Electromagnetic scattering 1: Mie theory

Johannes Markkanen
University of Helsinki

September 20, 2016

Wave equations

Maxwell's equations (homogeneous and isotropic)

$$
\begin{gather*}
\nabla \times \mathbf{E}=i \omega \mu \mathbf{H} \tag{1}\\
\nabla \times \mathbf{H}=-i \omega \epsilon \mathbf{E} \tag{2}\\
\nabla \cdot \mathbf{E}=0, \quad \nabla \cdot \mathbf{H}=0 \tag{3}
\end{gather*}
$$

Wave equations

$$
\begin{align*}
\nabla \times \nabla \times \mathbf{E} & =\omega^{2} \epsilon \mu \mathbf{E} \tag{4}\\
\nabla \times \nabla \times \mathbf{H} & =\omega^{2} \epsilon \mu \mathbf{H} \tag{5}
\end{align*}
$$

Identity:

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{A}=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} \tag{6}
\end{equation*}
$$

Helmholtz equations:

$$
\begin{align*}
\nabla^{2} \mathbf{E}+k^{2} \mathbf{E} & =0 \tag{7}\\
\nabla^{2} \mathbf{H}+k^{2} \mathbf{H} & =0 \tag{8}
\end{align*}
$$

where $k=\omega \sqrt{\epsilon \mu}$

Spherical vector wave functions

Spherical coordinate system (θ, ϕ, r)
Let us introduce a vector function:

$$
\begin{equation*}
\mathbf{M}(\theta, \phi, r)=\nabla \times(\mathbf{c} \varphi(\theta, \phi, r)), \tag{9}
\end{equation*}
$$

where φ is a scalar function and \mathbf{c} is a constant "pilot" vector
Note that \mathbf{M} is a solenoidal function, i.e., $\nabla \cdot \mathbf{M}=0$
Applying $\nabla^{2}+k^{2}$ operator to M we obtain

$$
\begin{equation*}
\nabla^{2} \mathbf{M}+k^{2} \mathbf{M}=\nabla \times\left[\mathbf{c}\left(\nabla^{2} \varphi+k^{2} \varphi\right)\right] \tag{10}
\end{equation*}
$$

Now, we can see that \mathbf{M} satisfies the vector Helmholtz equation if staisfies the scalar Helmholtz

$$
\begin{equation*}
\nabla^{2} \varphi+k^{2} \varphi=0 \tag{11}
\end{equation*}
$$

Spherical vector wave functions

Another solenoidal function that satisfies the vector Helmholtz equation can be generated by taking a curl of $\mathbf{M}=\nabla \times(\mathbf{c} \varphi)$

$$
\begin{equation*}
\mathbf{N}=\frac{1}{k} \nabla \times \mathbf{M} \tag{12}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\mathbf{M}=k \nabla \times \mathbf{N} \tag{13}
\end{equation*}
$$

The functions \mathbf{M} and \mathbf{N} are known as the vector spherical wave function (VSWF)

Third VSWF corresponds irrotational field (non-propagating component)

$$
\begin{equation*}
\mathbf{L}=\nabla \varphi \tag{14}
\end{equation*}
$$

Next, we need to find φ

Scalar solution

Let the scalar function φ be a solution of

$$
\begin{equation*}
\nabla^{2} \varphi+k^{2} \varphi=0 \tag{15}
\end{equation*}
$$

In the spherical coordinate system, the above equation reads as

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \varphi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \varphi}{\partial \phi^{2}}+k^{2} \varphi=0 \tag{16}
\end{equation*}
$$

We seek a solution of the form

$$
\begin{equation*}
\varphi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) \tag{17}
\end{equation*}
$$

Separation of variables: p.d.e \rightarrow o.d.e

Scalar solution: angular part $\Phi(\phi)$

Substituting (17) into (16) and expressing R and Θ dependent terms with a separation constant m^{2}, we obtain

$$
\begin{equation*}
\frac{d^{2} \Phi}{d \phi^{2}}+m^{2} \Phi=0 \tag{18}
\end{equation*}
$$

