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Finite-difference time-domain (FDTD)

• Numerical technique for solving Maxwell’s equations in time domain

• Maxwell’s equations are directly discretized by finite-differences

• Central difference approximations to the space and time derivatives

• The space is approximated by cubical cells
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Finite-difference time-domain (Yee-algorithm)
Strengths:

• Universal applicability

• Broadband response obtained with one simulation

• Inhomegeneous, anisotropic, non-linear materials are easily modelled

• Matrix inversion is not needed (recursive update scheme)

• Simple implementation

• Evolution of fields can be studied in time

Weaknesses:

• Accuracy -Error is dispersive and accumulates as waves propagate
through the grid

• Staircase approximation

• Time-step is a function of grid size

• PML is needed for open region problems
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FDTD literature

Introduction to FDTD, FEM, IEM

• Sheng Xin-Qing, Song Wei, Essentials of computational
electromagnetics, IEEE,Wiley, 2012.

Some FDTD books

• Allen Taflove and Susan C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-Domain Method,
Artech House Publishers, 2005.

• Wenhua Yu, Raj Mittra, Tao Su, Yongjun Liu, and Xiaoling Yang,
Parallel Finite-Difference Time-Domain Method, Artech House
Publishers, 2006.
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Maxwell’s equation

Faraday’s law

∇× E = −∂B

∂t
(1)

Ampères law

∇×H =
∂D

∂t
+ σE+ J (2)

Gauss’s law for elecric field
∇ ·D = ρ (3)

Gauss’s law for magnetic field

∇ · B = 0 (4)

Constitutive relations:
D = ǫ ∗ E (5)

B = µ ∗H (6)

ǫ electric permittivity
µ magnetic permeability
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FDTD engine (empty space)

E = 0,H = 0

Done?

Update H

Update E

time-loop

Set E = 0 and H = 0
Marching-in-time procedure:

• Update H:
∇× E = −µ0

∂H
∂t

• Update E:
∇×H = ǫ0

∂E
∂t
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FDTD engine (more realistic case)

Initialize

Done?

Update H

Update E

Handle boundaries

Handle boundaries

Inject sources

Inject sourcesVisualize fields

process data

record data

time-loop

Initialize everything
Marching-in-time proce-
dure:

• Update H:

• PML

• Gaussin pulse

• Update E:

• PML

• Gaussin pulse

• Fourier transform,
etc.
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Update equations

Finite-difference formula (central difference)

∂f (t + ∆t
2 )

∂t
≈ f (t +∆t)− f (t)

∆t
(7)

t t + 1t − 1

t + 1
2

f (t)
f (t + 1)

∆t

Difference is defined at “half integer point” in discrete time-domain
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Update equations

Faraday’s law

∇× E = −µ
∂H

∂t
=>

∂H

∂t
= −µ−1∇× E (8)

Apply finite-difference formula for ∂H
∂t

H|t+ 1
2 −H|t− 1

2

∆t
= −µ−1∇× E|t (9)

The update equation for H read as

H|t+ 1
2 = H|t− 1

2 −∆t µ−1∇× E|t (10)
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Update equations

Ampère’s law

∇×H = ǫ
∂E

∂t
=>

∂E

∂t
= ǫ−1∇×H (11)

Apply finite-difference formula for ∂E
∂t

E|t+1 − E|t
∆t

= ǫ−1∇×H|t+ 1
2 (12)

The update equation for E read as

E|t+1 = E|t +∆t ǫ−1∇×H|t+ 1
2 (13)
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Update equations for components of H
Assume µ is diagonal

H|t+ 1
2 = H|t− 1

2 −∆t µ−1∇× E|t (14)

∇× E = x̂

(

∂Ez

∂y
− ∂Ey

∂z

)

+ ŷ

(

∂Ex

∂z
− ∂Ez

∂x

)

+ ẑ

(

∂Ey

∂x
− ∂Ex

∂y

)

(15)

x-component:

Hx |t+
1
2 = Hx |t−

1
2 −∆t µ−1

xx

(

∂Ez

∂y
− ∂Ey

∂z

)∣

∣

∣

∣

t

(16)

y-component:

Hy |t+
1
2 = Hy |t−

1
2 −∆t µ−1

yy

(

∂Ex

∂z
− ∂Ez

∂x

)∣

∣

∣

∣

t

(17)

z-component:

