depends on the shape of the size distribu-
tion, as discussed in Section 2.3.

The enhanced intensity in the backscattering direction, a~180°, is the so-called
‘glory’. This is caused specifically by the spherical shape** of the scatterers which
serves to focus certain rays at a~180°." There are essentially two origins for these
rays: edge rays (y ~0°) which set up surface waves on the sphere and noncentral rays
(0° <y<90°) which emerge at «=180° after internal reflection. The surface waves are
not included in the formulation of geometrical optics, and their contribution de-
creases as the particle size increases. For refractive indices in the range \/2<n,<2
a noncentral ray can emerge at a=180° after just one internal reflection; this gives
rise to the intense glory shown in Figure 5 for n,=1.5. Bryant and Jarmie (1974) give
a good detailed discussion of the glory.

With these interpretations of the features in the light scattered by spheres, geo-
metrical optics and Mie theory can be compared to determine the extent to which
different rays can be localized. Figure 5 illustrates that there is a close quantitative
agreement between geometrical optics and Mie theory only if the value of the size
parameter is at least several hundred. However, most of the features of geometrical
optics remain visible to a much smaller particle size. With decreasing particle size the
light in the individual features is blurred over a wider range of angles than predicted
by geometrical optics, and the higher values of / are affected first because they have
a more detailed path within the sphere. Thus the second rainbow (/=4) is quite
smooth in the intensity for x.;=150, and is lost for x.=37% while the primary
rainbow (/=3) is still easily visible in both cases.

* Thus by ‘rainbow’ we refer to a concentration of rays from an internally reflected component
(I=3) at an angle of minimum or maximum deviation other than 0° or 180°.

** Unlike the rainbow, which requires only that the particle have a circular cross-section.

* The same type of focusing occurs at a~ 0°, but the effect is lost in the much stronger diffracted light.
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Figure 5 also illustrates that the polarization for single scattering, as compared to
the intensity, contains stronger imprints of most of the features occurring in the scat-
tered light. In addition, for the polarization these features remain visible to smaller
size parameters. These conclusions hold for the rainbows, the supernumerary bows,
the glory and the external reflection, but not for the light which is diffracted or twice
refracted.

2.2. RAYLEIGH SCATTERING

The simplest scattering behavior is that of small particles. This is called Rayleigh
scattering because its basic characteristics were deduced by Lord Rayleigh (1871) in
a successful explanation of the color and polarization of skylight.

Two conditions are required for Rayleigh scattering. The particle size must be
much less than the wavelength of the incident radiation and much less than the wave-
length of the radiation after it penetrates into the particle:

size € A,
and
size € Af|n.],

where n,=n,—in; is the complex refractive index of the particle. The first condition
means that the particle can be considered as being in a homogeneous external electric
field. The second condition means that the incident radiation penetrates the particle
so quickly that the particle’s own field is set up in a time which is short compared to
the period of the incident radiation.

The incident radiation induces a dipole moment in the particle proportional to the

A

Scattered
’//ﬁ Radiation
[ ] /

el el
E; z E? ¢Ei€ cos a
o y
I I I I/E': - ‘ I Polarization = il
I I 1 I / { Ir+I!

R 2
Incident _ |-cos“a
Unpolarized . ‘ . | +“cosza
Wave Dipole Oscillations

in Response to
Incident Wave

Fig. 6. Schematic representation of isotropic Rayleigh scattering. The unpolarized wave incident
from the left can be represented by two linearly polarized waves vibrating at right angles to each other
with equal electrical field strengths (E;* = E;*) and a random phase relationship. The electrons in a
small particle oscillate in response to the electric components of the incident wave, giving rise to the
dipoles represented by the heavy arrow and dot. The dipole radiation is proportional to sinf (2.13),
where § = /2 for the perpendicular component and = #/2 — a for the parallel component.
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incident electric field,
p=a,E, (2.12)

where the proportionality constant, a,, is called the polarizability. For a particle with
isotropic polarizability the induced dipole moment is in the same direction as the
applied field, for any particle orientation. In the far-field, i.e., at a distance R> 4, the
electric field of the scattered wave is (Born and Wolf, 1959, Section 2.2.3).

_ k*psin B
R

E° exp (— ikR), (2.13)
where f is the angle between the direction of the dipole moment and the direction of
scatter. Thus the dipole does not radiate in its direction of vibration, and for incident
unpolarized light the angular distribution of the intensity of scattered light is propor-
tional to (1+cos?a), cf. Figure 6.

Phase matrix. For isotropic* Rayleigh scattering the phase matrix follows from
(2.13), (cf. Chandrasekhar, 1950):

3 (1 + cos?a) — 3sin®a 0 0
— 3gin2 3 2
_ 3 sin’« 3 (1 + cos’a) 0 0
P(2)= 0 0 3 cosa 0 (2.14)
0 0 0 3 cosa

The major application of Rayleigh scattering is to gaseous molecular scattering.
Although most real molecules exhibit some anisotropy, this can be accounted for
without any fundamental difficulty. The phase matrix for anisotropic Rayleigh par-
ticles in random orientation is **

3(1 +cos’a) —3sin’a 0 0
—3sin’a 3(l+cos’a) O 0
_ 4 P
P(a)=4 0 0 3 cosa 0
0 0 A'3 cosa
1 0 0 0
0 0 0 0
+ (1 = 4) o o o ol (2.15)
¢ 0 0 0
where
1-90
4d=——r,
149/2
s (2.16)
=5

* Isotropic of course refers here to a property of the particle, and not to the directional distribution
of the scattered light.

** The problem of scattering by anisotropic Rayleigh particles in random orientation was solved
by Rayleigh (1918). The results were put in a form close to that of (2.15) by Chandrasekhar (1950).
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and J, the so-called depolarization factor, is the ratio of intensities parallel and per-
pendicular to the plane of scattering, I,/I,, for light scattered at «=90° with the inci-
dent light unpolarized. For isotropic Rayleigh scattering =0, and in general 0<
<0<1/2. A table of measured values of é for a number of gases is given by Penndorf
(1957); some values are: H, ~0.02, N, ~0.03, air ~0.03, 0,~0.06 and CO,~0.09.

For unpolarized incident light the degree of linear polarization for anisotropic
Rayleigh scattering is

I, sin® o

— = . 2.17
I 14 cos’a+25/(1 —9) 2.17)

Thus it is clear that the anisotropy reduces the degree of polarization at all scattering
angles.

Hansen (1971b) has shown that the fourth row and fourth column of the phase
matrix may, for all practical purposes, be omitted in many problems involving Mie
scattering or a combination of Mie and Rayleigh scattering. Equation (2.15) illustrates
that the required three-by-three phase matrix for anisotropic Rayleigh scattering has a
very simple form, as has also been shown by Chandrasekhar (1950). It is the sum of
two terms, one proportional to isotropic Rayleigh scattering and one proportional to
isotropic scattering,

P(a)=A4P,(0)+ (1 — 4) P;(a). (2.18)

Scattering coefficient. The scattering and absorption cross-sections for small par-
ticles of several different shapes are given by van de Hulst (1957). The most impor-
tant results are those for isotropic Rayleigh spheres, for which the efficiency factors
are

2
Qus = Sx*7e L. (2.19)
* n+2
and
n:—1
= —4x Im{— . 2.20
Qabs {nf + 2} ( )

Thus, if the refractive index is complex, the absorption dominates over the scattering
as x— 0. The dependence of Q, ., on the fourth power of x contrasts to the result
Q... =constant for geometrical optics. The reason for this fundamental difference is
that all parts of the Rayleigh particle scatter in phase; thus the electric field of the
scattered radiation is proportional to r3, the intensity is proportional to r® and Osca
is proportional to r*.

The scattering coefficient per unit length for anisotropic gaseous molecules in
random orientation, due to Rayleigh (1918) and Cabannes (1929), is

87 (n) —1)° 6+ 38

k ,
3 BN 6-75

(2.21)

where N is the number of molecules per unit volume, n, is the refractive index of the
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gas, and the last factor arises from the anisotropy. Thus the average scattering cross-
section per particle is

_ ko 87 (n2—1)*6+ 36
g === A .
N 3 i*N? 6-76

The basis for (2.21) and (2.22) is Rayleigh’s relation for the intensity of light scat-
tered by a small particle:

(2.22)

2m\* ’ 2
I(@)=1Iy —) 2,3 (1 + cos”a) (2.23)
A

(2.22) can be obtained by averaging (2.23) over all scattering angles, using the rela-
tion between the polarizability and the experimentally measurable index of refraction,

2
n;—1
= ) 2.24
% 4N (2.24)
and including the factor arising from anisotropy.
For a mixture of gases

8n’ 6 + 39;
Koo = 73— ) vi(n3;— 1) , 2.25
= gy ) Wl 1 e (.25)

where v; is the fraction by volume of gas i.

P-1 relation. A relation between atmospheric pressure and the optical thickness
due to Rayleigh scattering can be simply derived. Outside of absorption bands the
Rayleigh optical thickness due to the gaseous atmosphere above height 4 is

g (h) = f Keca @ A1, (2.26)
h

where ¢ is the density of gas and k., is the scattering coefficient per unit mass. As-
suming hydrostatic equilibrium the pressure is

P(h) = f godh 2.27)

where g is the acceleration of gravity. In the common case in which the dependence
of k.., and g on height can be neglected, we obtain immediately
_9Tr

.

P

(2.28)

sca
Since k., =k,.,0 and ¢= N, where i is the mean molecular mass,

_ 8n° 6+ 35!
P = gjitg [W Zvi (n7;— 1) - 75] . (2.29)

1
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Values for the temperature and pressure dependent quantities in the square brackets
can be taken for any single set of conditions, e.g., for STP; in the latter case N is
equal to Loschmidt’s number. A relation between P and t analogous to (2.29) was
obtained by Pollack (1967). The path followed by Pollack is longer, however, and
includes a detour through the properties of air.

The optical thickness of the Earth’s atmosphere, obtained by treating air as a single
gas with 6=0.031 (de Vaucouleurs, 1951) and taking the other numerical quantities
from Allen (1963, p. 114), is

To = 0.00856927* (1 + 0.011317% + 0.000132"%)  [Ain u] (2.30)

for the standard surface pressure P,=1013.25 mb. For 4=0.55u (2.30) yields 7,~
~0.0973. This equation differs slightly from a A% law, due to the wavelength de-
pendence of the index of refraction. The optical depth above any pressure level, P, can
be found from

P

T=T0—“.
P
4]

(2.3D)

The optical thickness of a pure CO, atmosphere provides another useful example
for application of (2.29). For 6=0.09, i=44x 1.66 x 10~ %* gm, surface pressure and
gravity appropriate for Venus (P=93 P,, g =870 cm s~?2) and other constants from
Allen (pp. 87, 114) we obtain

To=1.52727*(1 +0.013272).  [Ain 4] (2.32)

For A=0.55u this yields 7o~ 17.4. For the surface pressure and gravity of Earth the
result is 7, (4=0.55u)~0.166 for a pure CO, atmosphere; this is about 70% greater
than the optical thickness for air.

2.3. MIE SCATTERING

For particles of an arbitrary shape and composition the electric field of the scattered
radiation at a distance R from the particle (in the far-field) may be represented by

{Eﬁ} _exp(— ikR + ikz) {sl (4, @) Sa(o (p)} {E}

E; ikR Ss (o, @) Sy ( @)f |E]

where the incident radiation propagates in the positive z direction. Computation of
the two-by-two scattering matrix S is the primary task in single scattering theory,
since the quantities k,.,, P and & can be obtained from S. The four elements of this
matrix are in general complex numbers which are functions of the scattering angle,
o, and an azimuth angle, ¢, measured about the direction of scatter.

For the special case of isotropic homogeneous spheres* the scattering matrix in

(2.33)

* For simplicity the adjectives ‘isotropic homogeneous’ are omitted in the remainder of this paper.
The scattering of electromagnetic radiation by such spheres is referred to as Mie scattering, after G.
Mie (1908) who presented a complete mathematical solution along with computations and illustra-
tions. A solution for nonabsorbing spheres had been given by Lorenz (1898) and contributions were
also made by many others (cf. Kerker, 1969, Section 3.4).
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(2.33) has the simple form

s:{%wgdg} (2.34)

It follows that the Stokes parameters, Equation (1.4), of the incident and scattered
radiation are related by

1
I=—-5—5Fl, 2.35
5 Fl, (2:39)

where, following van de Hulst (1957), we use the symbol F for the four-by-four trans-
formation matrix:

3(S:ST + 5,87) 4(8:51 — S.53) 0 0
3(8,57 — 5,87) 4(S:57 + 5,53) 0 0
F= 0 0 %@$+&ﬁ);&$—gﬂ)
0 0 — 2(5:ST = 5:8T) $(5:53 + 5:51)
(2.36)
The transformation matrix is proportional to the phase matrix,
F=cP. (2.37)

The proportionality constant follows from the normalization condition on P, Equa-
tion (2.5), which yields '

dQ
c=J‘F11—— : (2.38)
4r «

4n

and the definition of the scattering cross-section,

2 1 11
O.a = | IR"dQ[I, = 2 F'dQ. (2.39)
4rn 4n
Thus
kzasca
c= (2.40)
47

and the specific relations between the matrix elements are

11 K0ua 14 * *
F = 4n P = %(Slsl + SzSz),
ko
"F21= __S_E?P21=l SS*"‘S S* ,
4n 2( 121 2 2) (2.41)
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33 k0., 33 _ 4 * *
F =—'4 P> =1(S,S; + 5,87),
TT
k%o i
F¥=__%p4 __ " (5,8 5,8%).
4n 2( 152 = 8557) (2.41)

Single sphere. The Mie theory provides the solution for the scattering matrix of a
single sphere in the form of two infinite series:

2n+1
S, = T N nn+bnna
! Zn(n“)[” ol
"1 (2.42)
2n+1
S, = P bnn+ ntnl-
2 Zn(n+1)[ Tt @]

n=1

Sy, 83, a, and b, are in general complex.
n, and 7, are functions of only the scattering angle a. They are simply related to
the Legendre polynomials and are easily computed from recursion relations. The

first two are:
ny (o) =1 T, = COSQ

2.43
n,(0) =3cosa  1,=23cos2a. (243)

The heart of the Mie scattering problem is the computation of the coefficients a,
and b,. These are functions of only the complex refractive index, n,=n,—in,, and the
size parameter, x=2nr/A. The expressions for a, and b, (van de Hulst, 1957), which
involve spherical Bessel functions, can also be computed with recursion relations.
Appropriate methods of numerical computation have been discussed by Kattawar
and Plass (1967) and Dave (1969).

The scattering and extinction efficiency factors also follow from the coefficients a,
and b, (van de Hulst, 1957),

2
=2 2 (21 + 1) (aya? + b,bY), (2.44)
X
n=1
2
Qext =3 2 (2n + 1) Re (an + bn)s (245)
X
n=1

as does the asymmetry factor,

4 n(n+2) 2n+1
= Re(a,aniy + bbyr 1) + ————Re(a,b¥)|. (2.46
{cosa) 0., }: [ " e(a,ay+4 +1) n(n+ 1) e(anby) |- (2.46)

n=1
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As noted by Irvine (1963), the asterisks in (2.46) were inadvertently omitted by van
de Hulst (1957).

