Electromagnetic scattering 1:
 Finite-element method (FEM)

Johannes Markkanen
University of Helsinki

October 4, 2016

Finite-element method (FEM)

Strengths:

- Solid mathematical background
- Applicability
- Sparse matrix
- Simple implementation

Weaknesses:

- Matrix conditioning \rightarrow preconditioning needed
- PML is needed for open region problems

FDTD literature

Introduction to FDTD, FEM, IEM

- Sheng Xin-Qing, Song Wei, Essentials of computational electromagnetics, IEEE,Wiley, 2012.
Some FEM books
- Jin, J., The Finite Element Method in Electromagnetics, John Wiley \& Sons, Inc., New York, 2002.
- Monk, P., Finite Element Methods for Maxwell's Equations, Oxford Science Publications, Clarendon Press, Oxford, 2003.

Maxwell's equation

Faraday's law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{1}
\end{equation*}
$$

Ampères law

$$
\begin{equation*}
\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\sigma \mathbf{E}+\mathbf{J} \tag{2}
\end{equation*}
$$

Gauss's law for elecric field

$$
\begin{equation*}
\nabla \cdot \mathbf{D}=\rho \tag{3}
\end{equation*}
$$

Gauss's law for magnetic field

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{4}
\end{equation*}
$$

Constitutive relations:

$$
\begin{align*}
\mathbf{D} & =\epsilon * \mathbf{E} \tag{5}\\
\mathbf{B} & =\mu * \mathbf{H} \tag{6}
\end{align*}
$$

ϵ electric permittivity
μ magnetic permeability

Vector wave equation

Time-harmonic case $(\exp (-i \omega t))$

$$
\begin{gather*}
\nabla \times \mathbf{E}=i \omega \mu \mathbf{H} \tag{7}\\
\nabla \times \mathbf{H}=-i \omega \epsilon \mathbf{E}+\mathbf{J}^{s} \tag{8}
\end{gather*}
$$

Radiation condition

$$
\begin{equation*}
\lim _{|\mathbf{r}| \rightarrow \infty}|\mathbf{r}|\left(\eta \mathbf{H}(\mathbf{r}) \times \frac{\mathbf{r}}{|\mathbf{r}|}-\mathbf{E}(\mathbf{r})\right)=0 \tag{9}
\end{equation*}
$$

Vector wave equation

$$
\begin{equation*}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{E}\right)-\epsilon \omega^{2} \mathbf{E}=i \omega \mathbf{J}^{s} \tag{10}
\end{equation*}
$$

Function spaces

Spaces for potentials:

$$
\begin{gather*}
H^{1}(\Omega):=\left\{p \in L^{2}(\Omega), \nabla p \in L^{2}(\Omega)^{3}\right\} \tag{11}\\
H_{0}^{1}(\Omega):=\left\{p \in L^{2}(\Omega), \nabla p \in L^{2}(\Omega)^{3},\left.p\right|_{\partial \Omega}=0\right\} \tag{12}
\end{gather*}
$$

Spaces for fields:

$$
\begin{gather*}
H_{\text {curl }}(\Omega):=\left\{\mathbf{f} \in L^{2}(\Omega)^{3}, \nabla \times \mathbf{f} \in L^{2}(\Omega)^{3}\right\} \tag{13}\\
H_{0, \text { curl }}(\Omega):=\left\{\mathbf{f} \in L^{2}(\Omega)^{3}, \nabla \times \mathbf{f} \in L^{2}(\Omega)^{3}, \mathbf{n} \times\left.\mathbf{f}\right|_{\partial \Omega}=0\right\} \tag{14}
\end{gather*}
$$

Spaces for flux densities:

$$
\begin{gather*}
H_{\text {div }}(\Omega):=\left\{\mathbf{g} \in L^{2}(\Omega)^{3}, \nabla \cdot \mathbf{g} \in L^{2}(\Omega)\right\} \tag{15}\\
H_{0, \operatorname{div}}(\Omega):=\left\{\mathbf{g} \in L^{2}(\Omega)^{3}, \nabla \cdot \mathbf{g} \in L^{2}(\Omega),\left.\mathbf{n} \cdot \mathbf{g}\right|_{\partial \Omega}=0\right\} \tag{16}
\end{gather*}
$$