Hz |t+
1
2 = Hz |t−

1
2 −∆t µ−1

zz

(

∂Ey

∂x
− ∂Ex

∂y

)∣

∣

∣

∣

t

(18)
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Update equations for components of E

Assume ǫ is diagonal

E|t+1 = E|t +∆t ǫ−1∇×H|t+ 1
2 (19)

x-component:

Ex |t+1 = Ex |t +∆t ǫ−1
xx

(

∂Hz

∂y
− ∂Hy

∂z

)∣

∣

∣

∣

t+ 1
2

(20)

y-component:

Ey |t+1 = Ey |t +∆t ǫ−1
yy

(

∂Hx

∂z
− ∂Hz

∂x

)∣

∣

∣

∣

t+ 1
2

(21)

z-component:

Ez |t+1 = Ez |t +∆t ǫ−1
zz

(

∂Hy

∂x
− ∂Hx

∂y

)∣

∣

∣

∣

t+ 1
2

(22)
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Yee’s unit cell

Ex |ti ,j,k

Ey |ti ,j,k
Ez |ti ,j,k

Hx |t+
1
2

i ,j,k

Hy |t+
1
2

i ,j,k

Hz |t+
1
2

i ,j,k
x̂

ŷ

ẑ

∆y

∆x

Components of vectors in
each cell (i , j , k) are located
at different points in space!

• Automatically
satisfies divergence
conditions

• Automatically
satisfies interface
conditions

• Simplifies the
FDTD-algorithm

(K. Yee, ”Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media,” IEEE Trans. Antennas and

Propagation, vol.14, no.3, pp.302–307, May 1966)
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Update equation for x-component of H-field

Hx |t+
1
2

i ,j,k = Hx |t−
1
2

i ,j,k −∆t µ−1
xx

(

∂Ez

∂y
− ∂Ey

∂z

)∣

∣

∣

∣

t

(23)

(

∂Ez

∂y
− ∂Ey

∂z

)

=
Ez |ti ,j+1,k − Ez |ti ,j,k

∆y
−

Ey |ti ,j,k+1 − Ey |ti ,j,k
∆z

(24)

Ey |ti ,j,k

Ey |ti ,j,k+1

Ez |ti ,j,k
Ez |ti ,j+1,k

Hx |t+
1
2

i ,j,k

x̂

ŷ

ẑ



Computational electromagnetics

Update equations for H-field

y-component:

Hy |t+
1
2

i ,j,k = Hy |t−
1
2

i ,j,k −∆t µ−1
yy

(

∂Ex

∂z
− ∂Ez

∂x

)∣

∣

∣

∣

t

(25)

(

∂Ex

∂z
− ∂Ez

∂x

)

=
Ex |ti ,j,k+1 − Ex |ti ,j,k

∆z
−

Ez |ti+1,j,k − Ez |ti ,j,k
∆x

(26)

z-component:

Hz |t+
1
2

i ,j,k = Hz |t−
1
2

i ,j,k −∆t µ−1
zz

(

∂Ey

∂x
− ∂Ex

∂y

)∣

∣

∣

∣

t

(27)

(

∂Ey

∂x
− ∂Ex

∂y

)

=
Ey |ti+1,j,k − Ey |ti ,j,k

∆x
−

Ex |ti ,j+1,k − Ex |ti ,j,k
∆y

(28)
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Update equation for the x-component of E-field

Ex |t+1
i ,j,k = Ex |ti ,j,k +∆t ǫ−1

xx

(

∂Hz

∂y
− ∂Hy

∂z

)∣

∣

∣

∣

t+ 1
2

(29)

(

∂Hz

∂y
− ∂Hy

∂z

)

=
Hz |t+

1
2

i ,j,k − Hz |t+
1
2

i ,j−1,k

∆y
−

Hy |t+
1
2

i ,j,k − Hy |t+
1
2

i ,j,k−1

∆z
(30)

Hy |t+
1
2

i ,j,k

Hy |t+
1
2

i ,j,k−1

Hz |t+
1
2

i ,j,k

Hz |t+
1
2

i ,j−1,k

Ex |ti ,j,k x̂

ŷ

ẑ
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Update equations for E-field
y-component:

Ey |t+1
i ,j,k = Ey |ti ,j,k +∆t ǫ−1

yy

(

∂Hx

∂z
− ∂Hz

∂x

)∣

∣

∣

∣

t+ 1
2

(31)

(

∂Hx

∂z
− ∂Hz

∂x

)