The total number of terms which must be used in these series is slightly larger than
the size parameter X, since the values of a, and b, rapidly approach zero as » becomes
larger than x. The physical explanation for this is important and is related to the
concept of ray localization. According to the localization principle the nth term in
each of the above series roughly corresponds to the contribution from the light ray
passing the center of the sphere at a distance n/2n, provided x> 1. (This is analogous
to partial wave analysis in quantum theory, in which the nth term is associated with
an orbital angular momentum #4/A4 at an impact parameter n4/2n.) Thus the series
converges shortly after n exceeds x, because higher terms correspond to light rays
missing the sphere.

The infinite series in (2.42) can be physically interpreted as a multipole expansion
of the scattered light (Mie, 1908). The coefficients a;, a, and a5, for example, specify
the amount of electric dipole, quadrupole and octupole radiation, while the b, are
the coefficients for magnetic multipole radiation. For particles which are small and
do not have a large refractive index only the electric dipole radiation is significant,
and the well-known Rayleigh scattering results. In the case of small x and large |n,|
there are sharply defined values of x for which a single a, or b, becomes very large;
these are resonance phenomena (cf., van de Hulst, 1957, Section 10.5). However for
large particles all multipoles with n <x contribute, and the physical concept of multi-
pole radiation does not prove to be of much practical value.

Size distribution. In nature a distribution of particle sizes is usually encountered.
Under the assumption of independent scattering the transformation matrix for a unit
volume is given by

F(a) = f FY(a, r)n(r)dr, (2.47)

where n(r) dr is the number of particles per unit volume with radius between r and
r+dr, ry and r, are the smallest and largest particles in the size distribution, and
F"(«, r) is one of the elements of the transformation matrix for a particle of radius
r. The scattering and extinction coefficients are

ba = [ 0 1) a7 = [ 220, () m(r) a1,
s i (2.48)
kext = f aext (7') n (7') dr = f 7.”.ZQext (r) n (V) di‘ °
ry ry
The normalized (dimensionless) phase matrix follows from
. 4 ..
PY(a) = o Fii(s), (2.49)

sca
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and the single scattering albedo from

Ksen 2.50
o 2:50)

D=

ext

It is straightforward to make computations for any size distribution of spheres.
However it is important to have systematic computations which allow an under-
standing of the effect of the size distribution. This is required if measurements are to
be inverted to yield properties of scattering particles.

To facilitate inversion of radiation measurements the size distribution must be
described with the minimum number of parameters. Clearly the first parameter should
be some measure of the mean particle size. The arithmetic mean is

| run(r)dr 1%
F=" = —frn(r) dr, (2.51)
: N
[n(r)ydr 3%
where N is the total number of particles per unit volume. But since each particle

scatters an amount of light proportional to o,.,=nr2Q,.,, the ‘best’ single parameter
describing the scattered light is the mean radius for scattering,

r2
| rnr’Qeea (X, 1,y 1) n(r) dr
ri

(2.52)

rsca -

r2 .
j‘ ﬂerSCa (x, nr, ni) n (r) dr
r

The appearance of Q.. (x, n,, n;) in (2.52) makes r,,, an inconvenient parameter.
However, if r,, is larger than the wavelength a parameter which is almost as ‘good’
can be obtained by omitting Q,_, in (2.52).

Thus we define the effective radius as

r2
[ rar’n(r)dr r2
Peff = 7o = — f rar’n(r) dr, (2.53)
[ nr’n(r)dr "

where G is the geometric cross-sectional area of particles per unit volume. Similarly,
as a measure of the width of the size distribution, we define the effective variance,

1
Gr

Ve =

3 J(r — reg)? wrn(r)dr, (2.54)
eff

where rZ; in the denominator makes v ; dimensionless. As a measure of the departure
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ture of the distribution from symmetry we define the effective skewness,

Seff = Greffv3/2 J(r reg)’ nrin(r)dr. (2.55)

These definitions are analogous to characteristics used in statistics to describe fre-
quency distribution (e.g., Kendall and Stuart, 1963), with nr?n(r) corresponding to
the frequency distribution.

It is useful to have a standard analytic size distribution for theoretical computations.
We employ the distribution used by Hansen (1971b),

n(r) = constant r{! 73"/ /e (2.56)

as a standard distribution *, because it has the simple properties

A = Fegr

b for the size distribution (2.56), (2.57)
— Veff

as may be verified by substitution into (2.53) and (2.54) with r, =0 and r,=00. The
standard distribution (2.56) is a variation of the gamma distribution; other forms of
the gamma distribution have been used extensively for cloud particles, e.g., by Khrgian
(1961) and Deirmendjian (1964). Figure 7 illustrates the standard distribution for
several values of a and b. This distribution, including the normalization constant, is
defined for 0<bh=v.4<0.5 and has an effective skewness S.q=2./b. Larger values of
v.g can be obtained by adding a third parameter to (2.56) or by using the log-normal
or power-law distribution described in the following subsection.

Numerical examples. Mie scattering computations** are a simple task for modern
computers and there now exist several books and reports containing extensive tables
of numerical results. Nevertheless it is useful to have graphical examples which clearly
illustrate the effect of the size distribution and refractive index on the scattered light.

The first graphs which we show are for quantities independent of the scattering
angle, Q..,, ® and {cosa). Q..,, the efficiency factor for scattering, is defined for a
size distribution as

} 720,00 (1) n(r) dr
Qs = _.SG_“ =" - . (2.58)
| nr’n(r) dr

Q... is shown in Figure 8 for the refractive index n,=1.33, n;=0 and the standard size
distribution (2.56). The computations were made for many values of a (0(0.1) 30(0.5)
100) and the results graphed as a function of 2rna/A, which is the effective size para-
mater for the standard distribution.

* If N is the total number of particles per unit volume, then constant=N(ab)(20-1)/5/"[(1 —2b)/b],
where I is the gamma function. However, if only the normalized phase matrix is needed, the value
of constant is not required.

** An efficient computer program is available from the author.
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Fig. 7. Standard size distribution (2.56) for 2 values of a and three values of 4. The size distribution
is normalized so that the integral over all sizes is N = 1.

The curve b=0 in Figure 8 gives Q,, for a single particle, as a function of x =2nr/A.
This curve is characterized by a series of major maxima and minima of wavelength
~10 in x and superimposed ‘ripples’ of wavelength ~0.8 in x. The major maxima
and minima are due to interference of light diffracted (/=0) and transmitted (/=2)
by the particle, these two components making up ~95% of the scattered light (Figure
4). The phase shift for a light ray passing through the sphere along a diameter is
0=2x(n,—1). Thus constructive (or destructive) interference occurs successively at
intervals ~2n in g, or ~9.5 in x for n,=1.33. The curves of Q,., for other values of
n, are qualitatively similar if graphed as a function of g, as shown in Figure 32 of van
de Hulst (1957).

The ripple on the Q,, curve for a single particle arises from the last few significant
terms in the Mie series, (2.42), as demonstrated by Bryant and Cox (1966). According
to the localization principle these terms arise from edge rays, i.e., from the light rays
grazing the sphere. These rays set up surface electromagnetic waves which travel
around the sphere spewing off energy in all directions. Since there are focal points at
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a=0° and o=180° the main effect of the surface waves is noticed in these directions.
At a=180° the surface waves give rise to an enhanced intensity which contributes to
the glory, and is the main cause of the glory for cases in which there is no contribution
from geometrical optics. At «=0° the intensity due to surface waves is small compared
to the intensity of diffracted light. However the diffracted radiation and the radiation
arising from the surface waves optically interfere, causing the ripples in the extinction
curve. van de Hulst (1957) and Bryant and Cox (1966) suggest different phenomeno-
logical models to explain the wavelength of the ripple. In the model of van de Hulst
the surface waves are assumed to take short cuts by jumping through the sphere; in
the model of Bryant and Cox it is assumed that the surface waves are only slightly
damped, i.e., that they involve hundreds of circumvolutions. Numerical results
presented below for absorbing spheres suggest that the model of van de Hulst may be
the closer to reality.
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Fig. 8. Efficiency factor for scattering, Osca, as a function of the effective size parameter, 2na/A. The
standard size distribution (2.56) was used with four values of the effective variance 5. For the case
b =0, 2rna/A =2nr/A = x. The refractive index is nr = 1.33, n; =0.



552 JAMES E. HANSEN AND LARRY D. TRAVIS

Figure 8 demonstrates that even a small dispersion of sizes * washes out the ripple
in Q,.,. However the first major maximum persists to large values of b, so its effect
must be noticeable in many cases. One example is an increase of atmospheric extinc-
tion with increasing wavelength (‘anomalous extinction”) which is sometimes observed
(e.g., Porch et al., 1973). This must be due to extinction by atmospheric aerosols with
0.¢~ 5. The magnitude of the effect can serve as a rough measure of the width of the
size distribution.

Figure 9 illustrates that both the ripples and the major maxima and minima damp

p=2x(n.-1)
I 5 [
4 I T T T T T 771 IO T T T 5|O T
8 n|=O
3~ _
\ni=.O|
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g2
(@)
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I / \n1=O.I N
O 1 H Il A I | | Il 1 I 1 L1
| 5 10 50 100
X=271r/ A\

Fig. 9. Efficiency factor for scattering, Qsca, as a function of the size parameter x = 2nr/A. The
refractive index is nr = 1.33, with results shown for four values of ;.

* verr is ~0.06-0.08 for the size distributions measured for particles in the stratosphere (the Junge
layer) by Friend (1966) and Mossop (1965); it is ~0.10-0.20 for the distributions measured by Diem
(1948) for water clouds, but values as large as ~0.5 were found by Weickmann and aufm Kampe
(1953), whose measurements included larger particles than those sampled by Diem; ves is ~0.5-20
for the typical size distributions found by Junge (1963) for tropospheric aerosols.
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Fig. 10. Single scattering albedo, &, as a function of the imaginary part of the refractive index, #;.
The solid curves are for b =0, corresponding to a single particle so 2ra/i =2znr/A =x. The real
refractive index is n, = 1.33.

out as absorption within the particles increases. In geometrical optics the intensity of
a light wave traversing a diameter of the sphere is decreased by the factor* e~ 4™,
and thus the major maxima and minima are significantly damped for 4xn;~1. The
ripples damp out at a value of xr; which is smaller, but not smaller by orders of mag-
nitude. This is consistent with van de Hulst’s (1957) model for the surface wave in
which only a few circumvolutions of the sphere are involved.

Figure 9 also shows that as »; increases Q,., for large particles first decreases,
reaches a minimum, and then increases. As n; becomes large Q. , approaches the value
for a perfect reflector, i.e., Q,., — 2 (cf., 2.10).

The dependence of the single scattering albedo & on x and #; is illustrated in Figure
10 for n,=1.33. The solid curves are each for a single particle of a given size parameter.

* In traveling a distance z the amplitude of the electric field varies as e~t*2ne=e—tkz(nr—ini) and thus
the intensity is proportional to e—2%zn1,
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For large x and not too large n;, @ approaches ~0.53. This can be understood from
Figure 4; for n,=0 509, of the scattered light is diffracted, 3.3%; is reflected and the
remainder is refracted into the particle. As long as #; is small this division of the rays
remains approximately correct, and for large particles the refracted light is absorbed
within the particle even for small n;. As x becomes small & takes on values less than
0.5, a result of the fact that the Rayleigh region is being approached (cf., 2.19 and 2.20).

The dotted curves in Figure 10 are for a size distribution of significant width,
b=0.10 (cf., Figure 7). For x=1 and x=35 there is a non-negligible dependence of &
on b, as would be expected. However, for x> 10 & is practically independent of the
width of the size distribution. Thus for particles this large only one parameter, rg,
is required to define the effect of the particle size distribution on &. This is a result
of our choice of parameters; for example, it can be shown that two different distribu-
tions with the same mode radius or the same mean radius in general have considerably
different values of @.

The asymmetry parameter {cosa) is graphed in Figure 11 as a function of x 4=
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Fig. 11. Asymmetry parameter, {cosa), as a function of the effective size parameter, 2na/A. The

standard size distribution (2.56) was used with four values of the effective variance 4. For the case
b =0, 2na/A = 2nr/) = x. The refractive index is n, = 1.33, n; =0.
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2na/A for the size distribution (2.56). The refractive index is n,=1.33. For small
particles {cosa) approaches zero, the value obtained for Rayleigh scattering. For
large x {cosa) approaches the result which is obtained with the geometrical optics
phase function, ~0.87 (van de Hulst, 1957). The maxima and minima in {cosa) have
the same physical origin as those in Q,., discussed above. {cosa) is thus dependent
on x.; and v.s. The dependence of {(cosa) on higher moments is small provided
X5 > 10. For the range of v typical of terrestrial clouds the dependence of {cosa)
on v is negligible, at least for the range of x . appropriate for the visible and near-
infrared regions.

Figure 12 shows the asymmetry parameter for different real refractive indices. The
size distribution is (2.56) with 5=0.07, which is sufficient to smooth out all maxima
except the primary interference maximum (cf., Figure 8). This maximum in {cosa)
corresponds to a maximum in Q,,, since this feature is a result of constructive inter-
ference in the forward direction. For the larger values of refractive index {cosa)
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Fig. 12. Asymmetry parameter, <cosa), as a function of effective size parameter, 2na/A. Results
are shown for five values of the real refractive index, #r, all with n; = 0. The standard size distribution
(2.56) was used with b=0.07.
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deviates more readily from its zero value for Rayleigh scattering, as expected. At
2na/2=100 the limit of {cosa) for geometrical optics has nearly been reached; e.g.,
for n,=1.33 the phase function for geometrical optics yields {cosa) ~0.87. The gra-
dual increase in {cosa) as it approaches its limiting value is due in large part to the
decreasing width of the diffraction lobe of the phase function. As n,— 1, {cosa)—1
for large 2na/A, since n,=1 corresponds to no scattering at all. On the other hand, as
n,— 00, {cosay — 0.5 for large 2na/], because half of the scattered radiation is diffrac-
ted in the forward direction and half is reflected isotropically (cf., 2.10).

Figure 13 illustrates the effect of the imaginary part of the refractive index on {cos o).
For x.x=1000 as n, increases {cosa} first increases from its geometrical optics value
for n;=0 (~0.87); this increase is a result of absorption of rays refracted into the
particle. At n,=0.001 the absorption of refracted rays is essentially complete since in
traversing a particle diameter the reduction in intensity is the factor e **™ =¢~4. Thus
only diffraction and reflection contribute and {cosad ~0.94x 1+0.06 x 1=0.97,
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Fig. 13. Asymmetry parameter, {cosa), as-a function of the imaginary part of the refractive index,

ni. The solid curves are for b =0, corresponding to a single particle, so 27a/4 = x. The real refractive
index is n, =1.33.
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where 1 and 1 are the approximate values of {cosa) for the diffracted and reflected
components. For x =100, n; must be ~ 10 times larger for the transition to {cosa)
~0.97 to occur. As n; increases further and becomes significant relative to n, the
amount and angular distribution of Fresnel reflection change, cf. (2.10), until finally
{cosa) —=0.5 and n; > o0, for the same reason as in the case n, - c0.

For x.s=5 and 10 {cosa) is qualitatively similar to the case of large particles, but
the numerical values can not be reliably computed using geometrical optics. For
x.¢=1<{cosa) is not far from the Rayleigh result, {cosa) =0. For small »; the signif-
icant terms in the Mie series in addition to the electric dipole term are all forward
scattering, and thus {cosa) >0 (van de Hulst, 1957, Section 10.3). However for large
n; the magnetic dipole term is large, and this gives primarily backward scattering. In
the limit x -0 and n,— o, {cosa) - —0.4 (van de Hulst, 1957, Section 10.01).

