
Computational electromagnetics

Electromagnetic scattering 1:
Finite-difference time-domain method (FDTD)

Johannes Markkanen

University of Helsinki

September 26, 2016

Computational electromagnetics

Finite-difference time-domain (FDTD)

• Numerical technique for solving Maxwell’s equations in time domain

• Maxwell’s equations are directly discretized by finite-differences

• Central difference approximations to the space and time derivatives

• The space is approximated by cubical cells

Computational electromagnetics

Finite-difference time-domain (Yee-algorithm)
Strengths:

• Universal applicability

• Broadband response obtained with one simulation

• Inhomegeneous, anisotropic, non-linear materials are easily modelled

• Matrix inversion is not needed (recursive update scheme)

• Simple implementation

• Evolution of fields can be studied in time

Weaknesses:

• Accuracy -Error is dispersive and accumulates as waves propagate
through the grid

• Staircase approximation

• Time-step is a function of grid size

• PML is needed for open region problems

Computational electromagnetics

FDTD literature

Introduction to FDTD, FEM, IEM

• Sheng Xin-Qing, Song Wei, Essentials of computational
electromagnetics, IEEE,Wiley, 2012.

Some FDTD books

• Allen Taflove and Susan C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-Domain Method,
Artech House Publishers, 2005.

• Wenhua Yu, Raj Mittra, Tao Su, Yongjun Liu, and Xiaoling Yang,
Parallel Finite-Difference Time-Domain Method, Artech House
Publishers, 2006.

Computational electromagnetics

Maxwell’s equation

Faraday’s law

∇× E = −∂B

∂t
(1)

Ampères law

∇×H =
∂D

∂t
+ σE+ J (2)

Gauss’s law for elecric field
∇ ·D = ρ (3)

Gauss’s law for magnetic field

∇ · B = 0 (4)

Constitutive relations:
D = ǫ ∗ E (5)

B = µ ∗H (6)

ǫ electric permittivity
µ magnetic permeability

Computational electromagnetics

FDTD engine (empty space)

E = 0,H = 0

Done?

Update H

Update E

time-loop

Set E = 0 and H = 0
Marching-in-time procedure:

• Update H:
∇× E = −µ0

∂H
∂t

• Update E:
∇×H = ǫ0

∂E
∂t

Computational electromagnetics

FDTD engine (more realistic case)

Initialize

Done?

Update H

Update E

Handle boundaries

Handle boundaries

Inject sources

Inject sourcesVisualize fields

process data

record data

time-loop

Initialize everything
Marching-in-time proce-
dure:

• Update H:

• PML

• Gaussin pulse

• Update E:

• PML

• Gaussin pulse

• Fourier transform,
etc.

Computational electromagnetics

Update equations

Finite-difference formula (central difference)

∂f (t + ∆t
2)

∂t
≈ f (t +∆t)− f (t)

∆t
(7)

t t + 1t − 1

t + 1
2

f (t)
f (t + 1)

∆t

Difference is defined at “half integer point” in discrete time-domain

Computational electromagnetics

Update equations

Faraday’s law

∇× E = −µ
∂H

∂t
=>

∂H

∂t
= −µ−1∇× E (8)

Apply finite-difference formula for ∂H
∂t

H|t+ 1
2 −H|t− 1

2

∆t
= −µ−1∇× E|t (9)

The update equation for H read as

H|t+ 1
2 = H|t− 1

2 −∆t µ−1∇× E|t (10)

Computational electromagnetics

Update equations

Ampère’s law

∇×H = ǫ
∂E

∂t
=>

∂E

∂t
= ǫ−1∇×H (11)

Apply finite-difference formula for ∂E
∂t

E|t+1 − E|t
∆t

= ǫ−1∇×H|t+ 1
2 (12)

The update equation for E read as

E|t+1 = E|t +∆t ǫ−1∇×H|t+ 1
2 (13)

Computational electromagnetics

Update equations for components of H
Assume µ is diagonal

H|t+ 1
2 = H|t− 1

2 −∆t µ−1∇× E|t (14)

