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Finite-difference time-domain (FDTD)

Numerical technique for solving Maxwell's equations in time domain

Maxwell's equations are directly discretized by finite-differences

Central difference approximations to the space and time derivatives

The space is approximated by cubical cells
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Finite-difference time-domain (Yee-algorithm)

Strengths:
e Universal applicability
e Broadband response obtained with one simulation
e Inhomegeneous, anisotropic, non-linear materials are easily modelled
e Matrix inversion is not needed (recursive update scheme)
e Simple implementation
e Evolution of fields can be studied in time
Weaknesses:
e Accuracy -Error is dispersive and accumulates as waves propagate
through the grid
e Staircase approximation

e Time-step is a function of grid size

PML is needed for open region problems
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FDTD literature

Introduction to FDTD, FEM, |IEM

e Sheng Xin-Qing, Song Wei, Essentials of computational
electromagnetics, IEEE,Wiley, 2012.

Some FDTD books

e Allen Taflove and Susan C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-Domain Method,
Artech House Publishers, 2005.

e Wenhua Yu, Raj Mittra, Tao Su, Yongjun Liu, and Xiaoling Yang,
Parallel Finite-Difference Time-Domain Method, Artech House
Publishers, 2006.
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Maxwell’s equation

Faraday's law
0B
VXE=—-——
8 ot

Ampéres law
D
VxH= 8_ +ocE+J

ot

Gauss's law for elecric field

V-D=p
Gauss's law for magnetic field

V-B=0
Constitutive relations:

D=c¢xE

B=puxH

€ electric permittivity
[ magnetic permeability
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FDTD engine (empty space)

Done?

time-loop

-

Update H

Update E

SetE=0and H=0
Marching-in-time procedure:

e Update H:
V xE= —/Lo%—':

e Update E:
V x H—Goat
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FDTD engine (more realistic case)

Initialize

Done?
time-loop Y
| | Update H

Handle boundaries

Inject sources

Visualize fields

t

process data

record data Handle boundaries

| Inject sources

Update E

Initialize everything
Marching-in-time  proce-

dure:

Update H:
PML

Gaussin pulse
Update E:
PML

Gaussin pulse

Fourier transform,
etc.
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Update equations
Finite-difference formula (central difference)

of(t+4) _ f(t+Ar) —f(t)
ot - At (7)

At

Difference is defined at “half integer point” in discrete time-domain
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Update equations

Faraday's law

OH OH
VXE:—ME:>E:—M_1V><E

e oH
Apply finite-difference formula for 57

H|t+l _ H|t7%

-1 t
= — E
; u -V x E|

The update equation for H read as

H|t3 = H|" 7 — Atp 'V x E|f

(10)



Computational electromagnetics

Update equations

Ampére's law
OE OE
H=e—=>— =¢" H

V x eat > T € "V x
Apply finite-difference formula for %
E|t+1 _ E|t

A= e 1V x H|tt2

The update equation for E read as

E[*"! = E|' + Ate 'V x H|[tT2
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Update equations for components of H
Assume i is diagonal

H|t" 2 = H|""2 — Atp 'V x E|t (14)
0E, OE OE. OE 0E, OE
Eos (22 %) pg( S %52 45 (T %5 (1
VX X<8y 62)+y<8z 6x>+z<8X 3}/)(5)
X-component:
E, 0E\|
e = - a5 - OF) (16)
y-component:
L et L1 (0B OEN|
Hy |58 = H,'E = At (E " o (1)
z-component:
E EN\ |
R R C =) (18)
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Update equations for components of E

Assume ¢ is diagonal
E["*! = E|' + Ate 'V x H|'*2

X-component:

OH, 0H,\ |
Ex t+1 _ EX t At -1 z _ Y
| et (G- 5
y-component:
OH,  OH,\|"*
+1 —1 X z
BT =8I+ Aty (az - W)

z-component:

[N

t+
Ez|t+1 — Ez|t+At€Z_zl <% . 8HX)

Ox dy
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Yee's unit cell
Components of vectors in

2
each cell (i, , k) are located
Ay at different points in space!
A ——— t+1
1Hxl; ) ,
E:lf ik e Automatically
LA ] " . .
p 1 »-t;; 7777777 » ),~Ey|i’f’k satlsf.m:s divergence
P S i R e conditions
: L . e Automatically
7777777 & | y satisfies interface
Elt. )k ! [ Ax conditions
Xlinj,k T
L e Simplifies the
A t+3 )
X H:|; ; FDTD-algorithm