The solution reads as

$$
\begin{equation*}
\Phi=e^{ \pm i m \phi} \tag{19}
\end{equation*}
$$

m is an integer since we require the solution to be periodic $\Phi(\phi)=\Phi(\phi+2 \pi)$

Scalar solution: angular part $\Theta(\theta)$

Substituting (17) and (19) into (16) and expressing R dependent term with a separation constant $I(I+1)$, we obtain

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[I(I+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta=0 \tag{20}
\end{equation*}
$$

Solution: Associated Legendre functions of first kind

$$
\begin{equation*}
\Theta=P_{l}^{m}(\eta)=\frac{\left(1-\eta^{2}\right)^{m / 2}}{2^{\prime}!!} \frac{d^{I+m}\left(\eta^{2}-1\right)^{\prime}}{d(\eta)^{I+m}} \tag{21}
\end{equation*}
$$

where $\eta=\cos \theta$ (spherical coordinate)
$I=0,1,2, \ldots, L$ and $m=-I, \ldots, I$

Scalar solution: angular part

Scalar spherical harmonic

$$
\begin{equation*}
Y_{l}^{m}=c_{l}^{m} P_{l}^{m}(\cos \theta) e^{i m \phi} \tag{22}
\end{equation*}
$$

where c_{l}^{m} is a normalization constant

Scalar solution: radial part

Case 3. $\varphi=R(r)$

$$
\begin{equation*}
r^{2} \frac{d^{2} R}{d r^{2}}+2 r \frac{d R}{d r}+\left(k^{2} r^{2}-I(I+1)\right) R=0 \tag{23}
\end{equation*}
$$

defining $R(r)=Z(r) / \sqrt{(k r)}$ we get the Bessel equation of order $(I+1 / 2)$

$$
\begin{equation*}
r^{2} \frac{d^{2} Z}{d r^{2}}+2 r \frac{d Z}{d r}+\left(k^{2} r^{2}-(I+1 / 2)^{2}\right) Z=0 \tag{24}
\end{equation*}
$$

Two solutions can be written as

$$
\begin{align*}
& R=j_{l}(k r)=\sqrt{\frac{\pi}{2 k r}} J_{l+\frac{1}{2}}(k r) \tag{25}\\
& R=h_{l}(k r)=\sqrt{\frac{\pi}{2 k r}} H_{l+\frac{1}{2}}(k r) \tag{26}
\end{align*}
$$

where $j_{l}(k r)$ the spherical Bessel function and $h_{l}(k r)$ is the first order Hankel function.

Full solution

Full solution for the scalar Helmholtz equation read as

$$
\begin{equation*}
\varphi_{I, m}(r, \theta, \phi)=c_{l}^{m} Y_{I}^{m}(\theta, \phi) z_{l}(k r) \tag{27}
\end{equation*}
$$

where $z_{l}(k r)$ is spherical Bessel $\left(j_{l}(k r)\right)$ or Hankel function $\left(h_{l}(k r)\right)$

$$
\begin{equation*}
h_{l}=j_{l}+i y_{l} \tag{28}
\end{equation*}
$$

y_{l} is the spherical bessel of the second kind

Vector solution

Three independent vector solutions ($\nabla^{2} \mathbf{E}+k_{m}^{2} \mathbf{E}=0$):

$$
\begin{gather*}
\mathbf{L}_{l, m}=\nabla \varphi_{l, m} \tag{29}\\
\mathbf{M}_{l, m}=\nabla \times \mathbf{r} \varphi_{l, m} \tag{30}\\
\mathbf{N}_{l, m}=\frac{1}{k_{m}} \nabla \times \mathbf{M}_{l, m} \tag{31}
\end{gather*}
$$

$\mathbf{M}_{l, m}$ and $\mathbf{N}_{l, m}$ are solenoidal vector fields and are curl of each other $\mathbf{L}_{m, l}$ is purely irrotational and represents longitudinal wave (can be omitted)
$\mathbf{M}_{l, m}$ and $\mathbf{N}_{l, m}$ are called as vector spherical harmonics