∇× E = x̂

(

∂Ez

∂y
− ∂Ey

∂z

)

+ ŷ

(

∂Ex

∂z
− ∂Ez

∂x

)

+ ẑ

(

∂Ey

∂x
− ∂Ex

∂y

)

(15)

x-component:

Hx |t+
1
2 = Hx |t−

1
2 −∆t µ−1

xx

(

∂Ez

∂y
− ∂Ey

∂z

)∣

∣

∣

∣

t

(16)

y-component:

Hy |t+
1
2 = Hy |t−

1
2 −∆t µ−1

yy

(

∂Ex

∂z
− ∂Ez

∂x

)∣

∣

∣

∣

t

(17)

z-component:

Hz |t+
1
2 = Hz |t−

1
2 −∆t µ−1

zz

(

∂Ey

∂x
− ∂Ex

∂y

)∣

∣

∣

∣

t

(18)

Computational electromagnetics

Update equations for components of E

Assume ǫ is diagonal

E|t+1 = E|t +∆t ǫ−1∇×H|t+ 1
2 (19)

x-component:

Ex |t+1 = Ex |t +∆t ǫ−1
xx

(

∂Hz

∂y
− ∂Hy

∂z

)∣

∣

∣

∣

t+ 1
2

(20)

y-component:

Ey |t+1 = Ey |t +∆t ǫ−1
yy

(

∂Hx

∂z
− ∂Hz

∂x

)∣

∣

∣

∣

t+ 1
2

(21)

z-component:

Ez |t+1 = Ez |t +∆t ǫ−1
zz

(

∂Hy

∂x
− ∂Hx

∂y

)∣

∣

∣

∣

t+ 1
2

(22)

Computational electromagnetics

Yee’s unit cell

Ex |ti ,j,k

Ey |ti ,j,k
Ez |ti ,j,k

Hx |t+
1
2

i ,j,k

Hy |t+
1
2

i ,j,k

Hz |t+
1
2

i ,j,k
x̂

ŷ

ẑ

∆y

∆x

Components of vectors in
each cell (i , j , k) are located
at different points in space!

• Automatically
satisfies divergence
conditions

• Automatically
satisfies interface
conditions

• Simplifies the
FDTD-algorithm

(K. Yee, ”Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media,” IEEE Trans. Antennas and

Propagation, vol.14, no.3, pp.302–307, May 1966)

Computational electromagnetics

Update equation for x-component of H-field

Hx |t+
1
2

i ,j,k = Hx |t−
1
2

i ,j,k −∆t µ−1
xx

(

∂Ez

∂y
− ∂Ey

∂z

)∣

∣

∣

∣

t

(23)

(

∂Ez

∂y
− ∂Ey

∂z

)

=
Ez |ti ,j+1,k − Ez |ti ,j,k

∆y
−

Ey |ti ,j,k+1 − Ey |ti ,j,k
∆z

(24)

Ey |ti ,j,k

Ey |ti ,j,k+1

Ez |ti ,j,k
Ez |ti ,j+1,k

Hx |t+
1
2

i ,j,k

x̂

ŷ

ẑ

Computational electromagnetics

Update equations for H-field

y-component:

Hy |t+
1
2

i ,j,k = Hy |t−
1
2

i ,j,k −∆t µ−1
yy

(

∂Ex

∂z
− ∂Ez

∂x

)∣

∣

∣

∣

t

(25)

(

∂Ex

∂z
− ∂Ez

∂x

)

=
Ex |ti ,j,k+1 − Ex |ti ,j,k

∆z
−

Ez |ti+1,j,k − Ez |ti ,j,k
∆x

(26)

z-component:

Hz |t+
1
2

i ,j,k = Hz |t−
1
2

i ,j,k −∆t µ−1
zz

(

∂Ey

∂x
− ∂Ex

∂y

)∣

∣

∣

∣

t

(27)

(

∂Ey

∂x
− ∂Ex

∂y

)

=
Ey |ti+1,j,k − Ey |ti ,j,k

∆x
−

Ex |ti ,j+1,k − Ex |ti ,j,k
∆y

(28)