$L^{2}(\Omega)$ is a space of square integrable functions in Ω (if Ω is unbounded, square integrability is defined locally on each bounded subset of Ω)

Inner products

L^{2}-inner product

$$
\begin{equation*}
<\mathbf{f}, \mathbf{g}>_{L^{2}, \Omega}=\int_{\Omega} \mathbf{f} \cdot \mathbf{g} \mathrm{d} \mathbf{r} \tag{17}
\end{equation*}
$$

H^{1}-inner product

$$
\begin{equation*}
<f, g>_{H^{1}, \Omega}=\int_{\Omega} f g \mathrm{~d} \mathbf{r}+\int_{\Omega} \nabla f \cdot \nabla g \mathrm{~d} \mathbf{r} \tag{18}
\end{equation*}
$$

$H_{\text {curl-inner product }}$

$$
\begin{equation*}
<\mathbf{f}, \mathbf{g}>_{H_{\text {cur }}, \Omega}=\int_{\Omega} \mathbf{f} \cdot \mathbf{g} \mathrm{d} \mathbf{r}+\int_{\Omega} \nabla \times \mathbf{f} \cdot \nabla \times \mathbf{g} \mathrm{d} \mathbf{r} \tag{19}
\end{equation*}
$$

$H_{\text {div }}$-inner product

$$
\begin{equation*}
<\mathbf{f}, \mathbf{g}>_{H_{d i}, \Omega}=\int_{\Omega} \mathbf{f} \cdot \mathbf{g} \mathrm{d} \mathbf{r}+\int_{\Omega} \nabla \cdot \mathbf{f} \cdot \nabla \cdot \mathbf{g} \mathrm{d} \mathbf{r} \tag{20}
\end{equation*}
$$

Norms

L^{2}-norm

$$
\begin{equation*}
\|\mathbf{v}\|_{0}=\left(\int_{\Omega}|\mathbf{v}|^{2} \mathrm{~d} \Omega\right)^{1 / 2} \tag{21}
\end{equation*}
$$

H^{1}-norm

$$
\begin{equation*}
\|p\|_{1, \Omega}=\left(\int_{\Omega}|\nabla p|^{2} \mathrm{~d} \Omega+\int_{\Omega}|p|^{2} \mathrm{~d} \Omega\right)^{1 / 2} \tag{22}
\end{equation*}
$$

$H_{\text {curl- }}$ norm

$$
\begin{equation*}
\|\mathbf{f}\|_{\text {cur } 1, \Omega}=\left(\int_{\Omega}|\nabla \times \mathbf{f}|^{2} \mathrm{~d} \Omega+\int_{\Omega}|\mathbf{f}|^{2} \mathrm{~d} \Omega\right)^{1 / 2} \tag{23}
\end{equation*}
$$

$H_{\text {div }}$-norm

$$
\begin{equation*}
\|\mathbf{g}\|_{\operatorname{div}, \Omega}=\left(\int_{\Omega}|\nabla \cdot \mathbf{g}|^{2} \mathrm{~d} \Omega+\int_{\Omega}|\mathbf{g}|^{2} \mathrm{~d} \Omega\right)^{1 / 2} \tag{24}
\end{equation*}
$$

Trace operators

Tangential trace operator:

$$
\begin{equation*}
\gamma_{t} \mathbf{F}=-\mathbf{n} \times \mathbf{n} \times\left.\mathbf{F}\right|_{\partial \Omega} \tag{25}
\end{equation*}
$$

Defines mapping: $H_{\text {curl }}(\Omega) \rightarrow H_{\text {Curl }}^{-1 / 2}(\partial \Omega)$ Rotated tangential trace operator:

$$
\begin{equation*}
\gamma_{r} \mathbf{F}=\mathbf{n} \times\left.\mathbf{F}\right|_{\partial \Omega} \tag{26}
\end{equation*}
$$