The remaining graphs in this section are for elements of the phase matrix P(x).
P (o) is generally more sensitive to the particle size distribution than the quantities
Q..., ® and {cosa). Therefore we demonstrate in more detail the effect of the particle
size distribution. We show that in many practical applications it is possible to ade-
quately describe the size distribution with at most two parameters, the effective radius
and the effective variance.

We illustrate the sensitivity of P («) to the shape of the size distribution with com-
putations for four different distributions, the standard (gamma) distribution (2.56),
the bimodal gamma distribution, the log-normal distribution and the power law distri-
bution. For the bimodal distribution we use

7‘(1 —3b)/be“'/(a1b) 7'(1 —3b)/be—r/(a2b)
n(r)y=1% (1=2b)/b + (1=2b)/b
(a1b) r[(1—2b)/b] ~ (ad) r[(1 —2b)/b]
(2.59)

so that each of the two parts has the same value of b and contains half of the particles.
For the log-normal distribution

1
2

1 1
= —exp[— (Inr —Inr,)*(262)],
" n(r) ), r exp[— (Inr — Inr,)*/(20,)]

o0

Inr, = f Inrn(r)dr (2.60)

(]
and

o) = f (Inr —Inr,)* n(r)dr.
0

Finally, we choose the power law ocr ™3, so

2r}r}

-3

nr)y= —=r for ri<r<r

") r2—rt e (2.61)

=0, otherwise.
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All of the distributions are normalized such that

e ]

f n(rydr=1. (2.62)

0
Figure 14 shows the single scattering intensity and polarization for all four distribu-
tions, with the computations being for refractive index n,=1.33, n,=0 and wavelength
4=0.55p. The parameters in each distribution were chosen such that* r.; =1y and

200 )
100
| 150
50f
standard gamma
~log-normal I
--------- bimodal g
sOF N w4 power law g
S 5: :
[
e J
w 20 <)
§ g
j =
I- 10 S
5f 0
- -0
“ :_- ~ -
K 1 1 1 N , 1 L 1 ! | ! l !

I I -
0O 20 40 60 80 100 120 140 160 BO/0O 20 40 60 80 100 120 140 160 18020
Scattering Angle

Fig. 14. Phase function, P'1, and percent polarization, —100P21/P11, for single scattering of un-

polarized incident light. Results are shown for the four size distributions illustrated in the inset, all

of which have the same value for rerr (1 z) and vesr (0.25), where resr is the effective radius and vest

the effective variance. The calculations are for the real refractive index nr = 1.33 and wavelength
A=0.55pu.

* For the log-normal distribution this required

rg = reit/(1 + vesr)®2~0.5724u,
o2 =In(1 + verr) ~ 0.4724.

For the power law distribution (2.61) r1 and r2 were obtained from

r reg —ri
eff —
ln(rz/rl)’

ra+ri
Vett = 2_(;—*1’1_) In(re/r1) —1,
which required #1 ~ 0.3620 u, ra~ 2.138 u. For the bimodal gamma distribution
1+ (az/al)a]
1 —(az/a1)?]’
_ [ +(az/a1)*] [1 + (az/a1)?]
[1 + (az/a1)3)?

We arbitrarily chose a2/a1 = 5, which then required ai ~ 0.2063 u, b ~ 0.2193.

Fett = a1 [

a+b—-1.

Vett
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veg =0.25, these numerical values being selected to yield a rather difficult test of how
well the standard distribution represents the results for other distributions. For larger
size parameters and/or smaller v 4 the different distributions usually yield results even
closer than those in Figure 14.

In Figure 15 we have plotted results comparable to those in Figure 14, but with the
parameters in each distribution selected such that the mean radius 7 (2.51) and the
variance,

0,2

z (r—7? n(r)dr

[ n(r)dr

0

(2.63)

are the same for all four distributions.* The results show significantly greater differ-
ences than in Figure 14. For the bimodal distribution the comparison is not entirely
fair, because the smaller value of b for Figure 15 (which was required to obtain the
appropriate value of ¢?) resulted in two very distinct modes in the size distribution.
Nevertheless, Figures 14 and 15 are reasonably representative of the differences which
are found between cases in which r.; and v.g are chosen to describe the size distribu-
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Fig. 15. Phase function, P!1, and percent polarization, —100P21/P11  for single scattering of un-

polarized incident light. Results are shown for the four size distributions illustrated in the inset. The

standard gamma distribution is the same as in Figure 14. All four distributions have 7 =0.5 u and

02 =0.125 2, where 7 is the mean radius and 2 the variance. The calculations are for the real refrac-
, tive index n, = 1.33 and wavelength 1 =0.55 u.

* For the gamma distribution 7=a(1 —2b) and 62 =a2b(1 —2b). Thus for a=1x and b=0.25,
7=0.5 ¢ and ¢2=0.125 2. The parameters in the other distributions were thus chosen such that
7 and o2 had these values. This required for the lognormal distribution ry = 0.4082 £ and o4 = 0.6368,
for the bimodal distribution a1 = 0.1795 and 5 = 0.0357, and for the power law distribution r1=0.2690
and rz = 3.535. We took a2 = 5a; for the bimodal distribution, as had been done for Figure 14.
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tion and cases in which 7 and o? are used. Thus if the simple moments, without the
weight factor nr?2, are used to describe the size distribution, more than two moments
are required to obtain results comparable to those in Figure 14. Of course if the mode
radius is used to describe the size distribution the results are even much poorer than
in Figure 15; i.e., different distributions with the same mode radius may have entirely
different scattering properties. '

We have shown that it is efficient to compare different size distributions by examin-
ing 7., Ve and higher ‘moments’ if necessary. In the case of unimodal distributions,
i.e., distributions with a single maximum, scattered radiation can be accurately de-
fined by a small number of these characteristics. Thus, although it is impossible to
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extract the exact size distribution from measurements of scattered light, the major
characteristics of the distribution can be obtained. This also allows the possibility of
obtaining other information such as the particle refractive index.

Figures 16-20 are contour diagrams illustrating the dependence of the phase matrix
on n,, n;, rg and v.g for the range of these parameters that is important for light
scattering in planetary atmospheres. The phase matrix elements are shown as a func-
tion of scattering angle (or its supplement, the phase angle) on the horizontal axis and
as a function of the effective size parameter 2rna/A on the vertical axis. By choosing
any fixed value for a the vertical scale can be converted to a scale for A. This is done
on the right side of each figure for the choice a=1pu.

Figures 16 and 17 illustrate the complete phase matrix for the real refractive indices
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n,=1.33 and 1.44. P! is the phase function and —100 P2!/P!! the percent linear
polarization for single scattering of incident unpolarized light. The significance of the
other two matrix elements is partially shown by Table I. Many of the features in these
contour diagrams are most prominent in the linear polarization; thus in Figure 18
we have graphed the linear polarization for four additional real refractive indices in
the range 1.25-2, for effective size parameters 0-50.

TABLE I
Stokes vectors of incident and scattered light for the case of scattering by spheres

Stokes vector of Polarization form of Stokes vector of light scattered

incident light incident light by spheres in the plane of
scattering

Inc(1,0,0,0) unpolarized Toc (P11, P21 0, 0)

Ipec(1,1,0,0) linear, y =0° Loc (P14 P21 plly p21 (), 0)

Ioec(1,0,1,0) linear, y = 45° Ioc (P11, P21 P33 p43)

Tooc(1,0,0, 1) circular, right-handed Toc (P11, P21 — P13 p33)

The size distribution for Figures 16-18 is (2.56) with b=, =0.07. This is broad
enough to smooth out most of the interference maxima and minima which occur for a
single particle, but not broader than most naturally occurring distributions. The inte-
gration over size parameter extended from x,=0 to x,=2300, which is practically
equivalent to the interval (0, o).

For the smallest size parameters Rayleigh scattering occurs. Thus there is strong
positive linear polarization, with the maximum linear polarization at scattering angle
90°. The Rayleigh scattering region is similar for different refractive indices, but it is
more compressed for the larger values of n,. This is understandable since the condi-
tions for Rayleigh scattering are x<1 and |nx| <1.

For the largest size parameters the phase matrix approaches that for geometrical
optics. At small scattering angles the phase function is large and the linear polarization
is small because of the predominance of diffracted light. Other than diffraction, most
of the light scattered into the forward hemisphere is due to rays passing through the
particle with two refractions. This light has negative linear polarization, as follows
from Fresnel’s equations. Reflection from the outside of the particles contributes a
positive linear polarization at all phase angles; although the intensity of these rays
is small, it is sufficient to cause the long peninsula of positive linear polarization at
scattering angles o~ 15°. This feature becomes stronger as », increases, because the
Fresnel reflection coefficients increase with #,.

The steep ridge and positive polarization maximum at scattering angles ~ 150°
(for n,=1.33) is the primary rainbow. This arises from rays internally reflected one
time in spheres. These rays tend to be concentrated at a given scattering angle, as
can be shown from geometrical optics. Similarly, the wzaker feature at a~ 120° (for
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n,=1.33) is the second rainbow, due to rays undergoing two internal reflections. Still
higher rainbows contain a negligible fraction of the scattered light, and they do not
contribute any noticeable features. The location of the rainbows in scattering angle
varies with n, in accordance with Snell’s law (cf., Liou and Hansen, 1971).

The sharp maximum in the backscattering direction (x~180°) is the glory. As
mentioned above this is due in large part to incident edge rays and, for \/ 25n, <2,
to rays internally reflected one time. The glory is focused into a region whose angular
width is approximately inversely proportional to the effective size parameter.

For scattering angles ~20° and size parameters ~ 15 (for n,=1.33) there is a hill of
positive linear polarization, which nearly forms an island but is connected to the
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peninsula of positive polarization for larger particles. This feature is a manifestation
of what van de Hulst (1957) calls ‘anomalous diffraction’. It is due to optical interfer-
ence between diffracted light and light reflected and transmitted by the particle in the
near forward direction. The phase shift of a ray traveling through the center of the
sphere is ¢ =2x(n,— 1), which accounts for the location of this feature in size param-
eter being oc1/(n,—1).

In the transition region between large particle scattering and Rayleigh scattering
the linear polarization is a complicated function of size parameter. As the size param-
eter decreases the degree to which the paths of separate light rays can be localized
decreases. Thus the second rainbow, with a more detailed ray path, is lost from the
polarization before the primary rainbow is. With decreasing size parameter the primary
rainbow becomes blurred and its peak first moves toward larger scattering angles
due to the asymmetric shape of the rainbow. For n,=1.33 the peak of the primary
rainbow shifts to smaller scattering angles for size parameters <10 and merges with
Rayleigh scattering. This effect is less pronounced for the larger values of n, because
the Rayleigh region is more depressed and the rainbow is at a scattering angle
further from the Rayleigh maximum. The negative linear polarization features for
size parameters ~5 are due to edge rays and resulting surface waves, i.c., they are
glory phenomena.

Figure 19 shows the linear polarization for n,=n,=1.40 for the size distribution
(2.56) with b=0, 0.01, 0.07 and 0.25, the case =0 corresponding to a single particle.
The integration limits on 2ra/A were (0, 300) for the other three cases, which was
practically equivalent to (0, o).

Figure 19 thus illustrates the effect of the width of the size distribution on the
polarization. The case =0 appears as a field of maxima and minima, as a result of
the optical interference phenomena for a single particle. Note that the rainbow, glory
and Rayleigh regions are apparent even for a single particle.

The case 5=0.01 shows that even a very narrow size distribution is sufficient to
smooth out most of the interference effects. The qualitative effect of broadening the
distribution is easy to understand. It corresponds essentially to taking averages along
vertical lines. Thus with increasing b hills tend to be smoothed out, holes are filled
in, and corners are rounded off; straight vertical lines, however, remain almost
unchanged.

The island at 2na/A~ 10, o~20° for =0.01 is the major anomalous diffraction
feature. The magnitude of this feature is sensitive to the particle size distribution. The
maximum polarization decreases from ~ 109 to ~ 3% as b increases from 0.01 to 0.07
and the feature is absent for 52 0.12. This is understandable since only a narrow dis-
tribution of sizes has the phase shift required for the interference feature.

The bridge of positive polarization formed by the merging of the primary rainbow
and Rayleigh scattering is also strongly affected by the width of the size distribution.
As b increases this bridge tends to be eroded away. Figure 19 illustrates that for
n,=1.40 and =0.25 there is a large breach of negative polarization separating the
regions of positive polarization. Figure 16 shows that for n,=1.33 no such breach
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can exist for large b, because the polarization at a=140° is positive for all values of
2nalA.

Figure 20 illustrates the effect of the imaginary part of the refractive index on the
phase function and percent polarization. n, is 1.33 and »; is 0.01 and 0.1, thus Figure
16 provides a comparison for n;=0. For small values of 2na/A n;=0.01 has little effect
on the phase function or polarization (though of course it may have a major effect
on the single scattering albedo, cf. 2.20). For large particles the absorption of refracted
rays leads to a dominance of reflected rays and diffraction. Thus for #,=0.1 the phase
function consists essentially of the diffraction peak in the forward direction and nearly
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isotropic scattering in the backward hemisphere. Note that the polarization is prac-
tically total at the Brewster angle, for which the phase angle is given by 2 arc tan

1.33~106°.

Polarization observations of Venus provide a striking example of how measure-
ments of scattered light can be used to obtain the size distribution and refractive index
of particles. Observations of Venus by Lyot (1929), Coffeen and Gehrels (1969) and
Dollfus and Coffeen (1970) clearly show the rainbow, glory, anomalous diffraction and
the breach of negative polarization between the rainbow and Rayleigh regions. Hansen
and Hovenier (1974) have used these observations to derive accurate values for r.g,
v.g and n, (1) for the cloud particles on Venus.
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3. Multiple Scattering

A variety of techniques have been developed for computing the intensity and polariza-
tion of multiple scattered light. Our aims here are: (1) to demonstrate several of the
computational methods which have proved particularly useful and show their close
interrelationships, and (2) to illustrate the effects of multiple scattering on the informa-
tion content in scattered radiation.

We present most of our graphs in Section 3.1 on the doubling method, because we
have developed extensive programs for that method*. However, the same results could
be obtained with many other methods. We also present graphical results in Section 3.2,
because it is instructive to examine the contribution of successive orders of scattering
to the intensity and polarization. Two methods for computing orders of scattering
are presented: the classical method which involves successive integrations of the equa-
tion of transfer over optical depth, and a new method derived from an invariance
principle. The method in Section 3.3, involving an iteration of the formal solution to
the equation of transfer, is similar to the classical orders of scattering method; it
converges faster but does not yield information on each order of scattering. The inva-
riant imbedding method (Section 3.4) is based on an equation which gives the change
in reflection when a very thin layer is added to the atmosphere; in contrast to the linear
equation of transfer with boundary conditions, this method leads to a nonlinear initial
value problem. In the method of X and Y functions (Section 3.5) the invariant imbed-
ding equations are manipulated analytically to obtain certain integral equations, which
are then solved numerically. In the method of discrete ordinates (Section 3.6) the
equation of transfer is evaluated at N discrete zenith angles to obtain N equations for
N unknowns; these may be solved numerically or, in some cases, analytically. The
spherical harmonics method (Section 3.7) is very similar to the discrete ordinates
method. The method of expansion in eigenfunctions (Section 3.8) has been of value
in improving our understanding of the mathematics of idealized problems in radiative
transfer, but it is too unwieldy for most practical applications. In contrast the Monte
Carlo method (Section 3.9) treats multiple scattering as a simple stochastic process;
thus this method is particularly useful because it can be easily applied to non-plane-
parallel geometries.