Computational electromagnetics

Update equation for the x-component of E-field

Ex |t+1
i ,j,k = Ex |ti ,j,k +∆t ǫ−1

xx

(

∂Hz

∂y
− ∂Hy

∂z

)∣

∣

∣

∣

t+ 1
2

(29)

(

∂Hz

∂y
− ∂Hy

∂z

)

=
Hz |t+

1
2

i ,j,k − Hz |t+
1
2

i ,j−1,k

∆y
−

Hy |t+
1
2

i ,j,k − Hy |t+
1
2

i ,j,k−1

∆z
(30)

Hy |t+
1
2

i ,j,k

Hy |t+
1
2

i ,j,k−1

Hz |t+
1
2

i ,j,k

Hz |t+
1
2

i ,j−1,k

Ex |ti ,j,k x̂

ŷ

ẑ

Computational electromagnetics

Update equations for E-field
y-component:

Ey |t+1
i ,j,k = Ey |ti ,j,k +∆t ǫ−1

yy

(

∂Hx

∂z
− ∂Hz

∂x

)∣

∣

∣

∣

t+ 1
2

(31)

(

∂Hx

∂z
− ∂Hz

∂x

)

=
Hx |t+

1
2

i ,j,k − Hx |t+
1
2

i ,j,k−1

∆z
−

Hz |t+
1
2

i ,j,k − Hz |t+
1
2

i−1,j,k

∆x
(32)

z-component:

Ez |t+1
i ,j,k = Ez |ti ,j,k +∆t ǫ−1

zz

(

∂Hy

∂x
− ∂Hx

∂y

)∣

∣

∣

∣

t+ 1
2

(33)

(

∂Hy

∂x
− ∂Hx

∂y

)

=
Hy |t+

1
2

i ,j,k − Hy |t+
1
2

i−1,j,k

∆x
−

Hx |t+
1
2

i ,j,k − Hx |t+
1
2

i ,j−1,k

∆y
(34)

Computational electromagnetics

Boundary conditions

• In differential equation methods the unknowns are generally global
i.e. they E,H ∈ R

3

• We have to terminate the region of interest somehow

• We can use boundary conditions such as Dirichlet, Neumann,
periodic, boundary, absorbing conditions

• Perfectly match layer (PML) for mimicking free space

Computational electromagnetics

Boundary conditions

• Consider FDTD-grid of size 1 : Nx , 1 : Ny , 1 : Nz

• To calculate ∇×H, we need to know values of terms Hi−1,j,k ,
Hi ,j−1,k , and Hi ,j,k−1. These, however, are not defined when i=1, j
= 1, k=1, respectively, since they are out of the computational
domain.

• Similarly, ∇× E contain terms Ei+1,j,k , Ei ,j+1,k , and Ei ,j,k+1 which
not defined when i = Nx , j = Ny , k = Nz .

• Force these values to be something (physically reasonable) by a
boundary condition

Computational electromagnetics

Perfectly match layer (PML)

• In unbounded problems, e.g. scattering problems, we want to
eliminate reflections from computational boundaries

• We introduce loss to absorb outgoing waves in the PML, and at the
same time match the impedance to prevent reflections

• This has to be done for all incident angels and polarizations

Dirichlet boundary

PML

Einc

Esca

ǫr

ǫ0

Computational electromagnetics

Uniaxial perfectly match layer (UPML)

Consider a planewave reflection from a diagonally anisotropic interface
with

¯̄ǫr = ¯̄µr =

a2 0 0
0 b2 0
0 0 c2

 (35)

θi θr

θt

¯̄ǫr , ¯̄µr

ǫ0, µ0

Computational electromagnetics

Uniaxial perfectly match layer (UPML)

Refraction into a diagonally anisotropic material

sin θi =
√

b2c2 sin θt (36)

Reflection coefficients (z-axis normal to the interface)

RTE =
cos θi −

√

b2/a2 cos θt

cos θi +
√

b2/a2 cos θt
(37)

RTM =

√

b2/a2 cos θt − cos θi

cos θi +
√

b2/a2 cos θt
(38)