Defines mapping: $H_{\text {curl }}(\Omega) \rightarrow H_{\text {Div }}^{-1 / 2}(\partial \Omega)$ Normal trace operator:

$$
\begin{equation*}
\gamma_{n} \mathbf{F}=\left.\mathbf{n} \cdot \mathbf{F}\right|_{\partial \Omega} \tag{27}
\end{equation*}
$$

Defines mapping: $H_{\text {div }}(\Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$

Some useful vector identities

$$
\begin{gather*}
\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla f \tag{28}\\
\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G}) \tag{29}\\
\nabla \times(f \mathbf{F})=f \nabla \times \mathbf{F}+\nabla f \times \mathbf{F} \tag{30}\\
\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F} \tag{31}\\
\nabla \cdot(\nabla \times \mathbf{F})=0 \tag{32}\\
\nabla \times(\nabla f)=0 \tag{33}
\end{gather*}
$$

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{F} \mathrm{~d} V=\int_{\partial V} \mathbf{n} \cdot \mathbf{F} \mathrm{~d} S \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\int_{V} \nabla \times \mathbf{F} \mathrm{d} V=\int_{\partial V} \mathbf{n} \times \mathbf{F} \mathrm{d} S \tag{35}
\end{equation*}
$$

Weak problem

Let Ω be simply connected and bounded domain with the PEC boundary condition $\mathbf{n} \times \mathbf{E}=0$ on $\partial \Omega$. Find $\mathbf{E} \in H_{0, \text { curl }}(\Omega)$ such that

$$
\begin{equation*}
<\mathbf{w}, \nabla \times \mu^{-1} \nabla \times \mathbf{E}-\epsilon \omega^{2} \mathbf{E}>=i \omega<\mathbf{w}, \mathbf{J}^{s}> \tag{36}
\end{equation*}
$$

$\forall \mathbf{w} \in H_{0, \text { curl }}(\Omega)$. Here $\langle\cdot, \cdot\rangle$ denotes the $L^{2}(\Omega)$-inner product.
The above equation can be written as

$$
\begin{equation*}
\left.<\nabla \times \mathbf{w}, \mu^{-1} \nabla \times \mathbf{E}>-\epsilon \omega^{2}<\mathbf{w}, \mathbf{E}\right\rangle=i \omega<\mathbf{w}, \mathbf{J}^{s}> \tag{37}
\end{equation*}
$$

It is clear that any solution for the wave-equation satisfies (37) but does a solution of (37) satisfy the wave-equation?

Finite-element solution

- In the finite-element method, a weak problem is solved in a finite-dimensional space \mathcal{B}_{h}
- The finite-element space is constructed by dividing the domain into smaller elements e.g. tetrahedral elements T_{h}.
- Basis functions (associated with elements T_{h}) should span the finite-dimensional subspace "finite-element space" $\mathcal{B}_{h} \subset H_{0, \text { curl }}(\Omega)$
- Testing functions should span the finite-dimensional subspace $\mathcal{W}_{h} \subset H_{0, \text { curl }}(\Omega)$

Projection method

Solve linear problem of the form

$$
L u=f, \quad L: U \rightarrow F, f \in F
$$

U and F are some Hilbert spaces, and the unknown $u \in U$
Expand the unknown with a set of basis functions b_{n} span $B_{N} \subset U$

$$
u \approx \tilde{u}_{N}=\sum_{n=1}^{N} c_{n} b_{n}
$$

Require the residual

$$
R_{N}=L \tilde{u}_{N}-f,
$$

to be orthogonal to the space $T_{M} \subset F$ spanned by testing functions t_{m}

$$
<t_{m}, R_{N}>_{F}=0, \forall m=1,2, \ldots, M
$$

Finite-element solution

Expand the unknown electric field as a linear combination of known basis functions \mathbf{b}_{n} as