The problem defined below for a plane-parallel atmosphere is sufficient to cover
most applications for light scattering in planetary atmospheres. The scattering is
assumed to be ‘coherent’ in the sense that no change of frequency occurs within the
visible region (thus Raman scattering, for example, is excluded). Thermal emission is
also excluded, but it can easily be added into the formalism.

Definitions. Most computations for multiple scattering in planetary atmospheres
are made under the assumption that the atmosphere may be approximated as being
composed of plane-parallel layers. In this case the location in the atmosphere can be
specified by the optical depth,

* A program to compute the intensity is available from the authors.
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[« ]

T = f KexeQ A’ . 3.1)

h

Kext 18 the extinction coefficient per unit mass and ¢ the atmospheric density at height
h’. Thus we take 7=0 at the top of the atmosphere and t = 1, at the bottom (Figure 21).

We use two systems to specify zenith angle:

(1) u=cosine of angle with respect to direction of increasing t (downward) range
+ 1 (for the downward direction) to —1 (for the upward direction),

(2) p=|u|=cosine of angle with respect to the outward normal, range + 1 (for the
normal direction) to O (for the grazing direction).

T,

h=w ‘ T=0

b{os"u

h=0 k77

I

t
Fig. 21. Definition of zenith angles and optical depth.

System 1 is used for the internal radiation field, i.e., within the atmosphere. System 2
is used for the reflected and transmitted radiation; the purpose of this second system
is to avoid the appearance of a minus sign. We also let §=cos ™! u, and for the zenith
angle of radiation incident on the atmosphere we write 6,=cos™!u, (Figure 21).
Azimuth angle, ¢, is measured counterclockwise looking downward.

The Stokes parameters of light incident on the top of the atmosphere are represented
by the column vector,

Iy

I, = (Q]Z . (3.2)

Vo

Similarly the Stokes parameters of the light diffusely reflected and transmitted by the
atmosphere are I, (u, ¢) and I, (u, @), respectively. The units of I are those of photo-
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metric brightness, say erg s™' cm™? sterad ™! (cf., footnote * of Section 2, p. 533).

It is convenient to express the solutions to the multiple scattering problem in terms
of reflection and transmission matrices, each composed of four rows and four columns,
such that

1 :
I (,u, d’) = ﬂ to duo | dooR (ﬂ, Ho> @ — ¢0) I, (,uo, ¢0)
' (3.3)
10 m
L (N, ¢) = 7_: Mo dpo | dgT (ﬂs Hos ¢ — ¢o) I, (ﬂo, ¢o)-
) P

In many problems the quantity which is desired is the net flux of radiation, which is

defined as
1

2n 1
7rF=ff[(u,¢)udud¢=2nfol(u)udu, 3.4
0 -1 -1
where %I (u) is the azimuth-independent term in a Fourier expansion of I(u, ¢). For a

plane-parallel atmosphere the fraction of the incident flux which is reflected is called
the local (or plane) albedo:

1

Alro) =2 [ R (o) (3.5)

0

where °R'! is the azimuth-independent part of the element in the first row and first
column of R. The spherical or Bond albedo is the ratio of the radiation reflected from
a spherical but locally-plane-parallel atmosphere to the radiation incident from a
distant source. For a locally-plane-parallel atmosphere. '

1 1

1
A =2 [ A (o) o do =4 [ [ R (o) i s o (3.6)
0 0 0

For most problems it is satisfactory to approximate incident sunlight as mono-
directional i.e.,

Iop=0(u—po)d (¢ — ¢o) nF,, (3.7

where 6 is the Dirac delta function and nF, is the incident flux per unit area perpen-
dicular to the incident beam, say in erg s~! cm ™ 2. Thus in this case

I, (ﬂa ¢) = uoR (Ha Ho> @ — ¢0) Fo
L (4, &) = uoT (1, po, ¢ — $o) Fo.

The reflection and transmission by a layer in general depend upon whether the layer
is illuminated from above or below. We distinguish the case of illumination from

(3.8)
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below with a superscript asterisk, thus

I;k = poR* (1, 1o, ¢ — ¢o) Fo,

I;k = ptoT* (1, o,  — bo) Fo.
Although a planetary atmosphere is illuminated from above, the functions R* and T*
are needed in some computations because a given layer can be illuminated by lower
layers or a reflecting ground.

Symmetry relationships. For a homegenous plane-parallel atmosphere with a phase
matrix of type (2.9) there are three pairs of independent symmetry relationships
obeyed by the reflection and transmission matrices (Hovenier, 1969). First, the only
difference between the cases of illumination from above and illumination from below
is the sense in which the azimuth angle is reckoned; thus

R* (,LL, Hos ¢ - ¢0) = R(Ih Hos ¢0 - (»b)’
T* (1, o> ¢ — ¢0) = T (1, po» $o — ¢)-

Therefore, for a homogeneous layer, R* and T* never need to be computed if R and T
are known.

A second pair of symmetry relationships involves the interchange of the rows and
columns of the reflection and transmission matrices,

T(MO, H, ¢ - ¢0) = %T (ua Hos ¢ - 4)0) qs,

(3.9)

(3.10)

R (.uOs U, ¢ - ¢O) = q4R (ﬂ’ Hos ¢ - ¢0) qa, (311)
where the tilde indicates the transpose, and
1 0 0 0
0 1 0 0
=0 o -1 o
0 0 0 1
(3.12)
1 0 0 0
0 1 0 0
“=10 o 1 of
0 0 0 -1

The relationships given by (3.11) are useful for checking computed results and for
reducing the number of quantities computed.
The third pair of symmetry relationships is

R (1, po, $o — ¢) = q;q4R (#, Ro> @ — ¢o) q49s,

(3.13)
T (4, Ho> Po — &) = 4344T (1, Ko, & — H0) 9ug3-
This implies that the reflection and transmission matrices are each of the type
c c s s
c c s s , (3.14)
s s c c
s s c c
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where ¢ represents a matrix element which is an even function of (¢—¢,) and s
represents an odd function of (¢ — ¢,). In a Fourier series expansion the even func-
tions contain only cosine terms and the odd functions contain only sine terms.

The symmetry relationships (3.10), (3.11) and (3.13) follow from time reversal
reciprocity (corresponding to interchange of the directions of incidence and emergence)
and from the symmetry which exists with respect to the scattering plane for phase
matrices of the type (2.9), cf., Hovenier (1969). For a homogeneous atmosphere all
six relationships are valid. For an inhomogeneous atmosphere the second part of
(3.11) and both parts of (3.13) are valid.

Phase matrix. The phase matrix in Section 2, P («), was defined with respect to the
plane of scattering, with o the scattering angle. Since there are many different planes
of scattering in multiple scattering problems, it is necessary to choose one common
plane of reference for the Stokes parameters. For this purpose we use the local
meridian plane, specified by the local normal (#=1) and the direction of emergence
(u, ¢). As Chandrasekhar (1950) has shown, the phase matrix defined with respect
to the local meridian plane may be obtained from P(«) by means of appropriate
rotations.

1 0 0 0
_ 10 cos2i, —sin2i, 0
Plnto @ =) =10 Gn2i, cos2i, 0
0 0 0 0
(3.15)
1 0 0 0
0 cos 2i; — sin 2i; 0
P@1o  sn2i,  cos2i, 0
0 0 0 0
The rotation angles i; and i, for 0 <¢ —¢, <7 are given by
Cu(l—ug)'? —ug (1 —u*)!? cos (¢ — ¢o)
cosiy = i3 ,
(1 —cos*a) 316
(1= u?) — u (1~ ud)!” cos (¢ — o) (10
Ccos 12 = 2 1/2 ’
(1 — cos®a)
where the scattering angle a is given by
coso = u g + (1 — u?)/2 (1 — ud)"? cos (¢ — ¢,). (3.17)
We introduce the notation
Pr(ﬂs Hos ¢ - d)O) = P(_ U, o, ¢ - ¢O)a
P, (1, o, ¢ — ¢0) =P (1, 1o, ¢ — ¢0), (3.18)

Pf(ﬂ? ﬂ03¢_¢0) EP(”, _ﬂ0’¢ —¢0)a
P:‘(ﬂ,ﬂo,‘f’—‘/’o)EP(_ﬂs —ﬂo,¢_¢0)-
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The phase matrix, if it is of the form (2.9), satisfies the symmetry relationships given
above for the reflection and transmission matrices, i.e.,

P:‘ (ﬂ’ Hos 4) - ¢0) = Pr (Au" Hos ¢O - ¢),

3.19
Pt*(:u>ﬂ03¢—¢0)=Pt(ﬂau03¢0_¢)9 ( )
P, (o, 4, ¢ — o) = q3I~’, (15 Bos @ — ¢0) 43, (3.20)
q Pr (/“lO’ u, ¢ - ¢0) = q413r (iu’ Ho, ¢ - ¢0) ! P '
an
Pr (ﬂ’ Hos ¢0 - d)) = q3q4Pr (,LL, Hos ¢ - ¢0) L PL (321)

P, (#, Ho> Po — ¢) = q3q.P, (M, Uo> @ — ¢0) q49s -

These relationships are useful for checking purposes and for reducing the number of
quantities computed. For example, it is sufficient to compute only the diagonal matrix
elements of P, and P, and either the elements above the diagonal or those below the
diagonal. With P, and P, computed for y and p, on the interval (0, 1) and ¢ — ¢, on
the interval (0, n) all other values for the phase matrix follow from the above relation-
ships. Note that the phase matrix has the same division into odd and even functions
as do the reflection and transmission matrices. Also P*'=0=P'*, as follows)from
(2.9) and (3.15). Thus in this case P (u, po, ¢ — ) is of the form

0
(3.22)

S L O 6
L O O
A 0O L »
S0 U

3.1. DOUBLING OR ADDING METHOD

The essence of the doubling or adding method is simple: if the reflection and trans-
mission is known for each of two layers, the reflection and transmission from the
combined layer can be obtained by computing the successive reflections back and forth
between the two layers. If the two layers are chosen to be identical, the results for a
thick homogeneous layer can be built up rapidly in a geometric (doubling) manner.

The principle for this method apparently goes back at least to Stokes (1862), who
considered the reflection and transmission by a stack of glass plates. The theory was
developed for gamma-ray transfer by Peebles and Plesset (1951), in a form somewhat
resembling the method now used for multiple scattering problems. The adding method
now commonly employed was developed by van de Hulst (1963), who also presented
numerical results for isotropic scattering. Twomey et al. (1966) obtained numerical
results for the intensity of light scattered by clouds. Hansen (1971a, b) and Hovenier
(1971) extended the method to include polarization. Lacis and Hansen (1974) ob-
tained results with the adding method for inhomogeneous model atmospheres, in-
cluding the internal distribution of absorbed radiation. The procedure used by Grant
and Hunt (1969) and Plass er al. (1973), called the matrix operator or star product
method, is essentially the same as the adding method as far as actual computer
computations are concerned.
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Equations. Let 7, and 7, be the optical thickness of two layers to be added, with the
subscripts a and b referring to the top and bottom layers, respectively (Figure 22).

The recipe for the adding method is then

Ql = R:Rb,
Qn = QlQn—l:
s=3 Q.

D=T,+ Sexp(— 7,/uo) + ST,, (3.23)

U=Rb CXp('— Ta/.u'O)+RbD3
R(Ta + Tb) = Ra + exp(— Ta/.u’) U+ T:Ua
T(z, + 1) = exp(— 7,/p) D + T, exp (— t,/u0) + T,D.

The physical basis for this prescription can be inferred from Figure 22. The exponential
terms refer to direct transmission through layer a or b without scattering; T is the
diffuse transmission. Emerging from the bottom of the two layers is the diffuse trans-

—rF R R, R,

R=R+R,+R,+-

U= U+ U+ Uyt
D= D,+D,+ Dg+ -

Ul Uz U

3

] o/ e g
: \<\ \<\ \<\ et

| TZ T3

Fig. 22. Schematic representation of the adding method. The two layers of the atmosphere, of
optical thickness 7, and 7s, are for convenience illustrated as if they were physically separated. In the
computations, Equation (3.23), it is only necessary to make one summation.

t Sometimes the first three equations in (3.32) are combined by using a symbolic ‘inverse operator’
so that S =R*,Rs[1 — R*,R;]?; also the diffuse and direct transmission can be combined into one
symbol. These changes are useful to abbreviate the recipe for adding, but the apparent simplifications

are illusory since they do not simplify the actual computations.
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mission T (7, + 7,) and the unscattered radiation of flux y,nFye~ “=**)* for horizontal
areas. The transmission is explicitly divided into its diffuse and direct components
because the appearance of a delta function in the total transmission makes it in-
appropriate for precise numerical integrations. D and U are, after multiplication by
UoFo, the diffuse intensities downward and upward at the dividing boundary between
the two layers. The indicated summation is over the reflections between the two
layers with n— 1 indicating the number of times the radiation has crossed the dividing
boundary going up. In practice this sum is terminated after a small number ( <5) of
terms, depending on the accuracy desired. Furthermore, the omitted terms may be
approximated by a geometric series because the ratio of successive terms approaches
a constant value.

A prescription for computing R* and T*, analogous to (3.23), has been given by
Lacis and Hansen (1974).

In (3.23) bold face symbols represent matrices of four rows and four columns. An
arbitrary matrix of this type, say X, stands for

X =XY(u, o, ® — ¢o), ihj=1,2,34, (3.29)

where i and j are the indices for the rows and columns, respectively. The product of
two matrices implies matrix multiplication and integration over the adjoining angles,
an arbitrary Z=XY being defined as

1 2n 4

N 1 . .
Z7 (p, pos @ — o) = J J[Z X (s~ ") Y, o, ¢ — ¢0):' p dp' do’.
" 00 k=1 (3.25)

The numerical computations can be handled efficiently by means of a Fourier series
expansion for the azimuth dependence and numerical quadrature for the u’ integra-
tions. Formulae for the Fourier series expansions are given below. The adding Equa-
tions (3.23) remain valid for each Fourier component. Results are thus obtained for
all values of ¢ —¢, and discrete values of u and u,. The number of discrete zenith
angles required depends on the anisotropy of the phase matrix and on the accuracy
desired. This number of zenith angles can be kept at a moderate value, typically,
5-25, if the phase matrix is normalized for the discrete space of zenith angles (cf.,
Hansen, 1971b).

The doubling or adding method requires that the reflection and transmission ma-
trices be known for the layers to be added. These can be obtained from analytic ex-
pressions for single scattering (cf., the following section on successive orders of scat-
tering) with the initial optical thickness ~272° or from any accurate multiple scat-
tering method with a thicker initial layer. An efficient procedure is to compute suc-
cessive orders of scattering for three orders and use an initial optical thickness ~271°,

In the formalism above we included polarization. However the adding method is
also applicable as it stands to computations of the intensity with polarization ne-
glected. It is only necessary that the matrices in (3.23) be interpreted as scalars; thus
the superscripts in (3.24) and (3.25) may be omitted and there is no sum over & in
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(3.25). The intensities computed with polarization neglected are approximations con-
taining errors <10%, for Rayleigh scattering (Chandrasekhar, 1950) and errors <19
for particles comparable to or larger than the wavelength in size (Hansen, 1971b).

Fourier series expansions. 1t is advantageous to expand the azimuth-dependent
functions in Fourier series in ¢ —¢,. Each term in the Fourier series may then be
treated independently, allowing large savings in computer storage requirements.
Furthermore, the behavior of different Fourier terms differs markedly and this be-
havior may be taken advantage of to reduce the computing time, as described below.