By choosing
√
b2c2 = 1 → θi = θt and

√

b2/a2 = 1 we can see that
RTE = 0 and RTM = 0 ,i.e., no reflection

We choose b2 = a2 and c2 = 1/b2

Computational electromagnetics

Uniaxial perfectly match layer (UPML)

By introducing losses a uniaxial material does the trick (for propagating
waves, evanecent waves are more complicated but we can place the PML
far enough from the scatterer)

¯̄ǫr = ¯̄µr =

SySz/Sx 0 0
0 SxSz/Sy 0
0 0 SxSy/Sz

 (39)

Parameter can be chosen e.g.

Sx = 1− σx(x)

iωǫ0
, σx(x) =

ǫ0
2∆

(
x

Lx
)3 (40)

Sy = 1− σy (y)

iωǫ0
, σy (y) =

ǫ0
2∆

(
y

Ly
)3 (41)

Sz = 1− σz (z)

iωǫ0
, σz(z) =

ǫ0
2∆

(
z

Lz
)3 (42)

Computational electromagnetics

Uniaxial perfectly match layer (UPML)

UPML is a frequency domain concept hence we need convert it back to
the time domain by Fourier transform

Some Fourier transform properties:

F (ω) ↔ ∂f (t) (43)

iωF (ω) ↔ ∂f (t)

∂t
(44)

1

iω
F (ω) ↔

∫ t

−∞

f (τ) dτ (45)

Leads to more complicated update equations containing e.g.
convolutions!

Computational electromagnetics

Stability of the FDTD algorithm

Maximum cell size:

∆max <
1

10

λ√
ǫrµr

, ∆x ,∆y ,∆z < ∆max (46)

and cells should be able to model geometrical details
Numerical velocity should not exceed c0
− >Courant stability condition:

∆t <

√
ǫrµr

c0

√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

(47)

Computational electromagnetics

Dispersion relation

Consider a plane electromagnetic wave propagating along z-axis

E = E0e
i(ωt−kz) (48)

How fast a constant phase “point” propagates?

d

dt
(ωt − kz) =

d

dt
(constant) (49)

Phase velocity

cp =
dz

dt
=

ω

k
(50)

Unfortunately, the dispersion is not the same in the FDTD-grid

Computational electromagnetics

Numerical dispersion 1D
Planewave propagating z-direction

Ex |tq = E0e
−i(ωn∆t−k̃zq∆z) (51)

Hy |tq = H0e
−i(ωn∆t−k̃zq∆z) (52)

Faraday’s law in free-space

∇× E = −µ0
∂H

∂t
(53)

Faraday’s law for the above planewave (y -component)

∂Ex

∂z
= −µ

∂Hy

∂t
(54)

Spatial finite-difference for the planewave

∂Ex

∂z
=

(e i k̃z
∆z
2 − e−i k̃z

∆z
2)

∆z
Ex |tq (55)

Computational electromagnetics

Numerical dispersion 1D

Temporal finite-difference for the planewave

∂Hy

∂t
=

(e−iω ∆t
2 − e iω

∆t
2)

∆t
Hy |tq (56)

FD-Faraday law read as

(e i k̃z
∆z
2 − e−i k̃z

∆z
2)

∆z
Ex |tq = −µ0

(e−iω ∆t
2 − e iω

∆t
2)

∆t
Hy |tq (57)

Since
Ex

Hy

=

√

µ0

ǫ0
(58)

we can write the numerical dispersion relation as

1

∆z
sin

(

k̃z∆z

2

)

=
1

cp∆t
sin

(

ω∆t

2

)

(59)

Computational electromagnetics

Numerical dispersion 1D

Numerical dispersion relation

1

∆z
sin

(

k̃z∆z

2

)

=
1

c∆t
sin

(

ω∆t

2

)

(60)

Case 1: ∆t,∆z → 0, for small x

sin x = x − x3

3!
+

53

5!
+O(x7) (61)

kz =
ω

cp
(62)

Case 2: set ∆t = ∆z/c

1

∆z
sin

(

k̃z∆z

2

)

=
1

∆z
sin

(

ω∆z

2c

)

→ k̃z =
ω

c
(63)

Magic time-step!

