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Finite-element method (FEM)

Strengths:

• Solid mathematical background

• Applicability

• Sparse matrix

• Simple implementation

Weaknesses:

• Matrix conditioning → preconditioning needed

• PML is needed for open region problems
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FDTD literature

Introduction to FDTD, FEM, IEM

• Sheng Xin-Qing, Song Wei, Essentials of computational
electromagnetics, IEEE,Wiley, 2012.

Some FEM books

• Jin, J., The Finite Element Method in Electromagnetics, John Wiley
& Sons, Inc., New York, 2002.

• Monk, P., Finite Element Methods for Maxwell’s Equations, Oxford
Science Publications, Clarendon Press, Oxford, 2003.
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Maxwell’s equation

Faraday’s law

∇× E = −∂B

∂t
(1)

Ampères law

∇×H =
∂D

∂t
+ σE+ J (2)

Gauss’s law for elecric field
∇ ·D = ρ (3)

Gauss’s law for magnetic field

∇ · B = 0 (4)

Constitutive relations:
D = ǫ ∗ E (5)

B = µ ∗H (6)

ǫ electric permittivity
µ magnetic permeability
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Vector wave equation

Time-harmonic case (exp(−iωt))

∇× E = iωµH (7)

∇×H = −iωǫE+ Js (8)

Radiation condition

lim
|r|→∞

|r|
(

ηH(r)× r

|r| − E(r)

)

= 0 (9)

Vector wave equation

∇×
(

µ−1∇× E
)

− ǫω2E = iωJs (10)
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Function spaces

Spaces for potentials:

H1(Ω) := {p ∈ L2(Ω),∇p ∈ L2(Ω)3} (11)

H1
0 (Ω) := {p ∈ L2(Ω) ,∇p ∈ L2(Ω)3 , p|∂Ω = 0} (12)

Spaces for fields:

Hcurl (Ω) := {f ∈ L2(Ω)3 ,∇× f ∈ L2(Ω)3} (13)

H0,curl(Ω) := {f ∈ L2(Ω)3 ,∇× f ∈ L2(Ω)3, n× f|∂Ω = 0} (14)

Spaces for flux densities:

Hdiv(Ω) := {g ∈ L2(Ω)3 ,∇ · g ∈ L2(Ω)} (15)

H0,div(Ω) := {g ∈ L2(Ω)3 ,∇ · g ∈ L2(Ω), n · g|∂Ω = 0} (16)

L2(Ω) is a space of square integrable functions in Ω (if Ω is unbounded,
square integrability is defined locally on each bounded subset of Ω)
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Inner products

L2-inner product

< f, g >L2,Ω=

∫

Ω

f · g dr (17)

H1-inner product

< f , g >H1,Ω=

∫

Ω

fg dr +

∫

Ω

∇f · ∇g dr (18)

Hcurl -inner product

< f, g >Hcurl ,Ω=

∫

Ω

f · g dr+
∫

Ω

∇× f · ∇ × g dr (19)

Hdiv -inner product

< f, g >Hdiv ,Ω=

∫

Ω

f · g dr +
∫

Ω

∇ · f · ∇ · g dr (20)
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Norms

L2-norm

||v||0 =
(∫

Ω

|v|2 dΩ
)1/2

(21)

H1-norm

||p||1,Ω =

(∫

Ω

|∇p|2 dΩ +

∫

Ω

|p|2 dΩ
)1/2

(22)

Hcurl -norm

||f||curl,Ω =

(∫

Ω

|∇ × f|2 dΩ +

∫

Ω

|f|2 dΩ
)1/2

(23)

Hdiv -norm

||g||div,Ω =

(∫

Ω

|∇ · g|2 dΩ +

∫

Ω

|g|2 dΩ
)1/2

(24)
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Trace operators

Tangential trace operator:

γtF = −n× n× F|∂Ω (25)

Defines mapping: Hcurl(Ω) → H
−1/2
Curl (∂Ω)

Rotated tangential trace operator:

γrF = n× F|∂Ω (26)

Defines mapping: Hcurl(Ω) → H
−1/2
Div (∂Ω)

Normal trace operator:
γnF = n · F|∂Ω (27)

Defines mapping: Hdiv(Ω) → H−1/2(∂Ω)
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Some useful vector identities

∇ · (f F) = f∇ · F+ F · ∇f (28)

∇ · (F× G) = G · (∇× F)− F · (∇× G) (29)

∇× (f F) = f∇× F+∇f × F (30)

∇× (∇× F) = ∇(∇ · F)−∇2F (31)

∇ · (∇× F) = 0 (32)

∇× (∇f ) = 0 (33)

∫

V

∇ · F dV =

∫

∂V

n · F dS (34)

∫

V

∇× F dV =

∫

∂V

n× F dS (35)
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Weak problem

Let Ω be simply connected and bounded domain with the PEC boundary
condition n× E = 0 on ∂Ω. Find E ∈ H0,curl (Ω) such that

< w,∇× µ−1∇× E− ǫω2E >= iω < w, Js >, (36)

∀w ∈ H0,curl(Ω). Here < ·, · > denotes the L2(Ω)-inner product.