Let X represent the phase matrix or any of the matrices in (3.23). X may be ex-
panded as

XY (ky oy ¢ = o) = °X¥ (1, o) +
+2 2 ("X (1, o) cosm (¢ — ¢o) +

+ "X (1, o) sinm (¢ — ¢o)], (3.26)

where
2r

. 1 .
"X (1, po) = ZJ‘ XY (u, po, ¢')cosme’ d¢p’, m=0,1,2,..., (3.27)

0
2n

"Xy (us po) = 27:J' XY (u, po, @) sinme’ d¢’, m=1,2,.... (3.28)

0

The rule for matrix multiplication, given by (3.25), becomes

1
4
22 (s o) =2 f 3 OXE ) ¥ (o) i A (3.29)
0

1

4
"ZJ (s o) =2 f {Zl ("X () ™Y (W5 o) —

0
X () Y (W, uo)]} W, (3.30)
1

4
"Z (1 o) =2 f { 21 [ X% (u, 1) ™Y (W, po) +

0

+ "X (0 Y (W ﬂo)]} pody (3.31)

Most computations, including all numerical examples in this paper, are made for
the special case in which the elements of the 4 by 4 phase matrix, P¥ (i, o, ¢ —do)s
are even functions of ¢ — ¢, for the 2 by 2 submatrices (ijj=11, 12, 21, 22) and (ij=
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=33, 34, 43, 44), and odd functions of ¢ — ¢, for the submatrices (ij=13, 14, 23, 24)
and (ijj=31, 32, 41, 42). Thus in the following we omit the subscript s or ¢, since the
superscript specifying the matrix element determines whether the function is odd or
even.

Numerical examples. To illustrate the effect of multiple scattering on radiation re-
flected by a plane-parallel atmosphere we have made computations with four Mie
scattering phase matrices. In each case for the real part of the refractive index we
used n,=1.44; this happens to be approximately the value for the cloud particles on
Venus (cf., Hansen and Hovenier, 1974), but the exact choice of r, does not modify
the general effects which we investigate. All four phase matrices are for the size distri-
bution (2.56) with a=1u and 5=0.07, values which are also approximately correct
for the Venus clouds. This effective radius of 1y is large enough for features such as
the rainbow and glory to exist at visible and near-infrared wavelengths.

TABLE I1

Parameters defining the four Mie scattering phase matrices used for

multiple scattering computations. In all four cases the real part of the

refractive index was n, = 1.44 and the particle size distribution was (2.56)
with =1 p and 5 =0.07.

Case n; A @ {cosa)
1 0 0.55u 1 0.7088
2 0.000024 0.55 u 0.999394 0.7090
3 0.000058 1u 0.999408 0.7164
4 0.1 0.55 u 0.496827 0.9177

In Case 1 (Table IT) we use ;=0 to obtain the maximum variation of reflected inten-
sities with varying optical depth. In Cases 2 and 3 we choose small values of n; such
that the spherical albedo is 909, for t=o00. Cases 2 and 3 differ in the wavelengths
selected, 0.55¢ and 1p; this allows comparison of results for a case with the size
parameter in the region with clear geometrical optics features and a case between the
geometrical optics region and Rayleigh scattering. Case 4 has a substantial value of n,,
and thus serves as an example of results for absorbing particles. The complete phase
matrices for these four cases are shown in Figure 23.

Figure 24 shows Fourier coefficients of the reflection matrix for the Case 1 phase
matrix. These coefficients, computed for t=128, are representative of results for a
thick layer. "R'!, which determines the intensity of reflected light for unpolarized in-
cident light, usually is the largest of the matrix elements, at least for small m. ™R*!
and ™R>' have comparable magnitudes, while "R*!, which determines the circular
polarization, is much smaller than the other matrix elements.

As suggested by Figure 24, the number of Fourier terms required to achieve a given
relative accuracy depends strongly on u and p,, but not so much on the matrix ele-
ment. For Mie scattering the number of Legendre polynomials required to specify the
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scattering functions S; and S, (2.42) is ~x , as follows from the localization principle;
thus the number of polynomials required to specify the phase matrix is ~2x (cf. 2.41).
It follows that in the most difficult case, when 6 and 68, are both near grazing and single
scattering dominates, the number of Fourier terms needed for an accurate result is
~2x. However, for many sets of § and 6, the required number of Fourier terms is

ZOOIIIII]ll]IlliTT‘Illl]‘Fl|||[1|[||\||4o
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Fig. 23. Phase matrices for the four test cases (cf. Table II) used for multiple scattering computations
The phase matrix for Case 2 is indistinguishable from that which is illustrated for Case 1.
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Fig. 24. Fourier coefficients of the reflection matrix, for the Case 1 phase matrix with optical thick-
ness 128. Filled circles indicate positive values and open circles negative values.

considerably less. Computing time can thus be reduced by terminating multiple
scattering computations at some value of m which depends on p and p,, as described
by Hansen and Pollack (1970) and Dave and Gazdag (1970).

The number of terms which must be computed in the Fourier series can best be
judged from graphs of the intensity summed over m. Examples of the reflection matrix
for the Case 1 phase matrix are given in Figure 25 for 7=128. The results in the left
half of Figure 25 are integrated over the disk of a spherical planet assuming a locally-
plane-parallel atmosphere (cf. Horak, 1950). If the Stokes parameters U and V are
integrated over a homogeneous planet they yield a null result for a phase matrix of the
type (2.9); thus the integration for the circular polarization was extended only over the
northern hemisphere for positive phase angles (which implies positive azimuth angles,
cf. Horak, 1950). The circular polarization in the southern hemisphere has the same
absolute value but the opposite sign; for negative phase angles all values must be mul-
tiplied by —1 (cf. Hansen, 1971c). The results in the right half of Figure 25 are the
intensity as a function of ¢ — ¢, for particular values of u and pu,.

For the Case 1 phase matrix 2x is ~23. However, for the light integrated over the
planet 5 Fourier terms are already a good approximation and 15 terms give an
accurate answer at most phase angles. This is partly due to the integration over the
disk which averages the results over ¢, but primarily it is due to the fact that only the
sharpest features require the full number of Fourier terms. For §=30°, 6,=80° 5
Fourier terms give an accurate answer, while ~ 10 terms are required for =0,=30°
and ~20 terms for §=0,=80°. Usually the required number of terms decreases as
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0 and 60, decrease, because of the decreasing contribution of single scattering and the
approach to the azimuth-independent situation, 8, =0. However, in Figure 25 the case
0=060,=30° requires a substantial number of Fourier terms because in that case the
scattering angle goes through the range 120-180°, which contains the rainbow and
glory.

Thus it is not easy to give a recipe for the number of Fourier terms required for a
given accuracy at a given angle. In practice, experience with computed results provides
a good guide. Also, the Fourier coefficients for large values of m can be computed very
rapidly, as described in the next section, and hence it is not essential that care be
taken to terminate the series as quickly as possible.

The greatest number of Fourier terms is needed to define the diffraction peak. If
accurate results are not required for scattering angles near 0° the number of Fourier
terms which must be computed is considerably less than 2x. However, in such a case
the computational burden can be reduced even more by truncating the diffraction peak
from the phase function and treating the photons scattered in the diffraction peak as if
they were unscattered (cf. Hansen, 1969; Potter, 1970; Hansen and Pollack, 1970;
Hansen, 1971b); this requires that & and 7 be appropriately scaled. The advantage of
truncating the diffraction peak is that it considerably reduces the number of discrete
zenith directions which must be used for the ' integrations. The general forward
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Fig. 25. Intensity, linear polarization and circular polarization of reflected sunlight for the Case 1
phase matrix with r = 128. M -1 is the number of terms in the Fourier series. The incident solar flux
is taken as 7z per unit area perpendicular to the incident beam.
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scattering of the phase function, due to twice-refracted rays, is accurately described
by 10-20 Fourier terms, depending on the value of the refractive index. However,
rainbows and the glory may require more terms, because their sharpness increases as
x increases. Respite from this difficulty is afforded by the rapid computation time for
the high Fourier terms (cf. Section 3.2). Of course if only the flux or albedo is required,
then only the m=0 term must be computed.

It is useful to examine the ratio of terms in the infinite series which occurs in the
doubling method (3.23), including the dependence of the ratio on Fourier term. Let

"y = lim mQYmQu_, . (3.32)
n— o0
We find that ™4 depends very little on matrix element (i) and the dependence on
U, to Which exists for T <1 disappears as 7 increases. Thus it is sufficient to plot
™n'1 as a function of m for several values of 1, as is done in Figure 26 for the Case 1
phase matrix.

For m=0 and @=1 ™" approaches unity as T approaches infinity, an expected
result since the flux is constant in an infinite conservatively scattering atmosphere. For
large m, ™" is independent of 7. This indicates that the Fourier coefficients for large
m are due to single scattering, which is a consequence of the fact that photons multiply
scattered have a smoother distribution over angle. Hansen and Pollack (1970) took
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Fig. 26. ™yt as a function of the Fourier coefficient index m for the Case 1 phase matrix. m#!! js
the limit of mQ,11/mQ,_;11 for large n, where n — 1 is the number of times the light has passed the
midlevel optical depth (z/2) going up.



LIGHT SCATTERING IN PLANETARY ATMOSPHERES 581

advantage of this fact to compute the high Fourier coefficients with the expression for
single scattering. It is apparent that for intermediate values of m a few orders of
scattering could be used to compute the Fourier coefficients. Since only the first few
orders of scattering (say 3-5) contribute significantly for a layer with t=1/4, Figure 26
suggests that only Fourier coefficients with m <5 can not be obtained with a few
orders of scattering. This expectation is basically borne out by computations in the
next section.

In the remaining three graphs in this section we illustrate typical dependence of the
intensity (Figure 27), linear polarization (Figure 28) and circular polarization (Figure
29) on 1, on particle size parameter and on particle absorption. The left halves of these
figures are for the Case 1 phase matrix with four different values of 7. The right halves
of the figures are for the Case 2, 3 and 4 phase matrices, all for 7= 128, which in these
cases is equivalent to 7= oco. For all three figures the Stokes parameters were integrated
over a locally-plane-parallel spherical planet, but for the circular polarization the
integration was only over the northern hemisphere. :

Figure 27 shows that for small optical thicknesses features in the single scattering,
such as the glory, rainbow and diffraction peak, can be readily identified in the inten-
sity. However the features tend to be washed out for thick layers by the more isotropic
multiple scattered light. Cases 2 and 3 have much different phase functions but values
of @ such that the spherical albedo is 90% in both cases for T —o0. As a result the
differences in the magnitude as a function of phase angle are minor between these two
cases. Case 4 has a small value of @, due to n,=0.1, and thus the intensity is much
less than in the other cases.

Case 2
——-— Case 3 —-1

L1+ 1 1

N S S SR RS W N FIRNS SR SN R SN SN VAN T SN SN S [ TR W SN [
0 30 60 90 120 150 180/0 30 60 90 120 150 180
Phase Angle Phase Angle

Fig. 27. Planetary magnitude, i.e. —2.5logie/, as a function of phase angle. The left half of the

figure is for the Case 1 phase matrix for four different values of the cloud optical thickness. The right

half of the figure is for the Case 2, 3 and 4 phase matrices with r = 128. The incident solar flux is taken
as m per unit area perpendicular to the incident beam.
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Figure 28 illustrates that the linear polarization decreases with increasing optical
depth. This is due to the fact that photons scattered several times tend to have little
polarization, as shown more explicitly in the next section. Thus the neutral points
(zero polarization) in the linear polarization do not move much with increasing 7, but
the factor by which multiple scattering reduces the polarization is a strong function of
phase angle. Since the linear polarization can be measured to an accuracy of ~0.1%,,
the features in the angular distribution can be readily observed. The right half of
Figure 28 illustrates that the polarization is sensitive to the variation in size parameter
between Cases 2 and 3. In Case 4 the strong absorption in the particle (n;=0.1) results
in the polarization of the scattered light being dominated by the positive polarization
for Fresnel reflection. The small value of & (~0.5) causes there to be little multiple
scattering and thus the degree of linear polarization is large even for a thick at-
mosphere.

A review of applications of linear polarization to studies of planetary atmospheres
has been given by Coffeen and Hansen (1974).

The circular polarization (Figure 29) also decreases with increasing optical depth
for 7> 1/4; as was the case for the linear polarization, this is due to the fact that photons
scattered many times have low polarization. However, the circular polarization for
single scattering is zero (cf. 3.22); thus the circular polarization is primarily due to the
small polarization of photons scattered a few times, as graphically demonstrated in the
following section. This explains the small magnitude of ¥/I for all t and the fact that
the neutral points move considerably with increasing t. The right half of Figure 29
shows that the circular polarization is sensitive to particle size parameter and to
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Fig. 28. Same as Figure 27, but for the linear polarization, —100Q/1.
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Fig. 29. Same as Figure 27, but for the circular polarization, 10¢¥V/I, and with the integration ex-
tended only over the northern hemisphere of the planet.

particle absorption. Note that the circular polarization is much greater for Case 3
(x~6) than for Case 2 (x~11), particularly for small phase angles, even though
V/[I-0 as x—0.

It is apparent that the circular polarization of reflected sunlight is a potentially
valuable tool for remote analysis of cloud particle properties, particularly for the outer
planets which can be observed over only a small range of phase angles from the Earth.
Observations of Venus, for which the cloud particle properties are accurately known,
would be useful to test the observational techniques and to verify the interpretation of
the circular polarization for cloudy atmospheres. The capability for planetary circular
polarization measurements has been proven by Kemp and associates (cf. Kemp et al.,
1971a, b; Kemp, 1974) and a thorough observational program seems warrented, in-
cluding measurements from the ultraviolet to the near infrared at all available phase
angles and measurements with a spatial resolution as high as practical. To extract the
potential information contained in such observations it is essential that a detailed
theoretical study be made of the influence of cloud particle parameters on the circular
polarization and it is also essential that the observations of circular polarization be
analyzed simultaneously with the linear polarization and intensity.

3.2. SUCCESSIVE ORDERS OF SCATTERING

The method of successive orders of scattering is one of the oldest and simplest in
concept of the different solutions to multiple scattering problems. Several quite differ-
ent methods of successive order scattering have been developed, but they have the
common property that the intensity is computed individually for photons scattered
once, twice, three times, etc., with the total intensity obtained as the sum over all
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orders. Thus for the diffuse intensities we write

L(s#)= Y L.(x9).
"l (3.33)
It (ﬂa (»b) = ;1 It,n (“, ¢) ’

where 7 is the order of scattering. The reflection and transmission matrices are similar-
ly decomposed

R(ﬂ, Hos (]5 - ¢0) = Z Rn(lu’ Ho, ¢ - ¢0),
"l (3.34)
T (&, tos ¢ — ¢o) = 21 T, (1, tos ¢ — ¢o)-

For cases in which a large number of scatterings are possible (121, @~ 1) it might
appear to be inefficient to solve for each order of scattering, since methods such as the
adding method readily yield the reflection and transmission functions for the sum of
all orders. However, there are several reasons why it is valuable to compute the in-
tensities separately for at least a few orders, e.g.,

(1) In a Fourier series expansion of the intensity the high frequency terms arise
from photons scattered a small number of times. Thus most of the Fourier terms may
be accurately obtained by computing a few orders of scattering.

(2) In the doubling method a significant amount of computing time can be saved
by taking an initial optical thickness ~271° and computing 3 orders of scattering for
that layer.

