
1 Scattering at the plane interface between two media

(lecture 3)

Two kinds of features can be distinguished in the reflection and refraction of waves at the
plane interface between two media:
i) Kinematical properties:
a) the angle of reflection coincides with the angle of incidence
b) the angle of refraction relates to the angle of incidence and the refractive indices of the
media via Snel’s law
ii) Dynamical properties:
a) the intensitities of reflected and refracted radiation
b) phase shifts and polarization

The kinematical properties follow from the wave nature of the phenomena and the exis-
tence of the boundary conditions. The dynamical properties depend fully on the characteris-
tics of the waves and their boundary conditions.
The coordinate systems and symbols are defined in Fig. 1. The original plane wave (wave vec-
tor k, angular frequency ω) is incident on the interface from the medium µ, ε (refractive index
m =

√
εµ/ε0µ0). The refracted plane wave propagates in the medium µ′, ε′ (m′ =

√
ε′µ′/ε0µ0)

with wave vector kt and the reflected plane wave in the medium µ, ε with wave vector kr.
The kinematics are described by the angles of incidence θi, reflection θr, and refraction θt.

Assume first that µ, ε, µ′, ε′ and therefor also m and m′ are real-valued.
Based on what has already been described before, we can write the incident, reflected, and

refracted fields as follows:

Ei = E0ie
iki·x−iωt

Bi =
√
εµ

ki × Ei

ki
(1)

Er = E0re
ikr·x−iωt

Br =
√
εµ

kr × Er

kr
(2)

Et = E0te
ikt·x−iωt

Bt =
√
ε′µ′

kt × Et

kt
(3)
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The lengths of the wave vectors are

|ki| = |kr| = ki = kr = ω
√
εµ

|kt| = kt = ω
√
ε′µ′ (4)

The boundary conditions are to be valid at the interface z = 0 at all times. Therefore,
the spatial dependences of the fields need to coincide at the interface and, in particular, the
arguments of the phase factors

(ki · x)z=0 = (kr · x)z=0 = (kt · x)z=0 (5)

independently of the detailed properties of the boundary conditions. It follows, first, that the
wave vectors must be confined to a single plane. Second, it follows that θi = θr and, third, we
obtain Snel’s law

ki sin θi = kt sin θt

⇔ m sin θi = m′ sin θt. (6)

According to the boundary conditions of electromagnetic fields, the normal components of
D and B and the tangential components of E and H must be continuous across the boundary.
Then, at the interface z = 0, we have

n̂ · [ε(E0i + E0r)− ε′E0t] = 0

n̂ · [ki × E0i + kr × E0r − kt × E0t] = 0

n̂ × [E0i + E0r − E0t] = 0

n̂ × [
1

µ
(ki × E0i + kr × E0r)−

1

µ′
(kt × E0t)] = 0 (7)

Let us divide the scattering problem into two cases: first, the incident field is linearly
polarized so that the electric field is perpendicular to the plane defined by ki and n̂; second,
the electric field is within that plane. An arbitrary elliptic polarization can be treated as a
linear sum of the results following for the two cases defined above.
First, let the electric field be perpendicular to the plane of incidence (see Fig. 2). The choice
of B-vectors guarantees a positive flow of energy in the direction of the wave vectors. With
the help of the third and fourth boundary conditions above, we obtain
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E0i + E0r − E0t = 0√
ε

µ
(E0i − E0r) cos θi −

√
ε′

µ′
E0t cos θt = 0 (8)

Denote the Fresnel coefficients by

r⊥ =
E0r

E0i

, t⊥ =
E0t

E0i

.