$$
\begin{equation*}
\mathbf{E} \approx \sum_{n=1}^{N} c_{n} \mathbf{b}_{n} \tag{38}
\end{equation*}
$$

where c_{n} are unknown coefficients.
Taking the inner product with testing functions \mathbf{t}_{m}, gives rise to a matrix equation

$$
\begin{equation*}
A_{m n} c_{n}=f_{m} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{m n}=<\nabla \times \mathbf{t}_{m}, \mu^{-1} \nabla \times \mathbf{b}_{n}>-\epsilon \omega^{2}<\mathbf{t}_{m}, \mathbf{b}_{n}>, \tag{40}
\end{equation*}
$$

and the force vector read as

$$
\begin{equation*}
f_{m}=i \omega<\mathbf{t}_{m}, \mathbf{J}^{s}>. \tag{41}
\end{equation*}
$$

The unknown coefficients can be solve by inverting the matrix

Shape functions

Consider tetrahedral element T_{k}

Linear shape functions $N_{p_{i}}(x, y, z)$:

- $N_{p_{i}}(x, y, z)=1$ at node \mathbf{p}_{i}
- $N_{p_{i}}(x, y, z)=0$ at other nodes
- linear inside the tetrahedron
- $\nabla N_{p_{i}}=-\frac{\mathbf{n}_{i}}{h_{i}}$

Any linear function inside the tetrahedron can be expressed as

$$
\begin{equation*}
f(x, y, z)=\sum_{i=1}^{4} a_{i} N_{p_{i}} \tag{42}
\end{equation*}
$$

where a_{i} are some coefficients.

Basis functions H^{1}

Basis functions should have the same differentiability and continuity properties as the original unknown functions e.g. E, H, D, B etc.
Let a first consider a scalar space $H^{1}(\Omega)$, i.e., the space of square integrable functions whose gradients are also square integrable. These functions are continuous!

Functions in $H^{1}(\Omega)$ can be approximated in tetrahedral mesh as a combinations of shape functions

$$
\begin{equation*}
\phi \approx \sum_{n=1}^{N} c_{n} N_{n} \tag{43}
\end{equation*}
$$

where N is the number of nodes. (Degrees of freedom $=$ number of nodes)
This is suitable space for e.g. Poisson equation (electrostatic)

$$
\begin{equation*}
\nabla^{2} \phi=\rho \tag{44}
\end{equation*}
$$

Basis functions $H_{\text {curl }}$

$H_{\text {curl }}$ is a suitable space for fields.
The lowest order curl-conforming basis function associated into the edge $e_{i j}$ (between nodes $i j$) and can be expressed as

$$
\begin{equation*}
\mathbf{w}_{e_{i j}}=N_{i} \nabla N_{j}-N_{j} \nabla N_{i} \tag{45}
\end{equation*}
$$

This function has a continuous tangential component, and its curl,

$$
\begin{equation*}
\nabla \times \mathbf{w}_{e_{i j}}=2\left(\nabla N_{i} \times \nabla N_{j}\right), \tag{46}
\end{equation*}
$$

is piecewise constant and square integrable.
Therefore, the electric or magnetic field can be expanded as

$$
\begin{equation*}
\mathbf{E} \approx \sum_{e=1}^{E} c_{e} \mathbf{w}_{e} \tag{47}
\end{equation*}
$$

where E is the number of edges

$H_{\text {curl }}$-function

Edge-element: continuous tangential component

Basis functions $H_{\text {div }}$

$H_{\text {div }}$ is a suitable space for flux densities or currents.
The lowest order div-conforming basis function associated into the face $f_{i j k}$ (between nodes $i j k$) and can be expressed as

$$
\begin{equation*}
\mathbf{v}_{f_{j i k}}=N_{i}\left(\nabla N_{j} \times \nabla N_{k}\right)+N_{j}\left(\nabla N_{k} \times \nabla N_{i}\right)+N_{k}\left(\nabla N_{i} \times \nabla N_{j}\right) \tag{48}
\end{equation*}
$$