=
Hx |t+

1
2

i ,j,k − Hx |t+
1
2

i ,j,k−1

∆z
−

Hz |t+
1
2

i ,j,k − Hz |t+
1
2

i−1,j,k

∆x
(32)

z-component:

Ez |t+1
i ,j,k = Ez |ti ,j,k +∆t ǫ−1

zz

(

∂Hy

∂x
− ∂Hx

∂y

)∣

∣

∣

∣

t+ 1
2

(33)

(

∂Hy

∂x
− ∂Hx

∂y

)

=
Hy |t+

1
2

i ,j,k − Hy |t+
1
2

i−1,j,k

∆x
−

Hx |t+
1
2

i ,j,k − Hx |t+
1
2

i ,j−1,k

∆y
(34)
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Boundary conditions

• In differential equation methods the unknowns are generally global
i.e. they E,H ∈ R

3

• We have to terminate the region of interest somehow

• We can use boundary conditions such as Dirichlet, Neumann,
periodic, boundary, absorbing conditions

• Perfectly match layer (PML) for mimicking free space
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Boundary conditions

• Consider FDTD-grid of size 1 : Nx , 1 : Ny , 1 : Nz

• To calculate ∇×H, we need to know values of terms Hi−1,j,k ,
Hi ,j−1,k , and Hi ,j,k−1. These, however, are not defined when i=1, j
= 1, k=1, respectively, since they are out of the computational
domain.

• Similarly, ∇× E contain terms Ei+1,j,k , Ei ,j+1,k , and Ei ,j,k+1 which
not defined when i = Nx , j = Ny , k = Nz .

• Force these values to be something (physically reasonable) by a
boundary condition
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Perfectly match layer (PML)

• In unbounded problems, e.g. scattering problems, we want to
eliminate reflections from computational boundaries

• We introduce loss to absorb outgoing waves in the PML, and at the
same time match the impedance to prevent reflections

• This has to be done for all incident angels and polarizations

Dirichlet boundary

PML

Einc

Esca

ǫr

ǫ0
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Uniaxial perfectly match layer (UPML)

Consider a planewave reflection from a diagonally anisotropic interface
with

¯̄ǫr = ¯̄µr =





a2 0 0
0 b2 0
0 0 c2



 (35)

θi θr

θt

¯̄ǫr , ¯̄µr

ǫ0, µ0
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Uniaxial perfectly match layer (UPML)

Refraction into a diagonally anisotropic material

sin θi =
√

b2c2 sin θt (36)

Reflection coefficients (z-axis normal to the interface)

RTE =
cos θi −

√

b2/a2 cos θt

cos θi +
√

b2/a2 cos θt
(37)

RTM =

√

b2/a2 cos θt − cos θi

cos θi +
√

b2/a2 cos θt
(38)

By choosing
√
b2c2 = 1 → θi = θt and

√

b2/a2 = 1 we can see that
RTE = 0 and RTM = 0 ,i.e., no reflection

We choose b2 = a2 and c2 = 1/b2
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Uniaxial perfectly match layer (UPML)

By introducing losses a uniaxial material does the trick (for propagating
waves, evanecent waves are more complicated but we can place the PML
far enough from the scatterer)

¯̄ǫr = ¯̄µr =





SySz/Sx 0 0
0 SxSz/Sy 0
0 0 SxSy/Sz



 (39)

Parameter can be chosen e.g.

Sx = 1− σx(x)

iωǫ0
, σx(x) =

ǫ0
2∆

(
x

Lx
)3 (40)

Sy = 1− σy (y)

iωǫ0
, σy (y) =

ǫ0
2∆

(
y

Ly
)3 (41)

Sz = 1− σz (z)

iωǫ0
, σz(z) =

ǫ0
2∆

(
z

Lz
)3 (42)
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Uniaxial perfectly match layer (UPML)

UPML is a frequency domain concept hence we need convert it back to
the time domain by Fourier transform

Some Fourier transform properties:

F (ω) ↔ ∂f (t) (43)

iωF (ω) ↔ ∂f (t)

∂t
(44)

1

iω
F (ω) ↔

∫ t

−∞

f (τ) dτ (45)

Leads to more complicated update equations containing e.g.
convolutions!