(K. Yee, "Numerical solution of initial boundary value problems involving
maxwell's equations in isotropic media,” IEEE Trans. Antennas and
Propagation, vol.14, no.3, pp.302-307, May 1966)
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Update equation for x-component of H-field

t+1 OE, OE,
HX|i,jf< H |I_] k At ( 8}/ Oz ) (23)
0E, B % _ Ez|f7j+17k E.|} ik Ey|f,j,k+1 - Ey|f,j,k (24)
ay 0z Ay Az
z
Eylf ki |t+%
E:l I
I el TNy
T
,,,,,,, o
Eylijx
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Update equations for H-field

y-component:

t+3 1
H|,Jf(*H|,Jf( Atp (

OE. O, t
0z ox

% _ % _ Ex|f,j,k+1 - EX|f,j,k B EZ|F+1,j,k - E2|f,j,k
0z x ) Az Ax

z-component:

t

L= el - st (52

i,k

0E, OE\|
Ox dy

% _ OE, _ Ey|,?+17j7k - Ey|f,j,k B Ex|f,j+1,k - Ex|f,j,k
0x oy Ax Ay
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Update equation for the x-component of E-field

OH, OH,\|"?
tH1 _ ot ~1 2 y
Edlijx = Exlijx + Ategy ( oy 5) (29)
t+3 t+3 t+3 t+1
OH, OH,\ _ Heliji = Helij?ow  Hylije = Pylijia (30)
dy 0z Ay Az
z
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Update equations for E-field

y-component:

t+3

_1 (OHy OH,
Ey ’tj:]]( = Ey|’t::j7k + At€yy1 ( az B 8X )

t+3 t+3 t+3 t+3
OH, _ OH,\ HX|i,j,k - HX|i,j,k71 _ Hz|i,j,k - H2|i71,j,k
0z Ox Az Ax

z-component:

t+3

tl _ ot -1
E:lijx = Ezliju + Ate <

o, ot
Ox dy

t+1 t+3 t+1 t+1
OH, OH\ _ Hylijk = Hylicijn  Helijh = HelijZax
Ox dy Ax Ay

(31)

(32)
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Boundary conditions

In differential equation methods the unknowns are generally global
i.e. they E,H € R3

We have to terminate the region of interest somehow

e We can use boundary conditions such as Dirichlet, Neumann,
periodic, boundary, absorbing conditions

Perfectly match layer (PML) for mimicking free space
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Boundary conditions

e Consider FDTD-grid of size 1: N, 1: N,,1: N,

e To calculate V x H, we need to know values of terms H;_1 j x,
Hij—1,k, and H;jx—1. These, however, are not defined when i=1, j
= 1, k=1, respectively, since they are out of the computational
domain.

e Similarly, V x E contain terms E,'+1’j’k, E,"jJr].’k, and Ei,j,k+1 which
not defined when i = N,, j =N, k= N,.

e Force these values to be something (physically reasonable) by a
boundary condition
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Perfectly match layer (PML)
e In unbounded problems, e.g. scattering problems, we want to
eliminate reflections from computational boundaries

e We introduce loss to absorb outgoing waves in the PML, and at the
same time match the impedance to prevent reflections

e This has to be done for all incident angels and polarizations

Dirichlet boundary
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Uniaxial perfectly match layer (UPML)
with

Consider a planewave reflection from a diagonally anisotropic interface

ar 0 0
&=p,= 0 b 0 (35)
0 0 C
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Uniaxial perfectly match layer (UPML)

Refraction into a diagonally anisotropic material

sin 9,‘ =/ b2C2 sin 6‘;_» (36)

Reflection coefficients (z-axis normal to the interface)

e cosb@i —+/by/acos b,
RTE = (37)
cosB; + /by /ay cos b,

w  \/b2/axcos; — cosb;
R™ — (38)
cos i + \/bp/ a2 cos b,

By choosing v/boco =1 — 0; = 0, and \/ba/a, = 1 we can see that
RTE =0and R™ =0 ,i.e., no reflection

We choose by = a; and ¢ = 1/b,
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Uniaxial perfectly match layer (UPML)

By introducing losses a uniaxial material does the trick (for propagating
waves, evanecent waves are more complicated but we can place the PML
far enough from the scatterer)

5,5./S 0 0
& =i, = 0  S55./5, 0 (39)
0 0 55,/S.