Solution for the wave equation in spherical coordinates

Find functions in spherical coordinates that satisfy the wave equation construction and forms a complete set, i.e.,

$$
\nabla \times \nabla \times \mathbf{u}_{n}=k^{2} \mathbf{u}_{n}
$$

and

$$
\nabla \cdot \mathbf{u}_{n}=0,
$$

Due to a completeness of VSWFs, the electric field can be expressed as

$$
\mathbf{E}=\sum_{n=1}^{\infty} \sum_{m=-n}^{n}\left(a_{n m} \mathbf{M}_{n m}+b_{n m} \mathbf{N}_{n m}\right)
$$

$a_{n m}$ and $b_{n m}$ are the expansion coefficients Truncation:

$$
\mathbf{E} \approx \sum_{n=1}^{p} \sum_{m=-n}^{n}\left(a_{n m} \mathbf{M}_{n m}+b_{n m} \mathbf{N}_{n m}\right)
$$

Typically $p=2+k r+4(k r)^{1 / 3}$

Solution for the wave equation in spherical coordinates

Scalar spherical harmonics

$$
Y_{n m}(\theta, \phi)=P_{n}^{|m|}(\cos \theta) e^{i m \phi}
$$

$P_{n}^{|m|}$ is associated Legendre functions Vector spherical harmonics

$$
\begin{aligned}
\mathbf{P}_{n m}(\theta, \phi) & =Y_{n m}(\theta, \phi) \hat{\mathbf{u}}_{r} \\
\mathbf{B}_{n m}(\theta, \phi) & =\frac{r}{\sqrt{n(n+1)}} \nabla Y_{n m}(\theta, \phi) \\
\mathbf{C}_{n m}(\theta, \phi) & =-\hat{\mathbf{u}}_{r} \times \mathbf{B}_{n m}(\theta, \phi)
\end{aligned}
$$

Vector spherical wave functions:

$$
\begin{aligned}
\mathbf{M}_{n m}(r, \theta, \phi)= & c_{n m} \mathbf{C}_{n m}(\theta, \phi) z_{n}(k r) \\
\mathbf{N}_{n m}(r, \theta, \phi)= & c_{n m} \frac{\sqrt{n(n+1)}}{k r} \mathbf{P}_{n m}(\theta, \phi) z_{n}(k r) \\
& +c_{n m}\left(\frac{n+1}{k r} z_{n}(k r)-z_{n+1}(k r)\right) \mathbf{B}_{n m}(\theta, \phi)
\end{aligned}
$$

z_{n} are spherical bessel or hankel functions, and $c_{n m}$ are normalization coefficients

Scattering by a sphere

Incident field:

$$
\begin{equation*}
\mathbf{E}^{i n c} \approx \sum_{l=1}^{L} \sum_{m=-l}^{l} a_{l, m}^{i n c} \mathbf{M}_{l, m}+b_{l, m}^{i n c} \mathbf{N}_{l, m} \tag{32}
\end{equation*}
$$

Scattered field:

$$
\begin{equation*}
\mathbf{E}^{s c a} \approx \sum_{l=1}^{L} \sum_{m=-l}^{l} a_{l, m}^{s c a} \mathbf{M}_{l, m}+b_{l, m}^{s c a} \mathbf{N}_{l, m} \tag{33}
\end{equation*}
$$

Field inside the sphere:
$\mathbf{E}^{i n} \approx \sum_{l=1}^{L} \sum_{m=-l}^{I} a_{l, m}^{i n} \mathbf{M}_{l, m}+b_{l, m}^{i n} \mathbf{N}_{l, m}$
Enforce boundary conditions $\mathbf{n} \times\left(\mathbf{E}^{\text {sca }}+\mathbf{E}^{\text {inc }}\right)=\mathbf{n} \times \mathbf{E}^{\text {in }}$

$$
\begin{equation*}
a_{l, m}^{s c a}=a_{l, m} * a_{l, m}^{i n c}, \quad b_{l, m}^{s c a}=b_{l, m} * b_{l, m}^{i n c} \tag{35}
\end{equation*}
$$

