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Wave equations

Maxwell’s equations (homogeneous and isotropic)

∇× E = iωµH (1)

∇×H = −iωεE (2)

∇ · E = 0, ∇ ·H = 0 (3)

Wave equations
∇×∇× E = ω2εµE (4)

∇×∇×H = ω2εµH (5)

Identity:
∇×∇× A = ∇(∇ · A)−∇2A (6)

Helmholtz equations:
∇2E + k2E = 0 (7)

∇2H + k2H = 0 (8)

where k = ω
√
εµ



Spherical vector wave functions

Spherical coordinate system (θ, φ, r)

Let us introduce a vector function:

M(θ, φ, r) = ∇× (cϕ(θ, φ, r)), (9)

where ϕ is a scalar function and c is a constant “pilot” vector

Note that M is a solenoidal function, i.e., ∇ ·M = 0

Applying ∇2 + k2 operator to M we obtain

∇2M + k2M = ∇× [c(∇2ϕ+ k2ϕ)] (10)

Now, we can see that M satisfies the vector Helmholtz equation if
staisfies the scalar Helmholtz

∇2ϕ+ k2ϕ = 0 (11)



Spherical vector wave functions

Another solenoidal function that satisfies the vector Helmholtz equation
can be generated by taking a curl of M = ∇× (cϕ)

N =
1

k
∇×M (12)

We also note that
M = k∇×N (13)

The functions M and N are known as the vector spherical wave function
(VSWF)

Third VSWF corresponds irrotational field (non-propagating component)

L = ∇ϕ (14)

Next, we need to find ϕ



Scalar solution

Let the scalar function ϕ be a solution of

∇2ϕ+ k2ϕ = 0 (15)

In the spherical coordinate system, the above equation reads as
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+ k2ϕ = 0 (16)

We seek a solution of the form

ϕ(r , θ, φ) = R(r)Θ(θ)Φ(φ) (17)

Separation of variables: p.d.e → o.d.e



Scalar solution: angular part Φ(φ)

Substituting (17) into (16) and expressing R and Θ dependent terms
with a separation constant m2, we obtain

d2Φ

dφ2
+ m2Φ = 0 (18)

The solution reads as
Φ = e±imφ (19)

m is an integer since we require the solution to be periodic
Φ(φ) = Φ(φ+ 2π)



Scalar solution: angular part Θ(θ)

Substituting (17) and (19) into (16) and expressing R dependent term
with a separation constant l(l + 1), we obtain

1

sin θ

d

dθ

(
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)
+

[
l(l + 1)− m2

sin2 θ

]
Θ = 0 (20)

Solution: Associated Legendre functions of first kind

Θ = Pm
l (η) =

(1− η2)m/2

2l l!

d l+m(η2 − 1)l

d(η)l+m
(21)

where η = cos θ (spherical coordinate)

l = 0, 1, 2, ..., L and m = −l , ..., l



Scalar solution: angular part
Scalar spherical harmonic

Ym
l = cml Pm

l (cosθ)e imφ (22)

where cml is a normalization constant

l=0

l=1

l=2

l=3



Scalar solution: radial part
Case 3. ϕ = R(r)

r2 d
2R

dr2
+ 2r

dR

dr
+ (k2r2 − l(l + 1))R = 0 (23)

defining R(r) = Z (r)/
√

(kr) we get the Bessel equation of order(l + 1/2)

r2 d
2Z

dr2
+ 2r

dZ

dr
+ (k2r2 − (l + 1/2)2)Z = 0 (24)

Two solutions can be written as

R = jl(kr) =

√
π

2kr
Jl+ 1

2
(kr) (25)

R = hl(kr) =

√
π

2kr
Hl+ 1

2
(kr) (26)

where jl(kr) the spherical Bessel function and hl(kr) is the first order
Hankel function.



Full solution

Full solution for the scalar Helmholtz equation read as

ϕl,m(r , θ, φ) = cml Ym
l (θ, φ)zl(kr) (27)

where zl(kr) is spherical Bessel (jl(kr)) or Hankel function (hl(kr))
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hl = jl + iyl (28)

yl is the spherical bessel of the second kind



Vector solution

Three independent vector solutions (∇2E + k2
mE = 0):

Ll,m = ∇ϕl,m (29)

Ml,m = ∇× rϕl,m (30)

Nl,m =
1

km
∇×Ml,m (31)

Ml,m and Nl,m are solenoidal vector fields and are curl of each other

Lm,l is purely irrotational and represents longitudinal wave (can be
omitted)

Ml,m and Nl,m are called as vector spherical harmonics



Solution for the wave equation in spherical coordinates

Find functions in spherical coordinates that satisfy the wave equation
construction and forms a complete set, i.e.,

∇×∇× un = k2un,

and
∇ · un = 0,

Due to a completeness of VSWFs, the electric field can be expressed as

E =
∞∑
n=1

n∑
m=−n

(anmMnm + bnmNnm)

anm and bnm are the expansion coefficients Truncation:

E ≈
p∑

n=1

n∑
m=−n

(anmMnm + bnmNnm)

Typically p = 2 + kr + 4(kr)1/3



Solution for the wave equation in spherical coordinates
Scalar spherical harmonics

Ynm(θ, φ) = P |m|n (cos θ)e imφ

P
|m|
n is associated Legendre functions Vector spherical harmonics

Pnm(θ, φ) = Ynm(θ, φ)ûr

Bnm(θ, φ) = r√
n(n+1)

∇Ynm(θ, φ)

Cnm(θ, φ) = −ûr × Bnm(θ, φ)