Computational electromagnetics

Numerical dispersion 3D

Three-dimensional case

[

1

cp∆t
sin

(

ω∆t

2

)]2

=

[

1

∆x
sin

(

k̃x∆x

2

)]2

+

[

1

∆y
sin

(

k̃y∆y

2

)]2

+

[

1

∆z
sin

(

k̃z∆z

2

)]2
(64)

Depends on the time ans spatial resolution, and propagation direction!
Numerical dispersion is anisotropic.

Approaches the continuous dispersion relation

(

ω

cp

)2

= k̃2
x + k̃2

y + k̃2
z (65)

when ∆t,∆x ,∆y ,∆z → 0, however a magic time-step does not exist!

Computational electromagnetics

Numerical dispersion

0.05 0.1 0.15 0.2

0.94

0.95

0.96

0.97

0.98

0.99

1

cell size [λ]

N
or

m
al

iz
ed

 p
ha

se
 v

el
oc

ity

dt = 0.5 dz/c

dt = 0.75 dz/c

dt = 1.0 dz/c

0 20 40 60 80
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

wave angle [deg]
no

rm
al

iz
ed

 p
ha

se
 v

el
oc

ity

5 cells/λ
10 cells/λ
20 cells/λ

Numerical dispersion can be reduced by decreasing cell size

Recall: Courant stability condition − > smaller time-step

Computational electromagnetics

Implementation of 1-D FDTD

Computational electromagnetics

1D problem

Consider uniform problem in the x and y-directions

∂

∂x
=

∂

∂y
= 0 (66)

System decouples into two independent modes
Ex/Hy mode:

∂Ex

∂z
= −µyy

∂Hy

∂t
, −∂Hy

∂z
= −ǫxx

∂Ex

∂t
(67)

Ey/Hx mode:
∂Ey

∂z
= µxx

∂Hx

∂t
,

∂Hx

∂z
= ǫyy

∂Ey

∂t
(68)

Computational electromagnetics

1D update equation

We consider Ey/Hx -mode

Hx

Ey

z

Hx |t+
1
2

k = Hx |t−
1
2

k +mk
Hx

(

Ey |tk+1 − Ey |tk
∆z

)

(69)

Ey |t+1
k = Ey |tk +mk

Ey

Hx |t+
1
2

k − Hx |t+
1
2

k−1

∆z

 (70)

where the update coefficients are defined as mk
Hx = ∆t

µk
xx

and mk
Ey = ∆t

ǫkyy

Computational electromagnetics

PEC and PMC boundary conditions

Consider 1D-FDTD grid where k = 1 : Nk

When k = Nk , the update equation for Hx read as

Hx |t+
1
2

Nk
= Hx |t−

1
2

Nk
+mNk

Hx

(

Ey |tNk+1 − Ey |tNk

∆z

)

(71)

and Ey |tNk+1 exists outside the computational domain. Setting
Ey |tNk+1 = 0 enforces the PEC boundary condition n× E = 0

When k = 1, the update equation for Ey read as

Ey |t+1
1 = Ey |t1 +mk

Ey

(

Hx |t+
1
2

1 − Hx |t+
1
2

0

∆z

)

(72)

and Hx |t+
1
2

0 exists outside the computational domain. Setting Hx |t+
1
2

0 = 0
enforces the PMC boundary condition n×H = 0

Computational electromagnetics

Basic 1D FDTD engine

Algorithm 1 1D-fdtd engine with PEC and PMC

1: Initialize grid
2: for t = 1 to Nt do

3: for k = 1 to Nk − 1 do

4: Update Hx

5: end for

6: Compute Hx(Nk) with BC
7: for k = 2 to Nk do

8: Update Ey

9: end for

10: Compute Ey (1) with BC
11: end for

When we run this algorithm everything should stay zeros (no source
included)

Computational electromagnetics

The Gaussian source for 1D-FDTD
The Gaussian pulse is a typical source in FDTD-simulations since it
excites a broad range of frequencies.

g(t) = exp

[

−
(

t − t0

τ

)2
]

(73)

t0 is the delay and τ is the width of the pulse. Note, from the Fourier
transform we can see that the bandwidth is about B = 1

πτ

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computational electromagnetics

Simple soft-source

Simple transparent Gaussian source. Add the source function to some
field component at one point on the grid e.g.