This function has a continuous normal component, and its div,

$$
\begin{equation*}
\nabla \cdot \mathbf{v}_{e_{j k}}=1 / V \tag{49}
\end{equation*}
$$

where V is the volume of tetrahedron.
Therefore, the electric or magnetic flux can be expanded as

$$
\begin{equation*}
\mathbf{D} \approx \sum_{f=1}^{F} c_{f} \mathbf{v}_{f}, \tag{50}
\end{equation*}
$$

where F is the number of faces

$H_{d i v}$-function

Face-element: continuous normal component

Basis functions L^{2}

Scalar L^{2}-functions for the charge density ρ
Scalar case:

$$
\begin{equation*}
p=\sum_{t=1}^{T} c_{t} \frac{1}{\sqrt{V}}, \tag{51}
\end{equation*}
$$

where T is the number of tetrahedra
Vector case (equivalent volumetric currents):

$$
\begin{equation*}
\mathbf{p}=\sum_{t=1}^{T} c_{t}^{x} \frac{1}{\sqrt{V_{t}}} \hat{\mathbf{e}}_{x}+c_{t}^{y} \frac{1}{\sqrt{V_{t}}} \hat{\mathbf{e}}_{y}+c_{t}^{z} \frac{1}{\sqrt{V_{t}}} \hat{\mathbf{e}}_{z}, \tag{52}
\end{equation*}
$$

where T is the number of tetrahedra
These functions are discontinuous!

$H_{\text {div }}$-function

L2-element: discontinuous

Reference element

In practise, all integrals are evaluate in a reference element.

Linear mapping

$$
\begin{aligned}
& \mathcal{F}(\xi, \eta, \zeta)= \\
& \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)_{x} & \left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)_{x} & \left(\mathbf{p}_{4}-\mathbf{p}_{1}\right)_{x} \\
\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)_{y} & \left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)_{y} & \left(\mathbf{p}_{4}-\mathbf{p}_{1}\right)_{y} \\
\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)_{z} & \left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)_{z} & \left(\mathbf{p}_{4}-\mathbf{p}_{1}\right)_{z}
\end{array}\right)\left(\begin{array}{c}
\xi \\
\eta \\
\zeta
\end{array}\right)+\left(\begin{array}{c}
\left(\mathbf{p}_{1}\right)_{x} \\
\left(\mathbf{p}_{1}\right)_{y} \\
\left(\mathbf{p}_{1}\right)_{z}
\end{array}\right) \\
& (54)
\end{aligned}
$$

Integration on the reference element

Shape function on element $T_{k}: N_{n_{i}^{k}}(x, y, z)=\hat{N}_{i}\left(\mathcal{F}_{k}^{-1}(x, y, z)\right)$

$$
\begin{gather*}
\int_{T_{k}} N_{n_{i}^{k}}(x, y, z) N_{n_{j}^{k}}(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z= \tag{55}\\
\int_{\hat{T}} \hat{N}_{i}(\xi, \eta, \zeta) \hat{N}_{j}(\xi, \eta, \zeta)\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| \mathrm{d} \xi \mathrm{~d} \eta \mathrm{~d} \zeta
\end{gather*}
$$

where $J_{\mathcal{F}_{k}}$ is the Jacobian of the mapping \mathcal{F}_{k}

$$
\begin{equation*}
J_{\mathcal{F}_{k}}=\left[\frac{\partial \mathcal{F}_{k}}{\partial \xi}, \frac{\partial \mathcal{F}_{k}}{\partial \eta}, \frac{\partial \mathcal{F}_{k}}{\partial \zeta}\right]=\left[\mathbf{p}_{2}^{k}-\mathbf{p}_{1}^{k}, \mathbf{p}_{3}^{k}-\mathbf{p}_{1}^{k}, \mathbf{p}_{4}^{k}-\mathbf{p}_{1}^{k}\right] \tag{56}
\end{equation*}
$$

The above integral can be numerically evaluated as

$$
\begin{equation*}
\iota_{i j}=\left|\operatorname{det}\left(J_{\mathcal{F}_{k}}\right)\right| \sum_{m=1}^{M} \hat{N}_{i}\left(\xi_{m}, \eta_{m}, \zeta_{m}\right) \hat{N}_{j}\left(\xi_{m}, \eta_{m}, \zeta_{m}\right) w_{m} \tag{57}
\end{equation*}
$$

where $\left(\xi_{m}, \eta_{m}, \zeta_{m}\right)$ are the Gaussian quadrature points for the reference tetrahedron and w_{m} are the corresponding weights.