Computational electromagnetics

Stability of the FDTD algorithm

Maximum cell size:

∆max <
1

10

λ√
ǫrµr

, ∆x ,∆y ,∆z < ∆max (46)

and cells should be able to model geometrical details
Numerical velocity should not exceed c0
− >Courant stability condition:

∆t <

√
ǫrµr

c0

√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

(47)
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Dispersion relation

Consider a plane electromagnetic wave propagating along z-axis

E = E0e
i(ωt−kz) (48)

How fast a constant phase “point” propagates?

d

dt
(ωt − kz) =

d

dt
(constant) (49)

Phase velocity

cp =
dz

dt
=

ω

k
(50)

Unfortunately, the dispersion is not the same in the FDTD-grid
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Numerical dispersion 1D
Planewave propagating z-direction

Ex |tq = E0e
−i(ωn∆t−k̃zq∆z) (51)

Hy |tq = H0e
−i(ωn∆t−k̃zq∆z) (52)

Faraday’s law in free-space

∇× E = −µ0
∂H

∂t
(53)

Faraday’s law for the above planewave (y -component)

∂Ex

∂z
= −µ

∂Hy

∂t
(54)

Spatial finite-difference for the planewave

∂Ex

∂z
=

(e i k̃z
∆z
2 − e−i k̃z

∆z
2 )

∆z
Ex |tq (55)
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Numerical dispersion 1D

Temporal finite-difference for the planewave

∂Hy

∂t
=

(e−iω ∆t
2 − e iω

∆t
2 )

∆t
Hy |tq (56)

FD-Faraday law read as

(e i k̃z
∆z
2 − e−i k̃z

∆z
2 )

∆z
Ex |tq = −µ0

(e−iω ∆t
2 − e iω

∆t
2 )

∆t
Hy |tq (57)

Since
Ex

Hy

=

√

µ0

ǫ0
(58)

we can write the numerical dispersion relation as

1

∆z
sin

(

k̃z∆z

2

)

=
1

cp∆t
sin

(

ω∆t

2

)

(59)
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Numerical dispersion 1D

Numerical dispersion relation

1

∆z
sin

(

k̃z∆z

2

)

=
1

c∆t
sin

(

ω∆t

2

)

(60)

Case 1: ∆t,∆z → 0, for small x

sin x = x − x3

3!
+

53

5!
+O(x7) (61)

kz =
ω

cp
(62)

Case 2: set ∆t = ∆z/c

1

∆z
sin

(

k̃z∆z

2

)

=
1

∆z
sin

(

ω∆z

2c

)

→ k̃z =
ω

c
(63)

Magic time-step!
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Numerical dispersion 3D

Three-dimensional case

[

1

cp∆t
sin

(

ω∆t

2

)]2

=

[

1

∆x
sin

(

k̃x∆x

2

)]2

+

[

1

∆y
sin

(

k̃y∆y

2

)]2

+

[

1

∆z
sin

(

k̃z∆z

2

)]2
(64)

Depends on the time ans spatial resolution, and propagation direction!
Numerical dispersion is anisotropic.

Approaches the continuous dispersion relation

(

ω

cp

)2

= k̃2
x + k̃2

y + k̃2
z (65)

when ∆t,∆x ,∆y ,∆z → 0, however a magic time-step does not exist!
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Numerical dispersion
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Numerical dispersion can be reduced by decreasing cell size

Recall: Courant stability condition − > smaller time-step
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Implementation of 1-D FDTD
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1D problem

Consider uniform problem in the x and y-directions

∂

∂x
=

∂

∂y
= 0 (66)

System decouples into two independent modes
Ex/Hy mode:

∂Ex

∂z
= −µyy

∂Hy

∂t
, −∂Hy

∂z
= −ǫxx

∂Ex

∂t
(67)

Ey/Hx mode:
∂Ey

∂z
= µxx

∂Hx

∂t
,

∂Hx

∂z
= ǫyy

∂Ey

∂t
(68)



Computational electromagnetics

1D update equation

We consider Ey/Hx -mode

Hx

Ey

z

Hx |t+
1
2

k = Hx |t−
1
2

k +mk
Hx

(

Ey |tk+1 − Ey |tk
∆z

)

(69)

Ey |t+1
k = Ey |tk +mk

Ey





Hx |t+
1
2

k − Hx |t+
1
2

k−1

∆z



 (70)

where the update coefficients are defined as mk
Hx = ∆t

µk
xx

and mk
Ey = ∆t

ǫkyy
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PEC and PMC boundary conditions

Consider 1D-FDTD grid where k = 1 : Nk

When k = Nk , the update equation for Hx read as

Hx |t+
1
2

Nk
= Hx |t−

1
2

Nk
+mNk

Hx

(

Ey |tNk+1 − Ey |tNk

∆z

)