Then,

1 + r⊥ − t⊥ = 0√
ε

µ
(1− r⊥) cos θi −

√
ε′

µ′
t⊥ cos θt = 0 (9)

and it follows that

t⊥ = 1 + r⊥√
ε

µ
cos θi −

√
ε′

µ′
cos θt = (

√
ε

µ
cos θi +

√
ε′

µ′
cos θt)r⊥ (10)

and, furthermore, we obtain, for the Fresnel coefficients,

r⊥ =

√
ε
µ

cos θi −
√

ε′

µ′
cos θt√

ε
µ

cos θi +
√

ε′

µ′
cos θt

t⊥ =
2
√

ε
µ

cos θi√
ε
µ

cos θi +
√

ε′

µ′
cos θt

(11)

Second, let the electric field be within the plane of incidence (see Fig. 3). Again, based on
the third and fourth boundary conditions above, we have

(E0i − E0r) cos θi − E0t cos θt = 0√
ε

µ
(E0i + E0r)−

√
ε′

µ′
E0t = 0 (12)
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Denote the Fresnel coefficients by

r‖ =
E0r

E0i

, t‖ =
E0t

E0i

.

Then,

(1− r‖) cos θi − t‖ cos θt = 0√
ε

µ
(1 + r‖)−

√
ε′

µ′
t‖ = 0 (13)

and we obtain the following pair of equations,

t‖ =
cos θi
cos θt

(1− r‖)√
ε

µ
−

√
ε′

µ′
cos θi
cos θt

= −
(√ ε

µ
+

√
ε′

µ′
cos θi
cos θt

)
r‖ (14)

allowing for the Fresnel coefficients to be explicitly solved for:

r‖ =

√
ε′

µ′
cos θi −

√
ε
µ

cos θt√
ε′

µ′
cos θi +

√
ε
µ

cos θt

t‖ =
2
√

ε
µ

cos θi√
ε′

µ′
cos θi +

√
ε
µ

cos θt
(15)

In the case of a plane wave normally incident on the interface (θi = 0), we obtain

r‖ = −r⊥ =

√
ε′

µ′
−
√

ε
µ√

ε′

µ′
+
√

ε
µ

→ m′ −m
m′ +m

,µ = µ′

t‖ = t⊥ =
2
√

ε
µ√

ε′

µ′
+
√

ε
µ

→ 2m

m′ +m
,µ = µ′ (16)
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The Fresnel coefficients derived above are also valid for complex-valued ε, µ, ε′, and µ′.
Usually, for visible light, µ = µ′ = µ0. The generalization of Snel’s law for complex m′ is
left for an exercise. In addition, the derivation of the 4× 4 reflection and refraction matrices
relating the Stokes parameters of incident, reflected, and refracted light is left for an exercise.
In the case of incident electric field polarized in the plane of incidence, we can find the so-called
Brewster angle, at which there is no reflected wave. Let µ = µ′. At the Brewster angle,

m′ cos θiB = m

√
1− m2

m′2
sin2 θiB

(
m′

m
)2 cos2 θiB = 1− (

m

m′
)2 sin2 θiB

(
m′

m
)2 = 1 + tan2 θiB − (

m

m′
)2 tan2 θiB

tan2 θiB =
(m

′

m
)2 − 1

1− ( m
m′ )2

= (
m′

m
)2

The physical solution is

θiB = arctan(
m′

m
) (17)

As a rule for other angles of incidence, too, the reflected light tends to be polarized
perpendicular to the plane of incidence.

Total internal reflection can occur when m > m′ (the incident wave is ”internal”). If
m > m′, θt > θi0 according to Snel’s law and

θi0 = arcsin
m′

m
(18)

When the angle of incidence is θi0, the refracted wave is propagating parallel to the interface
and there is no energy flow across the interface. Thus, all the incident energy is reflected back.
When θi > θi0, sin θt > 1 and θt must be a complex-valued angle that has a purely imaginary
cosine,

cos θt = i

√
(

sin θi
sin θi0

)2 − 1 (19)

The refracted wave is of the form
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eikt·x = eikt(x sin θt−z cos θt)

= e
−kt

√
(

sin θi
sin θi0

)2−1|z|
e
ikt(

sin θi
sin θi0

)x
(20)

and, thus, attenuates exponentially in the medium m′ and propagates only in the direction
of the interface.
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