Mapping of derivatives

Functions and their derivatives transforms differently!

$$
\begin{equation*}
\hat{N}_{i}(\xi, \eta, \zeta)=N_{n_{i}^{k}}\left(\mathcal{F}_{k}(\xi, \eta, \zeta)\right) \tag{58}
\end{equation*}
$$

Chain rule:

$$
\begin{gather*}
\frac{\partial \hat{N}_{i}}{\partial \xi}=\frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial y}{\partial \xi}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial z}{\partial \xi}= \\
\frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial \mathcal{F}_{k}^{x}}{\partial \xi}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial \mathcal{F}_{k}^{y}}{\partial \xi}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial \mathcal{F}_{k}^{z}}{\partial \xi} \tag{59}\\
\frac{\partial \hat{N}_{i}}{\partial \eta}=\frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial y}{\partial \eta}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial z}{\partial \eta}= \tag{60}\\
\frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial \mathcal{F}_{k}^{x}}{\partial \eta}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial \mathcal{F}_{k}^{y}}{\partial \eta}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial \mathcal{F}_{k}^{z}}{\partial \eta}
\end{gather*}
$$

Mapping of derivatives

$$
\begin{align*}
& \frac{\partial \hat{N}_{i}}{\partial \zeta}=\frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial x}{\partial \zeta}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial y}{\partial \zeta}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial z}{\partial \zeta}= \tag{61}\\
& \frac{\partial N_{n_{i}^{k}}}{\partial x} \frac{\partial \mathcal{F}_{k}^{x}}{\partial \zeta}+\frac{\partial N_{n_{i}^{k}}}{\partial y} \frac{\partial \mathcal{F}_{k}^{y}}{\partial \zeta}+\frac{\partial N_{n_{i}^{k}}}{\partial z} \frac{\partial \mathcal{F}_{k}^{z}}{\partial \zeta}
\end{align*}
$$

In other words

$$
\begin{equation*}
\hat{\nabla} \hat{N}_{i}=J_{\mathcal{F}_{k}}^{T} \nabla N_{n_{i}^{k}} \tag{62}
\end{equation*}
$$

So we can write an expression for gradients in a general tetrahedron as

$$
\begin{equation*}
\nabla N_{n_{i}^{k}}=\left(J_{\mathcal{F}_{k}}^{T}\right)^{-1} \hat{\nabla} \hat{N}_{i} \tag{63}
\end{equation*}
$$

Data structures

3D tetrahedral mesh can be stored as follows:
Coordinates of nodes $\left(3 \times N_{n}\right)$:

$$
\text { mesh.coord }=\left[\begin{array}{ccccc}
p_{x}^{1} & p_{x}^{2} & p_{x}^{3} & \ldots & p_{x}^{N_{n}} \\
p_{y}^{1} & p_{y}^{2} & p_{y}^{3} & \ldots & p_{x}^{N_{n}} \\
p_{z}^{1} & p_{z}^{2} & p_{z}^{3} & \ldots & p_{x}^{N_{n}}
\end{array}\right]
$$