Vector spherical wave functions:

Mnm(r , θ, φ) = cnmCnm(θ, φ)zn(kr)

Nnm(r , θ, φ) = cnm

√
n(n+1)

kr Pnm(θ, φ)zn(kr)

+cnm( n+1
kr zn(kr)− zn+1(kr))Bnm(θ, φ)

zn are spherical bessel or hankel functions, and cnm are normalization
coefficients



Scattering by a sphere
Incident field:

Einc ≈
L∑

l=1

l∑
m=−l

aincl,mMl,m+bincl,mNl,m

(32)
Scattered field:

Esca ≈
L∑

l=1

l∑
m=−l

ascal,mMl,m+bscal,mNl,m

(33)
Field inside the sphere:

Ein ≈
L∑

l=1

l∑
m=−l

ainl,mMl,m+binl,mNl,m

(34)

Einc

Esca

Ein

Enforce boundary conditions n× (Esca + Einc) = n× Ein

ascal,m = al,m ∗ aincl,m, bscal,m = bl,m ∗ bincl,m (35)



Expansion of fields

Expansion coefficients for a particular incident wave

Al,m =

∫
Ω

M∗l,mE
inc dΩ (36)

Bl,m =

∫
Ω

N∗l,mE
inc dΩ (37)

where Ω = 4πr2

These can be written as

Al,m = −i l+1 2l + 1

l(l + 1)

(l −m)!

(l + m)!
Πl,mE0 (38)

Bl,m = −i l+2Nm
2l + 1

l(l + 1)

(l −m)!

(l + m)!
Tl,mE0 (39)



Expansion of incident fields

Expansion coefficients for a plane-wave θ = 0

All terms vanish except when m = 1

Πl,1 = 1 (40)

and

Tl,1 =
1

2
l(l + 1) (41)

The coefficients are

Al,1 = i l−1E0
2l + 1

l(l + 1)
(42)

Bl,1 = iAl,1 (43)



Determination of coefficients

Applying interface conditions to the vector spherical harmonics

jl(Nχ)cl + hl(χ)bl = jl(χ)

[Nχjl(Nχ)]′ cl + [χhl(χ)]′bl = [χjl(χ)]′

Njl(Nχ)dl + hl(χ)al = jl(χ)

[Nχjl(Nχ)]′ dl + [χhl(χ)]′al = [χjl(χ)]′

(44)

evaluated at r = a. Now we can solve coefficients for the scattered fields

al =
N2jl(Nχ) [χjl(χ)]′ − jl(χ) [Nχjl(Nχ)]′

N2jl(Nχ) [χhl(χ)]′ − hl(χ) [Nχjl(Nχ)]′

bl =
jl(Nχ) [χjl(χ)]′ − jl(χ) [Nχjl(Nχ)]′

jl(Nχ) [χhl(χ)]′ − hl(χ) [Nχjl(Nχ)]′

(45)



Determination of coefficients

and for the internal fields

cl =
jl(χ) [χhl(χ)]′ − hl(χ) [χjl(χ)]′

jl(Nχ) [χhl(χ)]′ − hl(χ) [Nχjl(Nχ)]′

dl =
Njl(χ) [χhl(χ)]′ − Nhl(χ) [χjl(χ)]′

N2jl(Nχ) [χhl(χ)]′ − hl(χ) [Nχjl(Nχ)]′

(46)

where χ is the size parameter

χ =
2πrsph
λ

(47)

and N is the refractive index
Derivates:

jl(x)′ = jl−1(x)− l + 1

x
jl(x) (48)

hl(x)′ =
1

2
[hl−1(x)− hl(x) + xhl+1

x
] (49)



Scattering coefficient
Complex Poynting vector

S =
1

2
E×H∗ (50)

where H∗ denotes complex conjugate of H Scattered energy

Wsca =
1

2
Re

∫
S

n̂ · Esca ×H∗sca dS , (51)

where S is a closed surface enclosing the particle

Scattering cross section:

Csca =
Wsca

Iinc
(52)

Iinc denotes the intensity of the incident field

For a plane wave incident, it can be shown that

Csca =
2π

k2

∞∑
l=1

(2l + 1)(|al |2 + |bl |2) (53)



Extinction coefficient

Extincted energy

Wext =
1

2
Re

∫
S

n̂ · Einc ×H∗sca dS , (54)

where S is a closed surface enclosing the particle

Scattering cross section:

Cext =
Wext

Iinc
(55)

Iinc denotes the intensity of the incident field

For a plane wave incident, it can be shown that

Cext = Re
2π

k2

∞∑
l=1

(2l + 1)(al + bl) (56)

Absorption coefficient
Cabs = Cext − Csca (57)



Scattering amplitudes

S1(θ) =
∑
l=1

2l + 1

l(l + 1)
(alπl(cosθ) + bnτl(cosθ)) (58)

S2(θ) =
∑
l=1

2l + 1

l(l + 1)
(blπl(cosθ) + anτl(cosθ)) (59)

where angular function are defined as

πl(cosθ) =
1

sinθ
P1
l (cosθ) (60)

τl(cosθ) =
d

dθ
P1
l (cosθ) (61)

S3 and S4 are zeros for spheres



Scattering patterns

Recursive computations

πl =
2l − 1

l − 1
cos θπl−1 −

l

l − 1
πl−2 (62)

starting with π0 = 0, π1 = 1 and π2 = 3 cos θ

τl = l cos θπl − (l + 1)πl−1 (63)

with τ0 = 0, τ1 = cos θ and τ2 = 3 cos(2θ)