Parameter can be chosen e.g.

PG _ 0 Xy

S=1-=72 7:(x) = 2A(LX) (40)
_1_ ay(y) _ 0 Y3

Sy - 1 iw€0 9 Uy(}/) - 2A(Ly) (41)
_ . 0z(2) _ €0, Z.3

Sz =1 iWCO ? UZ(Z) - 2A(Lz) (42)
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Uniaxial perfectly match layer (UPML)

UPML is a frequency domain concept hence we need convert it back to
the time domain by Fourier transform

Some Fourier transform properties:

F(w) < 0f(t) (43)
iwF(w) < 8;—(:) (44)
LF@ e [ e (45)

Leads to more complicated update equations containing e.g.
convolutions!
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Stability of the FDTD algorithm

Maximum cell size:

< 1 A
max 10 ,—erurv
and cells should be able to model geometrical details

Numerical velocity should not exceed ¢y
— >Courant stability condition:

A AX; Ayv AZ < AmaX (46)

Veritr (47)

At < - - -
CO\/ @7 T @yr T @y
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Dispersion relation

Consider a plane electromagnetic wave propagating along z-axis
E = Ege’™+) (48)

How fast a constant phase “point” propagates?

d d
E(Wt — kz) = E(constant) (49)
Phase velocity
dz w
* =gk (50)

Unfortunately, the dispersion is not the same in the FDTD-grid
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Numerical dispersion 1D
Planewave propagating z-direction

Ex|g _ Eoefi(wnAtszqu)

Hy|; _ Hoefi(wnAtfl?quz)
Faraday's law in free-space

C E - —'“ =
8 0 ot

Faraday’s law for the above planewave (y-component)

05 on,
0z ’u@t

Spatial finite-difference for the planewave

OE,  (elk% — emik%)
0z Az

El;

(54)
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Numerical dispersion 1D

Temporal finite-difference for the planewave

At At

% (efin _ein)

— t
ot At Hylg
FD-Faraday law read as
ik, bz ik, Bz —iwht iwst
(5% o) (e o)
Az xlg = THo At va

Since
Ec_ mo
Hy €0

we can write the numerical dispersion relation as

R koz\ 1 o (@A
Az 2 | At 2
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Numerical dispersion 1D

Numerical dispersion relation

L koz\ 1 (WAt
Az’ 2 | T aa"\ 2

Case 1: At,Az — 0, for small x

Case 2: set At = Az/c

1 k.Az _ L (whz
Az " 2 " 2c ‘

Magic time-step!
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Numerical dispersion 3D

~ 2
L (wAt 2 L [ kAx
in| —— = |—s:lI
oAt 2 Ax 2
1 k,A ? 1 k, A ?
. Ay . Az

Depends on the time ans spatial resolution, and propagation direction!
Numerical dispersion is anisotropic.

Three-dimensional case

Approaches the continuous dispersion relation

2
(i) _Rr R R (65)

p

when At, Ax, Ay, Az — 0, however a magic time-step does not exist!
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Numerical dispersion

1
=
E 0.99
[
>
o 0.98
1%}
<
=1
2 0.97
=
8
5 096
IS ——dt=0.5dz/c
2 0.95f |—dt=0.75 dz/c
—dt=1.0dz/c
0.94
0.05 0.1 0.15 0.2
cell size [A]

normalized phase velocity

0.995
0.99
0.985
0.98
0.975
0.97
0.965
0.96

—5cells/A
——10 cells/A
——20 cells/A

[¢] 20 40 60 80

wave angle [deg]

Numerical dispersion can be reduced by decreasing cell size

Recall: Courant stability condition — > smaller time-step



Implementation of 1-D FDTD
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1D problem

Consider uniform problem in the x and y-directions

g 0
ox Ody
System decouples into two independent modes

E./H, mode:
OE, OoH,  OH, OE

9 Mo e T ™ar

E,/H, mode:
JE, OH,  OH, JE,

oz ™ot oz T Yot

(66)
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1D update equation

We consider E,/H,-mode

Hx
Eym
z
_1 El|t., —E|
Ht = HE Mm%%) (69)
H, |t+2 |t+2
E |57 = B[ + mk, Az (70)

where the update coefficients are defined as m\, = Af and mf, = &t

Yy
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PEC and PMC boundary conditions