Ey |t+1
k = Ey |t+1

k + g |k (74)

Algorithm 2 1D-fdtd engine with PEC/PMC and soft source
1: Compute source

2: Initialize grid

3: for t = 1 to Nt do

4: for k = 1 to Nk − 1 do

5: Update Hx

6: end for

7: Compute Hx (Nk) with BC

8: for k = 2 to Nk do

9: Update Ey

10: end for

11: Compute Ey (1) with BC

12: Inject Source Ey |s = Ey |s + g|s

13: end for

“two-way source” useful for testing boundary conditions

Computational electromagnetics

Ideal absorbing boundary condition

In 1D , it is possible find a perfectly absorbing boundary condition if

• Waves travelling only outward at the boundary

• Materials at both boundaries are linear, isotropic homogeneous and
non-dispersive (same material for both boundaries)

• ∆t =
√
ǫrµr∆z/(2c)

Waves propagate exactly one cell in two time-steps

Ey |tNk+1 = Ey |t−2
Nk

(75)

Hx |t+
1
2

0 = Hx |t−
3
2

1 (76)

Record field values at the boundaries and use recorded values as
boundary conditions

Computational electromagnetics

Ideal absorbing boundary condition

At k = 1 record H-field values and modify the E-field update equation

h3 = h2
h2 = h1

h1 = Hx |t+
1
2

1

Ey |t+1
1 = Ey |t1 +m1

Ey

Hx |
t+ 1

2
1 −h3
∆z

(77)

At k = Nk record E-field values and modify the H-field update equation

e3 = e2
e2 = e1
e1 = Ey |tNk

Hx |t+
1
2

Nk
= Hx |t−

1
2

Nk
+mNk

Hx

Ey |
t
Nk

−e3

∆z

(78)

Simple but works only in a special case

Computational electromagnetics

Ideal absorbing boundary condition

Algorithm 3 1D-fdtd engine with the ABC and soft source
1: Compute time-step

2: Compute source

3: Initialize grid

4:
5: for t = 1 to Nt do

6:
7: for k = 1 to Nk − 1 do

8: Update Hx

9: end for

10: Compute Hx (Nk) with e3 BC

11: Record H-field h3 = h2, h2 = h1, h1 = Hx |1
12:
13: for k = 2 to Nk do

14: Update Ey

15: end for

16: Compute Ey (1) with h3 BC

17: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
18:
19: Inject Source Ey |s = Ey |s + g|s

20: end for

Computational electromagnetics

Total-field/scattered-field (TF/SF) source

Eliminates backward propagating waves“One way source”

Divide the grid into total-field region and scattered-field region

TF/SF-interface

Total-field regionScattered-field region

ksrc − 1 ksrc

Computational electromagnetics

Total-field/scattered-field (TF/SF) source
Consider update equation for Hx at ksrc − 1 (Scattered-field side)

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

Ey |tksrc − Ey |tksrc−1

∆z

)

(79)

Ey |tksrc exists at the total-field side.

Since Etot = Esrc + Esca, we need to subtract the source-field from the
total-field to obtain the scattered-field

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

(Ey |tksrc − E src
y |tksrc)− Ey |tksrc−1

∆z

)

(80)

This can be written as

Hx |t+
1
2

ksrc−1 = Hx |t−
1
2

ksrc−1 +mksrc−1
Hx

(

Ey |tksrc − Ey |tksrc−1

∆z

)

− mksrc−1
Hx

∆z
E src
y |tksrc

(81)
i.e. the standard update equation + a correction term

Computational electromagnetics

Total-field/scattered-field (TF/SF) source

Consider update equation for Ey at ksrc (Total-field side)