(3) For a homogeneous layer a solution for the intensity due to photons scattered
n times with conservative scattering (@ =1) yields the solution for all other &, after
multiplication by the factor &". In some cases this can be useful for computing ab-
sorption line profiles (cf. Belton et al., 1968) or for computing heating rates, which
involve an integration over frequency (cf. Lacis and Hansen, 1974).

(4) The results for successive orders provide insight useful for understanding mul-
tiple scattering results.

Classical method. The classical method for computing successive orders of scat-
tering is based on the equation of transfer for the diffuse intensity

u dI (T, u, o, ¢ - ¢0) _
dt

_I(T’ u, I*‘O’d’ - ¢0)+J(T’ u, MO’¢_¢O)3

(3.35)

where
1 2=

J(T’ u, lo, ¢ - (bo) = f f P(u’ ul’ (b - ¢,) I(Ta ul’ Hos d)l - ¢0) du, dd)’
-10

~

w
+ 4 € P (u, tto, & — o) Fo (3.36)
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is called the source function. The equation of transfer is subject to two-point boundary

conditions, specifically at 7=0 for #>0 and =17, for u<0. For example, if the
lower boundary is completely absorbing,

I(O’u’d’):O, u>0
I(to,u,¢)=0. u<O0 (3.37)

For these boundary conditions the ‘formal’ solution of the equation of transfer is

1(%, u, o, ¢ — o) = f (7, uy fioy & — o) &=~ de'Ju
(4]

(u=p>0), (3.38)

70

I(T5 u, o, ¢ - ¢0) =- f J(T,’ u, o, ¢ - ¢0) e(t'_T)/u dr'/u

T (W=—pu<0).

The second term on the right side of (3.36) is the source function due to the first
scattering of the incident radiation,

Jy (T’ u, fo, ¢ — ¢0) =

| &

e_t/”OP (u9 Hos ¢ - ¢0) FO . (339)
Inserting (3.39) in the formal solution of the equation of transfer and integrating over ©

we obtain the intensity due to photons scattered one time. For a homogeneous at-
mosphere the corresponding reflection and transmission matrices are

I 1 M Hos — %o
R1(ﬂ:.“o,¢_¢o)5 = (M:de) ¢)=

)
A+ o) PLT o\ " e
x P (=, o, ¢ — @),

It 1\ s ¥
Tl (.u’ Ho» d’ - ¢0) = - (”' ::FZS ¢0) =

-~

Salee () ()]
=-————|exp| — ) —exp X
4(p— o) H Ho
x P (4, to» ¢ — o)
and, from /" Hospital’s rule, for u = u,,

(3.40)

Aty — Ty
Ty (o> Hos @ — Po) = 4.2 exp P (1, 1o, ¢ — o). (3.41)
Ho Ko
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The source function for higher orders of scattering follows from

Jn+1(1.9 U, o, ¢ — ¢0) =%‘L’ J J‘P(u’ u', ¢ — ¢I) x

x L, (7,0, po, @' — o) du’ d¢’ (3.42)

and the intensity from

T

In (13 U, to, ¢ - ¢0) = fJn (Tla u, to, d) - ¢0) e_(t_tl)/u dT’/u
0
(u=pu>0), (3.43)

70

In (T’ U, lo, ¢ - ¢0) =- f Jn (T,> U, to, (nb - ¢0) e(t'_t)/u dT,/u

(u=—u<0).

This method of successive order scattering has been used by van de Hulst (1948),
Dave (1964), Irvine (1965) and others. With the integrations performed numerically
this method has the advantage of being applicable to an inhomogeneous atmosphere.
Disadvantages are large computing times and low accuracies for large optical thick-
nesses (12 5). Some respite is afforded by the fact that the ratio of successive terms,
I, /1. .-, approaches a constant for large n (van de Hulst and Irvine, 1962), but the
convergence to that constant is slow.

For a homogenous atmosphere a high accuracy can be achieved for all optical
thicknesses by performing the 7 integrations analytically. This has been done for
second order scattering by Hovenier (1971) and for third order scattering by Travis
(1974).

Invariance principle. For a homogeneous atmosphere the numerical 7 integration
can be avoided in a fashion somewhat more elegant than that described above. We
derive here equations for successive orders of scattering which involve only p inte-
grations. The derivation is closely related to the invariant imbedding method described
in Section 3.4. A similar derivation was also given by Uesugi and Irvine (1970);
however, they did not include transmission or polarization and they considered only
the special case 7= 0.

The reflection and transmission matrices for nth order scattering may be obtained
from the same matrices for lower orders of scattering by using the following obvious
‘invariance principle’: If a layer having the same optical properties is added to the top
of a homogeneous layer, the reflection and transmission matrices are the same as they
would be if the second layer were instead added to the bottom!

If the added layer is so thin (optical thickness 4t <1) that only single scattering
occurs within it, then the events A, B, C and D in Figure 30 contribute to the nth order
scattering. For n=2 only events A, B and C occur. From the definition of the reflection
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Fig. 30. Schematic representation of nth order diffuse reflection by a finite layer when an optically
thin layer is added to the top (a) or bottom (b) of the main layer. There is at most one scattering
in the thin layer.

matrix (3.3) and the single scattering expressions (3.40) we can write the reflection
matrix for the layer of thickness 7+ 47 as

A4z A1
R”(T + AT, i, Ko ¢ - ¢0) = [1 _7] Rn(T; Hs U, ¢ - ¢0) |:1 - 'u_—| +
0

1 2=#

L[ [ ,od7
+7; 4 , Pl (1,0 — ¢ )R,y (5 ', oy ¢ — ¢o)d# do’ +

2%

1 2n

1”” ! ! ! @AT l4 4 ! !
+1; .URn—l(T;#,N,QS—‘P)_,—Pt(ﬂaﬂoHﬁ—d’o)d# d¢+

.(J)u Ho

n—2 1 2n

Z JJ”IRn n—l(T “uu ¢ d))X
Y|
(] -0

X Ry (75 47, o, " — o) d” d¢”] du’ d¢’.

(3.44)
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Similarly, for the case in which a layer of optical thickness A7 is added to the bottom,
(Figure 30b), we obtain

Rn(‘t + AT; H Lo, ¢ - ¢0) = Rn(‘t'; K, Ko, ¢ - ¢0) +

1 2n
L[ [, .04t
+-| | we P(u 1y ¢ — ¢")Tuey (75 1, oy " — o) dp’ dop'+
) J 4'p
00
1 2=n
N
| | we ol WP C TR ¢) P, (W, o, &' — do)dp’ do’ +
20
n—-2 1 2n

1
+ Z gjj#,T:—n'—l(T; ﬂ9”,s¢_¢,)x
Y|
I: J\J\ 40)'111 r(“,a .u”’ ¢I —¢”) x

X Ty (T 1", tos " — o) dpt” d¢”] du’ d¢’. (3.45)

For n=2 the last term on the right hand side of (3.44) and the last term on the right
hand side of (3.45) should be omitted.

Subtracting Equation (3.45) from Equation (3.44) and neglecting terms of order
(47)* we obtain

1 1
<—+_ Rn(T;.ua ”0,4) - ¢0)=
Ko Ho
1 2=n

@ , , , , o
=H‘[J-Pt*(#,ﬂ,¢- P VR, (T3 1, po, @' — o) dp’ d” +
0

1 2n

) [ ’ ’ ' ’ ’ ’
4 Rn—1(1§ﬂ,ﬂ,¢—¢)Pt(ﬂ,ﬂo,(b—¢o)dﬂ dd)_
o o/
00
1 2=
d')e_T/I‘O i * ’ ’ ’ ’ !
- 4 Tn—l(T’.uaﬂytb_¢)Pr(uaﬂ0,¢—¢0)d” d¢—
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00
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jJ‘P(.u”“ ¢ ¢)Tn 1(19” ﬂ05¢ ¢0)d/1. d¢ +
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R PR
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n=1 00



LIGHT SCATTERING IN PLANETARY ATMOSPHERES 589

1 2n

1 s
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00

n—2 1 2n
CZ) ! 7
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(3.46)

This is the desired equation for the nth order reflection matrix. For n=2 the last two
terms in Equation (3.46) should be omitted.

An equation for the nth order transmission matrix may be obtained in a similar
manner. In Figure 30 the only difference is that the last leg in the photon history is
downward. The resulting equation is

1 1
(ﬁ - #> Tn(T; U, Lo, ¢ - ¢0) =
o Ho

1 2n
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00
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1 2=n

1
x [7} f j P (W, 1y & — @) Ry (T3 1 oy ¢ — o) i’ d¢"] du' d¢'.
(3.47)

Equations (3.46) and (3.47) can also be obtained from the invariant imbedding
equations (Section 3.4) by expanding R and T in powers of & and equating coefficients
of @&".

In a computer program it is efficient to omit & from (3.46) and (3.47), i.e. to make
computations for @=1, and multiply R, and T, for each order of scattering by &"
after all desired orders have been computed.

The azimuth dependence can be handled efficiently by means of Fourier expansions
of R,, T, and P, as described above for the adding method. With such an expansion
there are equations like (3.46) and (3.47) for each Fourier component, Ry and T;.

Note that (3.47) is indeterminate for u=p,. Approximate results for that special
case can be obtained by interpolation. Precise results, at least for second and third
order scattering, can be obtained from the formulae obtained with the analytic
integration described above.

Equations (3.46) and (3.47) give the nth order reflection and transmission in terms
of all lower orders of scattering. Thus the lower orders must be retained individually.
However for most of the applications described above the first three or four orders of
scattering is sufficient. Thus the computation and storage problems are easily
manageable.

Numerical examples. The results in this section were obtained employing (3.46)
and (3.47), as described above except the totals for all orders of scattering which were
computed with the doubling method. The graphs here suggest how an order of scat-
tering approach can be used for rapid computations in certain cases and they illustrate
the relative contributions of different orders of scattering to the intensity, linear
polarization and circular polarization of reflected light.

Figure 31 shows how accurately the Fourier coefficients of the reflection matrix are
approximated by the first four orders of scattering. These results are for the Case 1
phase matrix with t=128 and 0=0,=80°, a set of angles which requires a large num-
ber of Fourier terms (cf. Figure 24). Two orders of scattering are sufficient to yield
accurate results for terms with m>20. Except for the circular polarization (R*'),
terms with m> 5 are accurately obtained from four orders of scattering with an
assumption of a geometric series for the higher orders of scattering. However, the
improvement in the accuracy obtained by approximating the higher orders of
scattering with a geometric series is moderate, even after four orders of scattering.

To determine the utility of the orders of scattering method it is useful to compare the
computing time to that for the doubling method. In the infinite series in the doubling
method three terms plus the assumption of a geometric series is sufficient for practically
all Fourier terms (cf. Figure 26); thus the number of matrix multiplications in the
doubling method (3.23) is ~7. First order scattering involves no matrix multiplications
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and takes a negligible computing time. Second order scattering [(3.46) and (3.47)]
involves eight matrix multiplications and third order scattering requires 14 additional
matrix multiplications. Thus to compute the complete reflection and transmission
matrices for the first three orders of scattering requires somewhat more time than that
for three doublings. From test computations we find that the optimum combination
of the doubling and orders of scattering methods is obtained: (a) for the low Fourier
terms by doubling from an initial optical thickness ~27'° with the initial reflection
and transmission matrices computed for three orders of scattering, (b) for the high
Fourier terms by computing four orders of scattering (less for the highest terms) at
the desired values of 7, with no doubling. Note that for the high Fourier terms the
last order of scattering needs to be computed only for the first column of the reflection
matrix and only for the particular values of 6 and 6, for which results are desired.

Figure 32 shows the intensity for one, two, three, four and all orders of scattering
for light integrated over a spherical but locally-plane-parallel atmosphere with 7=128.
The results in the left half of the figure are for the Case 1 phase matrix and those in the
right half for the Case 4 phase matrix. Figure 33 is the same except that it shows the
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Fig. 31. Fractional error when the reflection matrix is approximated by a few orders of scattering.

The calculations are for the Case 1 phase matrix with 7= 128 and u = uo =cos~180°. The dash-dot

curves were obtained by approximating orders of scattering above the fourth as a geometric series,
i.e., with mRq#/(1—m R4¥/™R34).
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linear polarization. Figure 34 is the circular polarization for the same phase matrices,
but obtained from an integration over only the northern hemisphere for positive phase
angles (and thus positive ¢ — ¢,).

Figure 32 illustrates that for a thick atmosphere and high single scattering albedo
four orders of scattering do not even qualitatively resemble the total intensity for all
orders of scattering. Furthermore, approximating the higher orders of scattering with
a geometric series does not help; for example, with that procedure the intensity
obtained is about one (astronomical) magnitude too small for phase angles <30° and
more than two magnitudes too large for phase angles ~60°. For the Case 4 phase
matrix, which has @~0.5, four orders of scattering are a fair approximation to the
total intensity. With the addition of a geometric series for the higher orders of scat-
tering an accuracy within a few percent can be achieved. Of course for an optically
thin layer (7<1) it is always possible to obtain the intensity accurately with four
orders of scattering plus a geometric series.

In Figures 33 and 34 note that the total intensity is used while the other Stokes param-
eters are summed over N orders of scattering. This is an effective way to illustrate the
polarization due to higher orders of scattering. It is also of potential application be-
cause it is possible to rapidly compute the intensity with an accuracy of better than
17, (for particles larger than or comparable to the wavelength in size) by neglecting
polarization (cf., Hansen, 1971b). The accuracy of using the total intensity along with
orders of scattering computations for the other Stokes parameters has been tested for
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Fig. 32. Planetary magnitude for one, two, three, four and all orders of scattering. The left half of

the figure is for the Case 1 phase matrix and the right half for the Case 4 phase matrix. The cloud
optical thickness is 128 in both cases.
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Fig. 33. Same as Figure 32, but for the linear polarization.

two orders of scattering by Hansen and Hovenier (1971). Hovenier (1971) has sug-
gested that the accuracy could be greatly improved by computing a few orders of
scattering and approximating the omitted terms with a geometric series.

Figure 33 shows that at some phase angles there is still a significant contribution to
the linear polarization from fourth and higher orders of scattering. Much of the
polarization of high order scattering arises from photons which have their first few
scatterings in the forward direction, after which they are still nearly unpolarized and
moving approximately in the direction of incidence, and their last scattering at a large
phase angle. This has been demonstrated by Hansen (1971b), who uses this behavior
to obtain an improved ‘single scattering’ approximation.

If the approximation of a geometric series is added to the N=4 result the agreement
with the linear polarization for N= oo is substantially improved, with the maximum
difference in Figure 33 being <0.2% polarization. Thus Q, approaches a geometric
series much more rapidly than does I,. This was previously noted by Hovenier (1971)
from calculations for first and second order scattering.

Figure 34 indicates that four orders of scattering do not provide a good approxi-
mation for the circular polarization. This is true even for the Case 4 phase matrix
which has @~0.5; for example, at small phase angles the circular polarization for
four orders of scattering has the opposite sign of that for all orders of scattering.
Furthermore it only makes matters worse to approximate higher orders of scattering
as a geometric series; indeed, at many phase angles the ratio V,/V; is greater than
unity, so the resulting approximation fluctuates wildly with phase angle and would be
off scale if graphed in Figure 34.

It is easy to qualitatively understand the different behavior of the intensity, linear
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Fig. 34. Same as Figure 32, but for the circular polarization, and with the integration extended
only over the northern hemisphere of the planet.

polarization and circular polarization. For a thick layer with large & there obviously
must be many orders of scattering which contribute to the intensity. However,
photons scattered several times in effect lose memory of their initial direction; thus
for them no preferred plane is defined and the value of the linear polarization for
photons scattered several times is small. A similar consideration applies to the circular
polarization, but since the circular polarization arises only from multiple scattering
the relative contribution remains important for many orders of scattering.