Consider 1D-FDTD grid where k =1 : Ny
When k = Ny, the update equation for Hy read as

_1 E % 1 — E}
! = Hx|;vk2+mfl\4/f<<—yNk+lAz y'”k) (71)

and E, [}, ,, exists outside the computational domain. Setting
Ey[j,+1 = 0 enforces the PEC boundary condition n x E =0

When k =1, the update equation for E, read as

H, |t+2 B t+3
B = B+ (A—> )

1
and HX\6+2 exists outside the computational domain. Setting H, |0+2 =

enforces the PMC boundary condition n x H=10
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Basic 1D FDTD engine

Algorithm 1 1D-fdtd engine with PEC and PMC

1: Initialize grid

2: fort =1 to N; do

33 fork=1to Ny—1do
Update H,

end for

Compute H,(Nj) with BC

for k =2 to N, do
Update E,

end for

10:  Compute E, (1) with BC

11: end for

© o N a s

When we run this algorithm everything should stay zeros (no source
included)
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The Gaussian source for 1ID-FDTD

The Gaussian pulse is a typical source in FDTD-simulations since it
excites a broad range of frequencies.

6(t) = o [— (= t"ﬂ (73)

to is the delay and 7 is the width of the pulse. Note, from the Fourier
1

transform we can see that the bandwidth is about B = =

0 { L L >
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Simple soft-source

Simple transparent Gaussian source. Add the source function to some
field component at one point on the grid e.g.

E/Li =By + gl (74)

Algorithm 2 1D-fdtd engine with PEC/PMC and soft source

1: Compute source
2: Initialize grid
for t =1 to Ny do
for k =1to N, — 1do
Update Hyx
end for
Compute Hy(Ny) with BC
for k =2 to N do
Update E,
end for
Compute E, (1) with BC
Inject Source Ey|s = Ey|s + gls
13: end for

SEseerNoarw

Mo

“two-way source” useful for testing boundary conditions
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Ideal absorbing boundary condition

In 1D , it is possible find a perfectly absorbing boundary condition if
e Waves travelling only outward at the boundary

e Materials at both boundaries are linear, isotropic homogeneous and
non-dispersive (same material for both boundaries)

o At=./emAz/(2c)

Waves propagate exactly one cell in two time-steps

Ey|7\/k+1 = Ey”\/_k2 (75)
t+1 t—3
Hlo * = Hxly (76)

Record field values at the boundaries and use recorded values as
boundary conditions
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Ideal absorbing boundary condition

At k =1 record H-field values and modify the E-field update equation

hs = h
ho = I
o = HlE 1 (77)
Hel T2 2p
E}’|§+1 = E)’H + mlEy IlAz :

At k = Ny record E-field values and modify the H-field update equation

€3 = &
€ = éa
— t 78)
€1 = E (
e+d TR
2 2 k i
HX | Ny - HX|Nk + My Az

Simple but works only in a special case
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Ideal absorbing boundary condition

Algorithm 3 1D-fdtd engine with the ABC and soft source

1: Compute time-step

2: Compute source

3: Initialize grid

4:

B: for t =1 to N; do

6:

7: for k =1to Ny — 1do

8: Update Hyx

9: end for

10: Compute Hy(Nj) with e3 BC

11: Record H-field hy = ho, hy = hy, hy = Hy|q
12:

13: for k = 2 to Ny do

14: Update E,

15: end for

16: Compute Ey(1) with h3 BC

17: Record E-field e3 = e, ep = e1, €1 = Ey\,\,k
18:

19: Inject Source Ey|s = Ey|s + gls

20: end for
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Total-field /scattered-field (TF/SF) source

Eliminates backward propagating waves "One way source”

Divide the grid into total-field region and scattered-field region

TF/SF-interface

ksre — 1 : Ksre

Scattered-field regioné Total-field region
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Total-field /scattered-field (TF/SF) source

Consider update equation for Hy at ks — 1 (Scattered-field side)