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey

Hx |t+
1
2

ksrc
− Hx |t+

1
2

ksrc−1

∆z

 (82)

Hx |t+
1
2

ksrc−1 exists at the scattered-field side. We must add the source to it

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey

Hx |t+
1
2

ksrc
− (Hx |t+

1
2

ksrc−1 + H src
x |t+

1
2

ksrc−1
)

∆z

 (83)

and this can be expressed as

Ey |t+1
ksrc

= Ey |tksrc +mksrc
Ey

Hx |t+
1
2

ksrc
− Hx |t+

1
2

ksrc−1

∆z

−
mksrc

Ey

∆z
H src

x |t+
1
2

ksrc−1 (84)

Computational electromagnetics

Total-field/scattered-field (TF/SF) source

Two source functions are needed:

E src
y |tksrc and H src

x |t+
1
2

ksrc−1 (85)

Note, these function exist at different locations in space and time
→ time-delay

E src
y |tksrc = g(t) (86)

H src
x |t+

1
2

ksrc−1 = −
√

ǫksrc
µksrc

g

(

t +

√
ǫrµr∆z

2c
+

∆t

2

)

(87)

half grid delay

half time-step delay

Computational electromagnetics

Ideal absorbing boundary condition

Algorithm 4 1D-fdtd engine with the ABC and TF/SF source
1: Compute time-step

2: Compute sources

3: Initialize grid

4:
5: for t = 1 to Nt do

6:
7: for k = 1 to Nk − 1 do

8: Update Hx

9: end for

10: Compute Hx (Nk) with e3 BC

11: Record H-field h3 = h2, h2 = h1, h1 = Hx |1

12: Inject H-field source Hx |
t+1/2
s−1 = Hx |

t+1/2
s−1 + ...

13:
14: for k = 2 to Nk do

15: Update Ey

16: end for

17: Compute Ey (1) with h3 BC

18: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
19: Inject E-field source Ey |

t+1
s = Ey |

t+1
s + ...

20:
21: end for

Computational electromagnetics

Fourier transforms

In many cases, we want to study scattering properties in frequency
domain.

Fourier transform: conversion between time and frequency domains

G(f) =

∫ ∞

−∞

g(t) exp(−i2πft) dt (88)

Inverse transform

g(t) =

∫ ∞

−∞

G(f) exp(i2πtf) dx (89)

Discrete transform:

G(f) =

Nt
∑

n=1

g(n∆t) exp(−i2πfn∆t)∆t (90)

Computational electromagnetics

Calculation of reflectance and transmittance

Normalize the spectra by dividing the relection and transmission
spectrum by the source spectrum Reflectance:

R(f) =

(

DFT [Eref (t)]

DFT [Esrc(t)]

)2

(91)

Transmittance:

R(f) =

(

DFT [Etrn(t)]

DFT [Esrc(t)]

)2

(92)

Note: Nyquist theorem → maximum frequency

fmax =
1

2∆t
(93)

∆f ∼= 1

Nsteps∆t
(94)

Computational electromagnetics

Last FDTD example

Algorithm 5 1D-fdtd engine with the ABC, TF/SF source and DFT
1: for t = 1 to Nt do

2:
3: for k = 1 to Nk − 1 do

4: Update Hx

5: end for

6: Compute Hx (Nk) with e3 BC

7: Record H-field h3 = h2, h2 = h1, h1 = Hx |1

8: Inject H-field source Hx |
t+1/2
s−1 = Hx |

t+1/2
s−1 + ...

9:
10: for k = 2 to Nk do

11: Update Ey

12: end for

13: Compute Ey (1) with h3 BC

14: Record E-field e3 = e2, e2 = e1, e1 = Ey |Nk
15: Inject E-field source Ey |

t+1
s = Ey |

t+1
s + ...

16:
17: for q = 1 to Nq do

18: Compute DFT Eref (q) = Eref (q) + ∆texp(−i2πfqt∆t))Ey |2

19: Compute DFT Etrn(q) = Etrn(q) + ∆texp(−i2πfq t∆t))Ey |Nk−2

20: end for

21: end for

	Computational electromagnetics