We have not attempted a more theoretical investigation of the behavior of the
Stokes parameters with the order of scattering. The main practical conclusions are:
(1) for Fourier coefficients of the reflection matrix with m2 5 a good accuracy for the
Stokes parameters /, Q and U can be obtained from four orders of scattering and the
assumption of a geometric series, (2) all Fourier coefficients of the Stokes parameters
Q and U can be computed rather accurately with four orders of scattering and the
assumption of a geometric series, (3) at least several terms in the Fourier expansion
of V require computations with the full four-by-four phase matrix* with a method
accounting for all orders of scattering.

33 ITERATION OF FORMAL SOLUTION

The ‘formal’ solution to the equation of transfer (3.38) and the definition of the source
function (3.36) do not actually represent a solution for I, but only an integral re-

* The first three Stokes parameters can be obtained with an accuracy about 10-5 by working with
only three-by-three matrices (cf., Hansen, 1971b).
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lationship. However, if the optical thickness is not too large these equations are
amenable to solution by standard numerical procedures. Herman and Browning
(1965) showed that a simple (Gauss-Seidel) iterative technique for two-point boundary
value problems converges to an accurate solution in the case of Rayleigh scattering.
Dave (1970), cf. also Dave and Gazdag (1970), used the same method to obtain
solutions for Mie scattering.

The basis of this method is the following. Let the atmosphere be divided into a
number of layers each of optical thickness 4t. According to (3.38) the downward
intensity at a level i+ 1 is given approximately, in terms of quantities at levels i and
i—1, by

Ii+1 (T, K, Lo d) - ¢0) ~ Ii_l (Ta K, Uo, ¢ - 4)0) e—2At/u + (1 - e—ZA‘r/u) X
jl (T: H, Ho, ¢ - ¢0)9 (348)

where J' is an average value for the source function within the ith layer. J' is cal-
culated by inserting I', obtained from the preceding step, in (3.36) and numerically
evaluating the integral over angle; the starting condition at t=0 is I(+u)=0, ac-
cording to the boundary condition (3.37). Herman and Browning (1965) evaluated
both the u and ¢ integrations numerically, while Dave (1970) expanded the azimuth
dependence in a Fourier series.

In the first computation of the downward intensity the upward intensity is assumed
to be zero in obtaining J. After the level =1, is reached I(—u) is computed in
upward progression from

Ii—l (Ta — K5 Hos ¢ - ¢0) ~ Ii+1 (Ta — K, Ho, d) - ¢0) e—ZAt/u +
+ (1 —e M) I (1, — u, pos d — d0),  (3:49)

with J¢ obtained by inserting I' in (3.36) and evaluating the integrals over angle.
When the level 1=0 is reached the first estimate for I has been obtained. The process
is then repeated with the values of J' computed from the most recent values of L
The iterations are continued until I converges to a constant, or slightly fluctuating,
value.

This method is very similar to the orders of scattering method with T integration.
The method described in this section has the advantage of faster convergence; ac-
cording to J. V. Dave (private communication) it is about 50%; faster than the classical
orders of scattering method. Of course the method of this section has the disadvantage
of not yielding the result for the individual orders of scattering. An advantage of both
of these iterative methods is that they are easily applicable to inhomogeneous atmos-
pheres. Their primary limitation is that they become very inefficient for thick atmos-
pheres (say T2 5).

3.4. INVARIANT IMBEDDING

The invariant imbedding equations are differential equations giving the change in the
reflection and transmission matrices when an optically thin layer is added to the
atmosphere. In concept this method is thus a special case of the adding method. In
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addition, the physical derivation of the invariant imbedding equations which we give
is closely related to the derivation we gave for the orders of scattering Equations,
(3.46) and (3.47). However, the computer programming and numerical behavior of
results for invariant imbedding are different from these other methods. Therefore
invariant imbedding is actually an additional method for multiple scattering com-
putations.

Consider a layer of optical thickness 7, which may be inhomogeneous, and add a
thin layer (47 <1) with any optical properties to the top side. The reflection matrix for
the combined layer, of optical thickness t+ 47, is [cf., Figure 35 and the definition
of R, (3.3)]

, 4t 4t
R(t+ 4t 1 1o, ¢ — 9o) = |1~ — [R(z5 p, pto, ¢ — o) [ 1 — — | +
U Ko
1 2=n

0Yik

4u'p

adAt

1 7
+3 P,(u,uo,¢—¢o)+~fju
Hibo 750 4

Pl (u, i, ¢ — @) x

X R(T, ”,: Hos ¢, - ¢0) d:u, dd)' +

1 2=n
1 ([ 7 CbAT 4 ? !’ 7
+ - M,R(T;,u’“,’(ﬁ_gb)fPt(#’”Oagb _¢0)dlu d¢ +
) 4u'po
00
1 2=n
1 ([ ’ 7 !
+ HR(t; u, p's p — @) x
20
12n
1 CT)AT 14 ” ! 14
X[— Ju” — P (W, 1, ¢ — ") x
T 4’ p
00
X R(t; 1", po, @” — o) du” d¢”] du’' d¢’, (3.50)
or
OR (75 1, to, @ — o) 11 @
( 2 & =—<*+— R(T;us#0’¢_¢0)+ X
ot U Ho dppg

12=xn

X Pr(us ”07¢_¢0)+4w J‘J‘P;k(.u’#,’d)_qy) X
nu
0o 0

1 2rn
xR(r;u’,uo,¢’—¢o)dud¢+4 JJR(T;H,#,¢—¢)X
Tho
0o 0
12x

’ ’ @ ’ ’
XPt(HIa#O’¢’_¢O)d# d¢ +Z;JJ‘R(T’#’”’¢_¢)X
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1 2=

1 n n ”n n
x[;J‘J‘P;“(#,’ H”: ¢,_¢”)R(T;# 3”09¢ _¢O)d”’ d¢] X
00

x dy' d¢’ . (3.51)

This is the invariant imbedding equation for R; it is essentially the same as Equation
(29) p. 169 of Chandrasekhar (1950). Note that in this method 7 is measured from the
ground up. For an inhomogeneous atmosphere P is also a function of 7.

In the invariant imbedding method, (3.51) is used for numerical computations to
build an atmosphere from the ground up. Thus reflection from a planetary atmosphere
is treated as an initial value problem with the initial condition

R (O, Ry Uo, ¢ - ¢0) = Rg (ﬂ: Ros ¢ - ¢0)’

where R, is the ground reflectivity, ranging from R,=0 for a completely absorbing
ground to R =1 for a conservatively reflecting Lambert surface. (3.51) yields the
increment in R due to an added layer of thickness A7. Several numerical methods
for difference equations have been used to solve (3.51), the simplest being R (t+47)=
=R(t)+ 47 x dR/dt. Larger step sizes (4t~ a few times 1072) can be taken with
one of the Runge-Kutta methods or a predictor-corrector method (cf., Hamming,
1973; Mingle, 1973); these represent approximations of R (1) in terms of polynomials.
Mathews ef al. (1967) have given a difference equation procedure based upon ex-

NN N N A
A B c D E
(b)
Fig. 35. Schematic representation of reflection (a) and transmission (b) by a plane-parallel layer

when a very thin layer (47 < 1) is added to the top of the main layer. There is at most one scattering
in the thin layer. A dotted line represents diffuse transmission.
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ponentials rather than polynomials; this choice is based on the asymptotic behavior
of R and T and thus presumably allows a larger step size for a thick atmosphere.

In the numerical computations it is efficient to treat the azimuth dependence with a
Fourier expansion in ¢ —¢, and to use discrete quadrature points for p, e.g., the
Gauss divisions for the interval (0, 1). Internal sources, such as thermal emission,
can easily be added into the invariant imbedding equation (e.g., see Bellman et al.,
1967).

Invariant imbedding has been used in planetary applications mainly for computa-
tions of reflection, but an equation for 0T/07 may also be easily obtained. By inspection
(cf., Figure 35b) we see that the change in the transmission matrix upon addition of a
thin layer to the top of the atmosphere is

oT 1 de @ . @eTm LW
—=— T4+ — P, +— | TP, dQ + PR4Q +
ot Ho dupo druo dnp
@ 1[0, ,
+—|T|- | P*RAQ" |dQ'. (3.52)
47 T

For brevity we have omitted the functional arguments and combined the integration
symbols, e.g., dQ'=du’ d¢’. The different terms in (3.52) represent the ways in which
diffuse transmission may occur with no more than one scattering in the layer of optical
thickness 47. Thus the possibility of direct transmission through one, but not both,
of the layers is accounted for.

The invariant imbedding equation for dT/dt involves R as well as 7. Thus (3.51)
must be computed along with (3.52) to find T. Furthermore, (3.52) is less stable for
numerical computations than (3.51); thus to obtain a given accuracy it is necessary to
take smaller step sizes 4t in computing 0T/dt than in computing JR/07.

By adding a thin layer to the bottom of the atmosphere, we obtain two additional
invariant imbedding equations for R and T.

JR @ 1 @ ) @ N )
= P,exp| —1{-+—||+-+— | PTdQ + TP, dQ +

ot Aupo poope)] Amp 4
dj % 1 * " ’
+ - | T - | P,TTdQ" |dQ', (3.53)
4r L
and
0T 1 e Ho @ ,  @e e ,
————— =—-T+ —P,+— | PTdQ + R*P,dQ" +
ot I dppo dmp 4npo
(D * 1 ” ’
+ — | R¥|- | P,TdQ" |dQ'. (3.54)
4n T

Equations (3.51)-(3.54) are essentially Equations (29)—-(32) in Chandrasekhar’s
book (1950, pp. 169-170). Chandrasekhar subtracted (3.53) from (3.51) and (3.54)
from (3.52), obtaining two integral equations for R and T. Those equations are the
basis for the method of X and Y functions (Section 3.5).
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Ambartsumian (1942, 1958) was the first to obtain invariant imbedding equations.
He used the equations in essentially the same way as Chandrasekhar, as described in
Section 3.5.

The direct numerical attack on the differential equations, for which we reserve the
terminology invariant imbedding, became practical with the advent of high-speed
digital computers. This approach was published most extensively by Bellman, Kalaba,
Ueno, Wing and associates (e.g., Bellman et al., 1960; Wing, 1962). Tables of numeri-
cal results for isotropic scattering were given by Bellman ez al. (1963).

The only major disadvantage of the invariant imbedding approach is the relatively
long computation time, in comparison, for example, to the doubling method. How-
ever, if the phase function is normalized for the discrete space of zenith angles (e.g.,
Hansen, 1971b), the computing time is feasible for most phase functions in the case
of reflection calculations. The primary advantage of the invariant imbedding method
is that it does not become less efficient for an inhomogeneous atmosphere. In addition,
it is easy to obtain invariant imbedding equations for a spherical atmosphere (e.g.,
Bellman ef al., 1969), a horizontally inhomogeneous atmosphere (e.g., Bellman et al.,
1963a) or time dependent problems (e.g., Bellman ef al., 1963b). However the ad-
ditional variables in these problems make computations very slow, and there have
been few numerical results.

Although the invariant imbedding method has not played a major role in planetary
applications, it has the potential to be useful for computing reflection by an in-
homogeneous atmosphere. In order for the method to be efficient it is important that
advantage be taken of the behavior of R with increasing 7. For example, the high
Fourier terms could be computed beginning near the top of the atmosphere (perhaps
at 7~ 1-2), since only a few scatterings contribute to those terms. Even the azimuth-
independent term could be computed for only the top part of the atmosphere, provided
that an approximation were included for the reflection function of the atmosphere
beneath the starting level.

3.5. METHOD OF X AND Y FUNCTIONS

The method of ‘X and Y’ functions involves the determination of certain integral
equations for functions which depend upon only one angle and are directly related to
R and T. The integral equations are solved numerically, so the method can not prop-
erly be termed an analytic approach; however, a great deal of algebraic manipulation
may indeed be employed in obtaining the integral equations. These integral equa-
tions are completely specified by means of a factor ¥ in the kernel. ¥ depends
on the particular phase function or phase matrix and is called the characteristic
function.

The method of X and Y functions thus involves three essential steps: (1) determina-
tion of the characteristic function ¥ (u), (2) solution of the integral equations for
for X (1) and Y (1), and (3) computation of R and T from X and Y. For t=c0 ¥ (p)=
=0, and the notation H (u) is generally used for X () in this special case.

We illustrate the method of X and Y functions for the simple case of isotropic
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scattering. References to results for more complicated phase functions and for
polarization are given below.

By subtracting the two invariant imbedding equations for dR/dt, (3.51) and (3.53),
we obtain

1 1 3
(—+——>R(ﬂ,ﬂo,¢—¢o)= = P, (1, Ho, ¢ = $0) X
K Ho 4ppo

x {1—exp[—rG+£—)]}+%UP?‘(M#',¢—¢’)><

x R(#,9 Hos ¢, - ¢0) dQ’ — j‘ Pr (.u's #” ¢ - ¢,) x

~

’ ’ ’ 2
XT(#9”09¢_¢0)d‘Q}+4
T

{fn(u,u',qa—qs') x
x P, (.ul’ Ko, ¢, - ¢O) de’ _J‘T* (ll’ K, ¢ - ¢’) x

Ho

x P, (i, 1o, 8" — o) dQ’} + ;:% {j R(u i, ¢ —¢') x

o[ L oGt 6 = IR GE o 7 60) o |aar -

- jT(u, W, $—¢) [}J P, (W, 1, ¢ — ¢") x

x T (1", tto» ¢" — $o) dQ”] dQ’} (3.55)

which is valid for a general phase matrix. Separation of the variables u and u, is
trivial for isotropic scattering: in this special case (3.55) becomes

4 (n+ po)R(u po) =B [X (W)X (o) = Y (1) Y (10)] (3.56)
where
X(uy=1+2p f R(p, p')dy, (3.57)
0
1
Y(p)=e "+ 2u f T (u, p)dy' . (3.58)

0

Similarly, subtracting the two invariant imbedding equations for dT/dt and con-
sidering the case of isotropic scattering yields

4(1—po)T (4, o) = BLY (1) X (o) — X () ¥ (16)]. (3.59)
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Inserting (3.56) and (3.59) into (3.57) and (3.58) we obtain the integral equations for
Xand Y:

x@=1+a[ TELXWXG) - Y@YW, GO

Y ()= e 4 4 j WX - XYW, G
where ’

W (y) = ;—" (3.62)

Chandrasekhar (1950) used an iteration procedure to solve the above non-linear
integral equations for X and Y. This yields correct results as has been shown by
comparisons with results of other multiple scattering methods. However, for &=1
special care is required to obtain the physically correct solution (cf., Chandrasekhar,
1950). Actually, it has been shown that it is possible to encounter incorrect (unphysical)
solutions of (3.60) and (3.61) for any value of @, unless appropriate constraints are
applied; the constraints required to obtain the physically correct solution are discus-
sed in an extensive mathematical exercise by Mullikin (e.g., Carlstedt and Mullikin,
1966) and with a simplified physical interpretation by Pahor and KusCer (1966).

Extensive tables of X (1) and Y (u) for conservative and nonconservative isotropic
scattering and many values of 7<3.5 are given by Carlstedt and Mullikin (1966) along
with asymptotic formulae for larger 7. Results for 1=o00 (H functions) are given by
Stibbs and Weir (1959) and Abhyankar and Fymat (1971).