-1 E, | E, |t
ksrc_l + mksrc_l < Y ks Azy ksrc—l) (79)

E,[},. exists at the total-field side.

t+2 H

Xlkse—1 ™

H,

Since E®t = ES© 4 E*, we need to subtract the source-field from the
total-field to obtain the scattered-field

1 (Bl — Bk, — Bl
k _1+m’/f7>,: 1< Y ksre Ksrc Y lksre—1 (80)

t+1 5 H
src Az

Xlhge—1 =

H,

This can be written as

t o _
Ksre y
Az Az sre

E E |t kore —1

t+% o k — i Ksrc—1 my, ESre t

HX Ksre— H |ksr571 + m ix < - |k
(81)

i.e. the standard update equation + a correction term
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Total-field /scattered-field (TF/SF) source

Consider update equation for E, at ks (Total-field side)

t+3 | t+3
t+1 ksrc X Kore B Xlksre—1
Y kere =E |k Ey Az (82)

X\k * | exists at the scattered-field side. We must add the source to it

t+% H‘% src H‘%
E t+1 t Ksre H Ksrc B (HX ksre—1 + HX ksrc—l) 83
ke = Eylk,. + mg, Az (83)
and this can be expressed as
H t+% _ H t+% mksrc 1
t+1 _ t Ksre X ksre Xlksre—1 Ey yysrcit+3
Ey Kere Ey Ksre + mg, Az - Az HX ksre—1 (84)
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Total-field /scattered-field (TF/SF) source

Two source functions are needed:
src|t src t+%
Ey |k and H; |k5,r (85)

Note, these function exist at different locations in space and time
— time-delay

Eli,. = &(t) (86)

1 €k VeuAz At
Hsrc t+5 — _ src t 7
X ol Hks,cg( * 2c * 2 > (87)

half grid delay
half time-step delay
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Ideal absorbing boundary condition

Algorithm 4 1D-fdtd engine with the ABC and TF/SF source

SooNogRwh

= e e
QNI RLNHO

20:

. Compute time-step
. Compute sources
. Initialize grid

for t = 1 to N; do

for k =1to Ny —1do
Update Hyx
end for
Compute Hy(Ny) with e3 BC
Record H-field hy = hy, hy = hy, hy = Hy|1

t+1/2 _ HX‘tJrl/Z .

Inject H-field source Hy| "/ o1

for k =2 to Ny do
Update E,
end for
Compute Ey (1) with h3 BC
Record E-field e3 = ey, ep = e1, €1 = Ey\,\,k
Inject E-field source Ey\?rl = Ey\?rl + ...

21: end for
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Fourier transforms

In many cases, we want to study scattering properties in frequency
domain.

Fourier transform: conversion between time and frequency domains

G(f) = / g(t) exp(—i2rft) dt (88)
Inverse transform
g(t) = / G(F) exp(i27tf) dx (89)
Discrete transform:
N
G(f) = _ g(nAt)exp(—i2rfnAt)At (90)

n=1
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Calculation of reflectance and transmittance

Normalize the spectra by dividing the relection and transmission
spectrum by the source spectrum Reflectance:

[ DFT[E« ()]’
/)= (prrieon)

Transmittance:
DFT[En(t)]

70 - (prmeze)

Note: Nyquist theorem — maximum frequency

1
fmax* 2At

1

Af 2 ———
NstepsAt



Computational electromagnetics

Last FDTD example

Algorithm 5 1D-fdtd engine with the ABC, TF/SF source and DFT

© 00 NG R Wk

21

N = = i b e e
QOINDD AWV HO

for t = 1 to Ny do

for k =1to N, — 1do
Update Hyx
end for
Compute Hy(Ny) with e3 BC
Record H-field h3 = hy, hp = hy, hy = Hx|1
Inject H-field source Hx\itll/z = HX\Ztll/z + ...
for k =2 to Ny do
Update E,
end for
Compute E, (1) with h3 BC
Record E-field e3 = e, ep = e1, €1 = Ey\,\,k

Inject E-field source Ey\?l = Ey‘?l 4.

for g = 1 to Ng do
Compute DFT E,or(q) = Erer(q) + Atexp(—i2mfgtAt))Ey |2
Compute DFT E¢rn(q) = Etn(q) + Atexp(—i27rftht))Ey\Nk_2

end for

. end for
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