(71)

and Ey |tNk+1 exists outside the computational domain. Setting
Ey |tNk+1 = 0 enforces the PEC boundary condition n× E = 0

When k = 1, the update equation for Ey read as

Ey |t+1
1 = Ey |t1 +mk

Ey

(

Hx |t+
1
2

1 − Hx |t+
1
2

0

∆z

)

(72)

and Hx |t+
1
2

0 exists outside the computational domain. Setting Hx |t+
1
2

0 = 0
enforces the PMC boundary condition n×H = 0
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Basic 1D FDTD engine

Algorithm 1 1D-fdtd engine with PEC and PMC

1: Initialize grid
2: for t = 1 to Nt do

3: for k = 1 to Nk − 1 do

4: Update Hx

5: end for

6: Compute Hx(Nk) with BC
7: for k = 2 to Nk do

8: Update Ey

9: end for

10: Compute Ey (1) with BC
11: end for

When we run this algorithm everything should stay zeros (no source
included)
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The Gaussian source for 1D-FDTD
The Gaussian pulse is a typical source in FDTD-simulations since it
excites a broad range of frequencies.

g(t) = exp

[

−
(

t − t0

τ

)2
]

(73)

t0 is the delay and τ is the width of the pulse. Note, from the Fourier
transform we can see that the bandwidth is about B = 1

πτ

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Simple soft-source

Simple transparent Gaussian source. Add the source function to some
field component at one point on the grid e.g.

Ey |t+1
k = Ey |t+1

k + g |k (74)

Algorithm 2 1D-fdtd engine with PEC/PMC and soft source
1: Compute source

2: Initialize grid

3: for t = 1 to Nt do

4: for k = 1 to Nk − 1 do

5: Update Hx

6: end for

7: Compute Hx (Nk ) with BC

8: for k = 2 to Nk do

9: Update Ey

10: end for

11: Compute Ey (1) with BC

12: Inject Source Ey |s = Ey |s + g|s

13: end for

“two-way source” useful for testing boundary conditions
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Ideal absorbing boundary condition

In 1D , it is possible find a perfectly absorbing boundary condition if

• Waves travelling only outward at the boundary

• Materials at both boundaries are linear, isotropic homogeneous and
non-dispersive (same material for both boundaries)

• ∆t =
√
ǫrµr∆z/(2c)

Waves propagate exactly one cell in two time-steps

Ey |tNk+1 = Ey |t−2
Nk

(75)

Hx |t+
1
2

0 = Hx |t−
3
2

1 (76)

Record field values at the boundaries and use recorded values as
boundary conditions
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Ideal absorbing boundary condition

At k = 1 record H-field values and modify the E-field update equation

h3 = h2
h2 = h1

h1 = Hx |t+
1
2

1

Ey |t+1
1 = Ey |t1 +m1

Ey

Hx |
t+ 1

2
1 −h3
∆z

(77)

At k = Nk record E-field values and modify the H-field update equation

e3 = e2
e2 = e1
e1 = Ey |tNk

Hx |t+
1
2

Nk
= Hx |t−

1
2

Nk
+mNk

Hx

Ey |
t
Nk

−e3

∆z

(78)

Simple but works only in a special case
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Ideal absorbing boundary condition

Algorithm 3 1D-fdtd engine with the ABC and soft source
1: Compute time-step

2: Compute source

3: Initialize grid

4:
5: for t = 1 to Nt do

6:
7: for k = 1 to Nk − 1 do

8: Update Hx

9: end for

10: Compute Hx (Nk ) with e3 BC

11: Record H-field h3 = h2, h2 = h1, h1 = Hx |1
12:
13: for k = 2 to Nk do

14: Update Ey

15: end for

16: Compute Ey (1) with h3 BC

17: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
18:
19: Inject Source Ey |s = Ey |s + g|s

20: end for
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Total-field/scattered-field (TF/SF) source

Eliminates backward propagating waves“One way source”

Divide the grid into total-field region and scattered-field region

TF/SF-interface

Total-field regionScattered-field region

ksrc − 1 ksrc
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Total-field/scattered-field (TF/SF) source
Consider update equation for Hx at ksrc − 1 (Scattered-field side)

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

Ey |tksrc − Ey |tksrc−1

∆z

)

(79)

Ey |tksrc exists at the total-field side.