Nodes for each tetrahedron $\left(4 \times N_{t}\right)$

$$
\begin{gather*}
\text { mesh.etopol }=\left[\begin{array}{ccccc}
n_{1}^{1} & n_{1}^{2} & n_{1}^{3} & \ldots & n_{1}^{N_{t}} \\
n_{2}^{1} & n_{2}^{2} & n_{2}^{3} & \ldots & n_{2}^{N_{t}} \\
n_{3}^{1} & n_{3}^{2} & n_{3}^{3} & \ldots & n_{3}^{N_{t}} \\
n_{4}^{1} & n_{4}^{2} & n_{4}^{3} & \ldots & n_{4}^{N_{t}}
\end{array}\right] \\
\text { mesh.param }
\end{gather*}=\left[\begin{array}{lllll}
\epsilon_{r}^{1} & \epsilon_{r}^{2} & \epsilon_{r}^{3} & \ldots & \epsilon_{r}^{N_{t}} \tag{64}
\end{array}\right] .
$$

N_{t} is the number of tetrahedra
N_{n} is the number of nodes

Data structures

Some additional data structures:
Nodes of edges + boundary $\left(3 \times N_{e}\right)$ (last line: 1 if boundary edge and 0 otherwise):

$$
\text { mesh.edges }=\left[\begin{array}{ccccc}
n_{1}^{1} & n_{1}^{2} & n_{1}^{3} & \ldots & n_{1}^{N_{e}} \\
n_{2}^{1} & n_{2}^{2} & n_{2}^{3} & \ldots & n_{2}^{N_{e}} \\
0 & 0 & 1 & \ldots & 0
\end{array}\right]
$$

Edges for each tetrahedron $\left(6 \times N_{t}\right)$

$$
\text { mesh.etopol2 }=\left[\begin{array}{ccccc}
e_{1}^{1} & e_{1}^{2} & e_{1}^{3} & \ldots & e_{1}^{N_{t}} \\
e_{2}^{1} & e_{2}^{2} & e_{2}^{3} & \ldots & e_{2}^{N_{t}} \\
e_{3}^{1} & e_{3}^{2} & e_{3}^{3} & \ldots & e_{3}^{N_{t}} \\
e_{4}^{1} & e_{4}^{2} & e_{4}^{3} & \ldots & e_{4}^{N_{t}} \\
e_{5}^{1} & e_{5}^{2} & e_{5}^{3} & \ldots & e_{5}^{N_{t}} \\
e_{6}^{1} & e_{6}^{2} & e_{6}^{3} & \ldots & e_{6}^{N_{t}}
\end{array}\right]
$$

N_{e} is the number of edges

Data structures

Local edges in tetrahedron k

e^{k}	n^{k}	n^{k}
1	1	2
2	1	3
3	1	4
4	2	3
5	3	4
6	2	4

Edge orientation may be different in global and local notations \Rightarrow we need to calculate a correct sign for each basis function
e.g. Global edge 19
node $1=$ mesh.edges $(1,19)$
node $2=$ mesh.edges $(2,19)$

Calculation of matrix elements

Recall:

$$
\begin{equation*}
A_{m n}=<\nabla \times \mathbf{t}_{m}, \mu^{-1} \nabla \times \mathbf{b}_{n}>-\epsilon \omega^{2}<\mathbf{t}_{m}, \mathbf{b}_{n}> \tag{65}
\end{equation*}
$$

where \mathbf{t}_{m} and $\mathbf{b}_{n} \in H_{0, \operatorname{curl}(\Omega)^{3}}$
We use lowest order edge elements (edge m between nodes n_{j} and n_{i}):

$$
\begin{gather*}
\mathbf{t}_{m}=\mathbf{b}_{m}=N_{n_{i}^{k}} \nabla N_{n_{j}^{k}}-N_{n_{j}^{k}} \nabla N_{n_{i}^{k}} \tag{66}\\
\nabla \times \mathbf{t}_{m}=\nabla \times \mathbf{b}_{m}=2\left(\nabla N_{n_{i}^{k}} \times \nabla N_{n_{j}^{k}}\right) \tag{67}
\end{gather*}
$$

Loop over elements, compute local inner products elementwise and add local contributions to the global matrix