For anisotropic phase functions the method of X and Y functions can be consid-
erably more involved. By expanding P, R and T in Fourier series the azimuth depen-
dence can be handled readily; (3.55) and the equation obtained by subtracting (3.52)
and (3.54) separate immediately into independent equations for each set of Fourier
components, R™ and T™. However, separation of the variables x and p, is more diffi-
cult. Chandrasekhar (1950) gave ad hoc treatments for a few simple phase functions,
but these involved a great deal of algebraic manipulation. Already for a three term
phase function the bookkeeping is enormous (cf. Horak and Chandrasekhar, 1961).
For more general phase functions it is more promising to use a systematic book-
keeping for the reduction to H functions or X and Y functions (cf. van de Hulst,
1970; Sobolev, 1974); the prescriptions and polynomials involved are based in part
on work of Kus€er (1955) and Busbridge (1960, 1967).

Chandrasekhar (1950) and Sobolev (1974) give tables of H, X and Y functions for
several anisotropic phase functions with as many as three terms; most of the tables
are for @=1 and for coarse increments in u. More extensive tables of H functions are
given by Lenoble (1970) for the Rayleigh phase function and by Kolesov and Smotkii
(1972) for phase functions with as many as four terms. Extensive tables of X and Y
functions are given by Sweigart (1970) for the Rayleigh phase function.
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The method of X and Y functions has been extended to include polarization in the
simple case of Rayleigh scattering. This problem yielded to the ad hoc treatment of
Chandrasekhar (1950), essentially because the Fourier components of the phase
matrix could easily be factored into the product of a matrix dependent only on u and
a matrix dependent only on y,. The method of X and Y functions has not been suc-
cessfully extended to a more general case, such as Mie scattering, although considerable
effort (e.g. Sekera, 1966) has been expended with that goal in mind.

The relevant H functions for Rayleigh scattering are given by Chandrasekhar
(1950), Lenoble (1970) and Abhyankar and Fymat (1971); the latter two references
include results for @< 1. X and Y functions for @=1 are given by Sekera and Kahle
(1966); results in terms of the Stokes parameters are given by Coulson et al. (1960)
for optical thicknesses not exceeding unity. Bond and Siewert (1971) give some H
functions for the case in which the phase matrix is a linear combination of isotropic
and Rayleigh scattering.

The main attraction of the method of X and Y functions is the reduction of the solu-
tion to functions of a single angle. The primary drawback of the method is the exten-
sive amount of algebra which has been employed for most phase functions and phase
matrices. A useful extension to general phase matrices has not been demonstrated.

3.6. DISCRETE ORDINATE METHOD

In the discrete ordinate method the equation of transfer (3.35) is attacked by expanding
the phase function in Legendre polynomials and replacing the integral over ' with a
finite sum, i.e., the quadrature is performed using 2» discrete ' (n discrete ). The limit
n=1 is a two stream approximation, with one upward direction and one downward
direction. For large n the method in principle becomes arbitrarily accurate. By taking
the limit n — oo the method of eigenvalue expansions (Section 3.8) is obtained.

The origins of the discrete ordinate method date at least to the two-stream method
of Schuster (1905) and Schwarzschild (1906). Wick (1943) and Chandrasekhar (1944,
1950) developed the method with » discrete ordinates.

We sketch the discrete ordinate method here for the problem in which the intensity
is computed with polarization neglected, because that is the realm in which the method
has been applied. The phase function is expanded in, or approximated by, a finite
number of Legendre polynomials,

L

P(cosa) =) ¢P (cosa), (3.63)

1=0

where the coefficients ¢; are constants. By the addition theorem of spherical har-
monics

Pt o, &= §0) = 3 (2= do,m) L. cIPF () PF (o) cosm (6 = o).
where (3.64)

(1 — m)! 1 if m=0
C;" =C 50 m= > (3°65)
(I+ m)! ’ 0 move over



LIGHT SCATTERING IN PLANETARY ATMOSPHERES 603

and the P;" are the associated Legendre functions. Thus the intensity is also expanded
in the form

L
I(t,u,¢)= ¥ I"(x, u)cosm(d — o), (3.66)
m=0
and the equation of transfer splits up into L+ 1 independent equations for the I™,
L n
ui_d7=_1i +§ ' Py (u;) wITPT (u;) +
l=m j=-n
y L
BF ge """ (2 = 8¢, ) e -
+ -0 4 > 2 'Py" (u;) PT (o) » (3.67)
l=m

where the integral over ' has been replaced with a sum over j, with ordinates u; and
weights w;. Usually Gauss quadrature is employed. i and j take on the values +1,
+2,...+n in the nth approximation. Thus (3.67) represents 2n linear equations for
each, m, m=0, 1,...L. n is taken as any number satisfying 4n—1>2L.

The solution of the nonhomogeneous differential Equation (3.67) is the sum of a
solution of the homogeneous part of the equation, which must have the form

L
—km

e -mpm
Z /Py (u;) (3.68)

L+ uk

I=m

and a particular integral of (3.67), for which one form is

L
(2 - 5o,m) Foe_t/”0 Z ey Py (u;) ' (3.69)
4 1+ u;/po
l=m
Relations for determining the constants k,,, £', v and ¢]" are obtained by substituting
these solutions into the equation of transfer and by using the boundary conditions on /;".

For simple cases, involving as many as three terms in the expansion of the phase
function in Legendre polynomials, Chandrasekhar (1950) has done the algebra to
analytically approach the solution. However, numerical computations are still re-
quired in the end.

Determination of the constants in the discrete ordinate method can be handled
systematically, thus allowing numerical computations in principle for any order of
approximation n. Descriptions of appropriate procedures and quantitative results
have been given, for example, by Lenoble (1956), Samuelson (1969) and Liou (1973).

An advantage of the discrete ordinate method is that it yields the internal field as
well as the reflection and transmission. A disadvantage is that considerable algebra
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is required prior to numerical computations. However, at least for the azimuth-inde-
pendent term, the discrete ordinate method can give rather accurate results (within
a percent or so) already for n=3 or 4, so it is an efficient procedure when accuracies of
that order are sufficient (cf. Weinman and Guetter, 1972; Liou, 1973). Liou (1974)
has given a quasi-analytic solution for n=2 (4-stream approximation) which may be
sufficiently accurate for computations of the flux in many applications.

3.7. SPHERICAL HARMONICS METHOD

The spherical harmonics method, which is also known as the ‘P, -approximation’, is
very similar to the discrete ordinates method. The spherical harmonics method also
begins with the equation of transfer, but the intensity is immediately expanded into a
finite number of spherical harmonics (Davison, 1958; Lenoble, 1961). The mth
azimuthal component of the intensity is thus of the form

" (t,u) = i (21 + 1) d" (z) PP (u) (3.70)

l=m

and the phase function is expanded in Legendre polynomials as in (3.63). The P;" are
the associated Legendre functions and the d" are coefficients to be determined. By
taking L sufficiently large the intensity can in principle be obtained to an arbitrary
accuracy.

If (3.70) is substituted into the equation of transfer a system of L+ 1—m simul-
taneous first order linear differential equations is obtained. This system must be solved
subject to the boundary conditions on the equation of transfer. For finite L the bound-
ary conditions can not be exactly satisfied for all . Thus there is some arbitrariness in
the choice of conditions applied to the system of simultaneous equations. Usually
either Marshak’s (1947) or Mark’s (1944) boundary conditions are used; the relative
merits are discussed by Davison (1958).

The system of simultaneous equations obtained in the spherical harmonics method
is described in detail by Davison (1958) and Case and Zweifel (1967). Quantitative
applications of the method have been made by Deuze et al. (1973), who use a quasi-
analytic approach, and by Dave and Canosa (1974), who use a direct numerical pro-
cedure. The latter approach can easily be extended to an inhomogeneous atmosphere.
Dave and Armstrong (1974) describe a scheme to numerically smooth fluctuations in
the intensity which normally exist in the spherical harmonics solution for finite L.

The practical applicability of the spherical harmonics method is similar to the
discrete ordinates method. Indeed, for the azimuth independent part of the intensity,
I°(z, u), the equations are exactly the same in the two methods (cf. Davison, 1958;
Kofink, 1967). A useful characteristic of the spherical harmonics method is that, like
the discrete ordinate method, it can yield a reasonable accuracy for low order ap-
proximations. With appropriate modifications the spherical harmonics method is in
principle applicable to geometries other than a plane-parallel atmosphere (cf. Davison,
1958).
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3.8. EXPANSION IN EIGENFUNCTIONS

The method of expansion in eigenfunctions is based on a standard mathematical
technique for solving differential equations. The solution of the equation of transfer is
obtained as an expansion in a series of solutions to the homogeneous part of the

equation,
1 2=

—I(r,u,¢)+éjJP(u,u’,d)—d)’)x
47

x I(t,u', ¢')du’ d¢’, (3.71)

in which the dependence of I on p, is implicit. Particular solutions of (3.71) can be
found in the form

e T (u) (1 — u®)"? cosmeg, (3.72)
where ¢} is called the eigenfunction and v is the corresponding eigenvalue. The method
thus consists essentially of: (1) finding the eigenfunctions of (3.71), (2) proving that the
eigenfunctions form a complete set, and (3) expanding the solution of the complete
equation of transfer in terms of these eigenfunctions using the appropriate boundary
conditions.

Very extensive mathematical manipulation is required to actually work out this
method of expansion in eigenfunctions. Even then the recipe for numerical computa-
tions is extremely complicated. This method was worked out for isotropic scattering
by Case (1960) and, in a paper containing more than 100 equations, for a phase func-
tion consisting of an arbitrary number of polynomials by McCormick and Kus&er
(1966). 1t is found that there is a continuous set of eigenvalues in the range —1<v<1,
corresponding to a continuous set of singular eigenfunctions, and a discrete set of
eigenvalues outside the range (— 1, 1). The singular eigenfunctions do not lead to any
essential difficulties because the final solution involves integrals over them. The solu-
tions for I can be expressed in terms of H functions, moments of H functions and
certain polynomials. In general these functions and the coefficients of the polynomials
must be computed numerically. The most ambitious numerical results are apparently
those of Kaper et al. (1970) for the azimuthally-symmetric case and Feinstein ez al.
(1972) for the azimuth-dependent case.

A more detailed description of the method of expansion in eigenfunctions can be
obtained from the above references, Mika (1961), Case (1967), Case and Zweifel (1967),
McCormick and Kus€er (1973) and Kuséer and McCormick (1974); the latter ref-
erence contains a particularly clear presentation of the method.

The method of expansion in eigenfunctions provides a rigorous mathematical treat-
ment of the equation of transfer, but is apparently too complicated to compete with
other methods described in this review for numerical applications to planetary atmos-
pheres. In particular, extensions to nonhomogeneous atmospheres and non-plane-
parallel geometries, though possible in principle, would apparently not be practical
for obtaining quantitative results. However, even if the method of expansion in

dI (7, u, ¢)
u ————=
dz
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eigenfunctions is not used for numerical computations it has some relevance to plane-
tary problems, e.g., (1) the largest discrete eigenvalue v and the corresponding eigen-
function give the diffusion exponent and the diffusion pattern deep within a thick
atmosphere (van de Hulst, 1970), and (2) extensions of the theory for expansions in
eigenfunctions can be used to obtain polynomials occurring in the method of X and Y
functions (cf. van de Hulst, 1970; Pahor, 1966, 1967).

3.9. MONTE CARLO METHOD

The Monte Carlo method takes advantage of the fact that the scattering of an indi-
vidual photon is essentially a stochastic process, with the phase function being the
probability density function for scattering at a given angle. Photons are thus allowed to
play a game of change in a computer and by recording the history of a sufficient
number of photons the radiation field can in principle be determined to an arbitrary
accuracy. The basic simplicity of this method allows great flexibility, and hence it can
be applied to complicated problems which would be virtually insoluble by the methods
described above.

The Monte Carlo method was used for computer simulation of multiple scattering
problems at least as early as the 1940’s and the basic precept of stochastic trials has
much earlier origins (cf. Hammersley and Handscomb, 1964). Several additional
books on the Monte Carlo method are available, e.g., Cashwell and Everett (1959),
Shreider (1966) and Spanier and Gelbard (1969). A useful review paper has been
given by House and Avery (1969). Many applications to plane-parallel planetary
atmospheres have been made, e.g., by Collins and Wells (1965), Plass and Kattawar
(1968, 1971) and Danielson et al. (1969). Van Blerkom (1971) and Appleby and van
Blerkom (1974) have used this method to compute reflection from clouds with hori-
zontal striations, while McKee and Cox (1974) have used it for application to finite
cubic clouds. Kattawar et al. (1973) have used the Monte Carlo method for computing
the radiation field in a plane-parallel atmosphere-ocean system. Marchuk and
Mikhailov (1967a, b), Kattawar and Adams (1971) and Collins er al. (1972) have
applied the method to spherical atmospheres. Kastner (1964) has used it to include a
redistribution of photon frequencies in L, scattering.

In the Monte Carlo method a system of coordinates and boundaries are defined ap-
propriate for the atmosphere being considered. Photons are successively ‘released’
from the source, which may be, for example, sunlight incident from a given direction
or thermal radiation distributed through the atmosphere. A given photon suffers its
first interaction (scattering or absorption) after traveling an optical distance

=lyIn (1/r), (3.73)
where [, is the mean free photon path,
lo = 1/0, : (3.74)

and r is a random number in the interval (0, 1). The new direction of the photon can
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be obtained by taking ¢ from
¢ =2nr (3.75)
and 6 from
0
fP(0')sing" do’
0

r="2 : (3.76)
{P(0")sin’ do’
0

where in each case r is a new number on (0, 1). Bookkeeping is maintained of the
number of photons crossing unit area at each location at which the intensity is desired.

In an optimized computer program a simulated photon history is not terminated by
absorption or escape from the atmosphere. Instead a weight W is associated with
each photon and appropriately reduced at each interaction. Thus W may be multiplied
by @[ 1 —exp(— 7.)] at each scattering, where 7, is the optical distance to the boundary
of the atmosphere in the direction of the photon path, and the location of the next
interaction is restricted to lie on the pathlength within the atmosphere. In this way the
start-up time required to inject new photons into the atmosphere is minimized. A
given photon history is terminated after its weight reaches an assigned lower limit.
The optimum value for this lower limit can best be determined from experience; Plass
and Kattawar (1971) use the value 1077,

Additional biasing schemes may be used to prevent over-processing of photons
which contribute to an easily defined aspect of the radiation field. With any biasing
scheme the probability distribution for a particular event is distorted to force the se-
lection of random variable into a favorable category. The physics of the situation is
maintained by appropriately weighting the photon. Biasing schemes are valuable for
reducing computer time, but they must be used with care to avoid introduction of
spurious results.

The variety of biasing procedures is one of the reasons that there are many dif-
ferent Monte Carlo codes. The different options available within the general Monte
Carlo method make it difficult to document precisely, and thus the reliability of the
results depends considerably on the practitioner. However, the same problem exists
to some extent with all the numerical methods for multiple scattering.

The major advantage of the Monte Carlo method is the ease with which it can be
applied to many complicated problems, particularly to non-plane-parallel atmos-
pheres. The only real disadvantage of the method is the limited accuracy obtained with
moderate computer time. Most results which have been presented possess statistical
fluctuations of at least a few percent, and these errors decrease in magnitude only as
the square root of the number of photons processed. However, computers are likely
to continue to improve in their speed and storage capabilities and there is likely to be
an increased need for solving problems with non-plane-parallel atmospheres. Thus the
Monte Carlo method should play a majorrale in future planetary applications.
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