Since Etot = Esrc + Esca, we need to subtract the source-field from the
total-field to obtain the scattered-field

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

(Ey |tksrc − E src
y |tksrc )− Ey |tksrc−1

∆z

)

(80)

This can be written as

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

Ey |tksrc − Ey |tksrc−1

∆z

)

− mksrc−1
Hx

∆z
E src
y |tksrc

(81)
i.e. the standard update equation + a correction term
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Total-field/scattered-field (TF/SF) source

Consider update equation for Ey at ksrc (Total-field side)

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey





Hx |t+
1
2

ksrc
− Hx |t+

1
2

ksrc−1

∆z



 (82)

Hx |t+
1
2

ksrc−1 exists at the scattered-field side. We must add the source to it

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey





Hx |t+
1
2

ksrc
− (Hx |t+

1
2

ksrc−1 + H src
x |t+

1
2

ksrc−1
)

∆z



 (83)

and this can be expressed as

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey





Hx |t+
1
2

ksrc
− Hx |t+

1
2

ksrc−1

∆z



−
mksrc

Ey

∆z
H src

x |t+
1
2

ksrc−1 (84)



Computational electromagnetics

Total-field/scattered-field (TF/SF) source

Two source functions are needed:

E src
y |tksrc and H src

x |t+
1
2

ksrc−1 (85)

Note, these function exist at different locations in space and time
→ time-delay

E src
y |tksrc = g(t) (86)

H src
x |t+

1
2

ksrc−1 = −
√

ǫksrc
µksrc

g

(

t +

√
ǫrµr∆z

2c
+

∆t

2

)

(87)

half grid delay

half time-step delay
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Ideal absorbing boundary condition

Algorithm 4 1D-fdtd engine with the ABC and TF/SF source
1: Compute time-step

2: Compute sources

3: Initialize grid

4:
5: for t = 1 to Nt do

6:
7: for k = 1 to Nk − 1 do

8: Update Hx

9: end for

10: Compute Hx (Nk ) with e3 BC

11: Record H-field h3 = h2, h2 = h1, h1 = Hx |1

12: Inject H-field source Hx |
t+1/2
s−1 = Hx |

t+1/2
s−1 + ...

13:
14: for k = 2 to Nk do

15: Update Ey

16: end for

17: Compute Ey (1) with h3 BC

18: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
19: Inject E-field source Ey |

t+1
s = Ey |

t+1
s + ...

20:
21: end for
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Fourier transforms

In many cases, we want to study scattering properties in frequency
domain.

Fourier transform: conversion between time and frequency domains

G(f ) =

∫ ∞

−∞

g(t) exp(−i2πft) dt (88)

Inverse transform

g(t) =

∫ ∞

−∞

G(f ) exp(i2πtf ) dx (89)

Discrete transform:

G(f ) =

Nt
∑

n=1

g(n∆t) exp(−i2πfn∆t)∆t (90)
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Calculation of reflectance and transmittance

Normalize the spectra by dividing the relection and transmission
spectrum by the source spectrum Reflectance:

R(f ) =

(

DFT [Eref (t)]

DFT [Esrc(t)]

)2

(91)

Transmittance:

R(f ) =

(

DFT [Etrn(t)]

DFT [Esrc(t)]

)2

(92)

Note: Nyquist theorem → maximum frequency

fmax =
1

2∆t
(93)

∆f ∼= 1

Nsteps∆t
(94)
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Last FDTD example

Algorithm 5 1D-fdtd engine with the ABC, TF/SF source and DFT
1: for t = 1 to Nt do

2:
3: for k = 1 to Nk − 1 do

4: Update Hx

5: end for

6: Compute Hx (Nk ) with e3 BC

7: Record H-field h3 = h2, h2 = h1, h1 = Hx |1

8: Inject H-field source Hx |
t+1/2
s−1 = Hx |

t+1/2
s−1 + ...

9:
10: for k = 2 to Nk do

11: Update Ey

12: end for

13: Compute Ey (1) with h3 BC

14: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
15: Inject E-field source Ey |

t+1
s = Ey |

t+1
s + ...

16:
17: for q = 1 to Nq do

18: Compute DFT Eref (q) = Eref (q) + ∆texp(−i2πfqt∆t))Ey |2

19: Compute DFT Etrn(q) = Etrn(q) + ∆texp(−i2πfq t∆t))Ey |Nk−2

20: end for

21: end for
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