Expansion of fields

Expansion coefficients for a particular incident wave

$$
\begin{align*}
& A_{l, m}=\int_{\Omega} \mathbf{M}_{l, m}^{*} \mathbf{E}^{i n c} \mathrm{~d} \Omega \tag{36}\\
& B_{l, m}=\int_{\Omega} \mathbf{N}_{l, m}^{*} \mathbf{E}^{i n c} \mathrm{~d} \Omega \tag{37}
\end{align*}
$$

where $\Omega=4 \pi r^{2}$
These can be written as

$$
\begin{gather*}
A_{l, m}=-i^{I+1} \frac{2 I+1}{l(I+1)} \frac{(I-m)!}{(I+m)!} \Pi_{l, m} E_{0} \tag{38}\\
B_{l, m}=-i^{I+2} N_{m} \frac{2 I+1}{l(I+1)} \frac{(I-m)!}{(I+m)!} T_{l, m} E_{0} \tag{39}
\end{gather*}
$$

Expansion of incident fields

Expansion coefficients for a plane-wave $\theta=0$
All terms vanish except when $m=1$

$$
\begin{equation*}
\Pi_{l, 1}=1 \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{l, 1}=\frac{1}{2} I(I+1) \tag{41}
\end{equation*}
$$

The coefficients are

$$
\begin{gather*}
A_{l, 1}=i^{I-1} E_{0} \frac{2 I+1}{I(I+1)} \tag{42}\\
B_{l, 1}=i A_{l, 1} \tag{43}
\end{gather*}
$$

Determination of coefficients

Applying interface conditions to the vector spherical harmonics

$$
\begin{align*}
j_{l}(N \chi) c_{l}+h_{l}(\chi) b_{l} & =j_{l}(\chi) \\
{\left[N \chi j_{l}(N \chi)\right]^{\prime} c_{l}+\left[\chi h_{l}(\chi)\right]^{\prime} b_{l} } & =\left[\chi j_{l}(\chi)\right]^{\prime} \tag{44}\\
N j_{l}(N \chi) d_{l}+h_{l}(\chi) a_{l} & =j_{l}(\chi) \\
{\left[N \chi j_{l}(N \chi)\right]^{\prime} d_{l}+\left[\chi h_{l}(\chi)\right]^{\prime} a_{l} } & =\left[\chi j_{l}(\chi)\right]^{\prime}
\end{align*}
$$

evaluated at $r=a$. Now we can solve coefficients for the scattered fields

$$
\begin{align*}
a_{l} & =\frac{N^{2} j_{l}(N \chi)\left[\chi j_{l}(\chi)\right]^{\prime}-j_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}}{N^{2} j_{l}(N \chi)\left[\chi h_{l}(\chi)\right]^{\prime}-h_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}} \tag{45}\\
b_{l} & =\frac{j_{l}(N \chi)\left[\chi j_{l}(\chi)\right]^{\prime}-j_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}}{j_{l}(N \chi)\left[\chi h_{l}(\chi)\right]^{\prime}-h_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}}
\end{align*}
$$

Determination of coefficients

and for the internal fields

$$
\begin{align*}
c_{l} & =\frac{j_{l}(\chi)\left[\chi h_{l}(\chi)\right]^{\prime}-h_{l}(\chi)\left[\chi j_{l}(\chi)\right]^{\prime}}{j_{l}(N \chi)\left[\chi h_{l}(\chi)\right]^{\prime}-h_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}} \\
d_{l} & =\frac{N j_{l}(\chi)\left[\chi h_{l}(\chi)\right]^{\prime}-N h_{l}(\chi)\left[\chi j_{l}(\chi)\right]^{\prime}}{N^{2} j_{l}(N \chi)\left[\chi h_{l}(\chi)\right]^{\prime}-h_{l}(\chi)\left[N \chi j_{l}(N \chi)\right]^{\prime}} \tag{46}
\end{align*}
$$

where χ is the size parameter

$$
\begin{equation*}
\chi=\frac{2 \pi r_{s p h}}{\lambda} \tag{47}
\end{equation*}
$$

and N is the refractive index Derivates:

$$
\begin{gather*}
j_{l}(x)^{\prime}=j_{l-1}(x)-\frac{l+1}{x} j_{l}(x) \tag{48}\\
h_{l}(x)^{\prime}=\frac{1}{2}\left[h_{l-1}(x)-\frac{h_{l}(x)+x h_{l+1}}{x}\right] \tag{49}
\end{gather*}
$$