Matrix assembly

First term:

$$
\begin{gather*}
<\nabla \times \mathbf{t}_{m}, \mu^{-1} \nabla \times \mathbf{b}_{n}>T_{k} \\
=\int_{T_{k}} 2\left(\nabla N_{n_{i}^{k}} \times \nabla N_{n_{j}^{k}}\right) \cdot \mu_{k}^{-1} 2\left(\nabla N_{n_{p}^{k}} \times \nabla N_{n_{k}^{k}}\right) \mathrm{d} V \tag{68}\\
=4\left(\nabla N_{n_{i}^{k}} \times \nabla N_{n_{j}^{k}}\right) \cdot \mu_{k}^{-1}\left(\nabla N_{n_{p}^{k}} \times \nabla N_{n_{i}^{k}}\right) V_{k}
\end{gather*}
$$

Second term:

$$
\begin{align*}
<\mathbf{t}_{m}, \mathbf{b}_{n}>T_{k}=\int_{T_{k}}(& \left.N_{n_{i}^{k}} \nabla N_{n_{j}^{k}}-N_{n_{j}^{k}} \nabla N_{n_{i}^{k}}\right) \cdot\left(N_{n_{p}^{k}} \nabla N_{n_{i}^{k}}-N_{n_{l}^{k}} \nabla N_{n_{p}^{k}}\right) \mathrm{d} V \\
& =\nabla N_{n_{j}^{k}} \cdot \nabla N_{n_{i}^{k}} \int_{T_{k}} N_{n_{i}^{k}} N_{n_{p}^{k}} \mathrm{~d} V \\
& -\nabla N_{n_{j}^{k}} \cdot \nabla N_{n_{p}^{k}} \int_{T_{k}} N_{n_{i}^{k}} N_{n_{i}^{k}} \mathrm{~d} V \\
& -\nabla N_{n_{i}^{k}} \cdot \nabla N_{n_{i}^{k}} \int_{T_{k}^{k}} N_{n_{j}^{k}} N_{n_{p}^{k}} \mathrm{~d} V \tag{69}\\
& +\nabla N_{n_{i}^{k}} \cdot \nabla N_{n_{p}^{k}} \int_{T_{k}} N_{n_{j}^{k}} N_{n_{i}^{k}} \mathrm{~d} V
\end{align*}
$$

Example: Computation of resonant frequencies

Consider the eigenvalue problem

$$
\begin{align*}
\nabla \times \mu^{-1} \nabla \times \mathbf{E}-\omega^{2} \epsilon \mathbf{E} & =0, \text { in } \Omega \\
\mathbf{n} \times \mathbf{E} & =0, \text { on } \partial \Omega \tag{70}
\end{align*}
$$

Corresponding weak problem: Find $\mathbf{E} \in H_{0, \text { cur }}$ and $\omega \in \mathbb{R} \backslash\{0\}$ such that

$$
\begin{equation*}
<\nabla \times \mathbf{t}, \mu^{-1} \nabla \times \mathbf{E}>_{L^{2}(\Omega)}-\omega^{2}<\mathbf{t}, \epsilon \mathbf{E}>_{L^{2}(\Omega)}=0 \tag{71}
\end{equation*}
$$

for all $\mathbf{t} \in H_{0 . c u r l}$.
Use curl conforming edge-elements as basis and testing functions (boundary edges removed), and solve the generalised eigenvalue problem

$$
\begin{equation*}
S E=\omega^{2} M E \tag{72}
\end{equation*}
$$

where S is the "stiffness" matrix arising from $\left\langle\nabla \times \mathbf{t}, \mu^{-1} \nabla \times \mathbf{E}\right\rangle$, and S is the "mass" matrix arising from $\langle\mathbf{t}, \epsilon \mathbf{E}\rangle$.

Example: Computation of resonant frequencies

Analytical solution (solid lines) $k^{2}=\pi^{2}\left(I^{2}+m^{2}+n^{2}\right), \quad I, m, n=0,1, \ldots$ Numerical solution (stars) FEM with lowest order edge-elements

638 tetrahedra

2433 tetrahedra