Scattering coefficient

Complex Poynting vector

$$
\begin{equation*}
\mathbf{S}=\frac{1}{2} \mathbf{E} \times \mathbf{H}^{*} \tag{50}
\end{equation*}
$$

where \mathbf{H}^{*} denotes complex conjugate of \mathbf{H} Scattered energy

$$
\begin{equation*}
W_{s c a}=\frac{1}{2} \operatorname{Re} \int_{S} \hat{\mathbf{n}} \cdot \mathbf{E}_{s c a} \times \mathbf{H}_{s c a}^{*} \mathrm{~d} S, \tag{51}
\end{equation*}
$$

where S is a closed surface enclosing the particle Scattering cross section:

$$
\begin{equation*}
C_{s c a}=\frac{W_{\text {sca }}}{I_{\text {inc }}} \tag{52}
\end{equation*}
$$

$l_{\text {inc }}$ denotes the intensity of the incident field
For a plane wave incident, it can be shown that

$$
\begin{equation*}
C_{s c a}=\frac{2 \pi}{k^{2}} \sum_{l=1}^{\infty}(2 l+1)\left(\left|a_{l}\right|^{2}+\left|b_{l}\right|^{2}\right) \tag{53}
\end{equation*}
$$

Extinction coefficient

Extincted energy

$$
\begin{equation*}
W_{e x t}=\frac{1}{2} \operatorname{Re} \int_{S} \hat{\mathbf{n}} \cdot \mathbf{E}_{i n c} \times \mathbf{H}_{s c a}^{*} \mathrm{~d} S, \tag{54}
\end{equation*}
$$

where S is a closed surface enclosing the particle Scattering cross section:

$$
\begin{equation*}
C_{e x t}=\frac{W_{e x t}}{l_{\text {inc }}} \tag{55}
\end{equation*}
$$

$l_{\text {inc }}$ denotes the intensity of the incident field
For a plane wave incident, it can be shown that

$$
\begin{equation*}
C_{e x t}=\operatorname{Re} \frac{2 \pi}{k^{2}} \sum_{l=1}^{\infty}(2 l+1)\left(a_{l}+b_{l}\right) \tag{56}
\end{equation*}
$$

Absorption coefficient

$$
\begin{equation*}
C_{a b s}=C_{e x t}-C_{s c a} \tag{57}
\end{equation*}
$$

Scattering amplitudes

$$
\begin{align*}
& S_{1}(\theta)=\sum_{l=1} \frac{2 I+1}{I(I+1)}\left(a_{l} \pi_{l}(\cos \theta)+b_{n} \tau_{l}(\cos \theta)\right) \tag{58}\\
& S_{2}(\theta)=\sum_{l=1} \frac{2 I+1}{l(I+1)}\left(b_{l} \pi_{l}(\cos \theta)+a_{n} \tau_{l}(\cos \theta)\right) \tag{59}
\end{align*}
$$

where angular function are defined as

$$
\begin{align*}
& \pi_{l}(\cos \theta)=\frac{1}{\sin \theta} P_{l}^{1}(\cos \theta) \tag{60}\\
& \tau_{l}(\cos \theta)=\frac{d}{d \theta} P_{l}^{1}(\cos \theta) \tag{61}
\end{align*}
$$

S_{3} and S_{4} are zeros for spheres

Scattering patterns

Recursive computations

$$
\begin{equation*}
\pi_{I}=\frac{2 I-1}{l-1} \cos \theta \pi_{I-1}-\frac{l}{l-1} \pi_{I-2} \tag{62}
\end{equation*}
$$

starting with $\pi_{0}=0, \pi_{1}=1$ and $\pi_{2}=3 \cos \theta$

$$
\begin{equation*}
\tau_{I}=I \cos \theta \pi_{I}-(I+1) \pi_{I-1} \tag{63}
\end{equation*}
$$

with $\tau_{0}=0, \tau_{1}=\cos \theta$ and $\tau_{2}=3 \cos (2 \theta)$