The above equation can be written as

< ∇×w, µ−1∇× E > −ǫω2 < w,E >= iω < w, Js > . (37)

It is clear that any solution for the wave-equation satisfies (37) but does
a solution of (37) satisfy the wave-equation?
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Finite-element solution

• In the finite-element method, a weak problem is solved in a
finite-dimensional space Bh

• The finite-element space is constructed by dividing the domain into
smaller elements e.g. tetrahedral elements Th.

• Basis functions (associated with elements Th) should span the
finite-dimensional subspace “finite-element space” Bh ⊂ H0,curl(Ω)

• Testing functions should span the finite-dimensional subspace
Wh ⊂ H0,curl(Ω)
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Projection method

Solve linear problem of the form

Lu = f , L : U → F , f ∈ F

U and F are some Hilbert spaces, and the unknown u ∈ U

Expand the unknown with a set of basis functions bn span BN ⊂ U

u ≈ ũN =

N
∑

n=1

cnbn

Require the residual
RN = LũN − f ,

to be orthogonal to the space TM ⊂ F spanned by testing functions tm

< tm,RN >F= 0, ∀m = 1, 2, ...,M
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Finite-element solution

Expand the unknown electric field as a linear combination of known basis
functions bn as

E ≈
N
∑

n=1

cnbn, (38)

where cn are unknown coefficients.
Taking the inner product with testing functions tm, gives rise to a matrix
equation

Amncn = fm (39)

where
Amn =< ∇× tm, µ

−1∇× bn > −ǫω2 < tm, bn >, (40)

and the force vector read as

fm = iω < tm, J
s > . (41)

The unknown coefficients can be solve by inverting the matrix
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Shape functions

Consider tetrahedral element Tk

p1

p2

p3

p4

h1

n1

Linear shape functions Npi (x , y , z):

• Npi (x , y , z) = 1 at node pi

• Npi (x , y , z) = 0 at other nodes

• linear inside the tetrahedron

• ∇Npi = −ni

hi

Any linear function inside the tetrahedron can be expressed as

f (x , y , z) =

4
∑

i=1

aiNpi , (42)

where ai are some coefficients.
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Basis functions H1

Basis functions should have the same differentiability and continuity
properties as the original unknown functions e.g. E, H, D, B etc.

Let a first consider a scalar space H1(Ω), i.e., the space of square
integrable functions whose gradients are also square integrable. These
functions are continuous!

Functions in H1(Ω) can be approximated in tetrahedral mesh as a
combinations of shape functions

φ ≈
N
∑

n=1

cnNn (43)

where N is the number of nodes. (Degrees of freedom = number of
nodes)

This is suitable space for e.g. Poisson equation (electrostatic)

∇2φ = ρ (44)
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Basis functions Hcurl

Hcurl is a suitable space for fields.

The lowest order curl-conforming basis function associated into the edge
eij(between nodes ij) and can be expressed as

weij = Ni∇Nj − Nj∇Ni (45)

This function has a continuous tangential component, and its curl,

∇×weij = 2(∇Ni ×∇Nj), (46)

is piecewise constant and square integrable.

Therefore, the electric or magnetic field can be expanded as

E ≈
E
∑

e=1

cewe , (47)

where E is the number of edges



Computational electromagnetics

Hcurl -function

Edge-element: continuous tangential component
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Basis functions Hdiv

Hdiv is a suitable space for flux densities or currents.

The lowest order div-conforming basis function associated into the face
fijk (between nodes ijk) and can be expressed as

vfijk = Ni (∇Nj ×∇Nk) + Nj(∇Nk ×∇Ni) + Nk(∇Ni ×∇Nj) (48)

This function has a continuous normal component, and its div,

∇ · veijk = 1/V , (49)

where V is the volume of tetrahedron.

Therefore, the electric or magnetic flux can be expanded as

D ≈
F
∑

f=1

cf vf , (50)

where F is the number of faces



Computational electromagnetics

Hdiv -function

Face-element: continuous normal component
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Basis functions L2

Scalar L2-functions for the charge density ρ

Scalar case:

p =

T
∑

t=1

ct
1√
V
, (51)

where T is the number of tetrahedra
Vector case (equivalent volumetric currents):

p =
T
∑

t=1

cxt
1√
Vt

êx + c
y
t

1√
Vt

êy + czt
1√
Vt

êz , (52)

where T is the number of tetrahedra

These functions are discontinuous!
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Hdiv -function

L2-element: discontinuous
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Reference element

In practise, all integrals are evaluate in a reference element.

N1 = 1− ξ − η − ζ
N2 = ξ
N3 = η
N4 = ζ

∇N1 = [−1,−1,−1]
∇N2 = [1, 0, 0]
∇N3 = [0, 1, 0]
∇N4 = [0, 0, 1]

(53) N1

N2

N3

N4

η

ξ

ζ
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Linear mapping

p̂1

p̂2

p̂3

p̂4

p1

p2

p3

p4

η

ξ

ζ F

F(ξ, η, ζ) =





x

y

z



 =





(p2 − p1)x (p3 − p1)x (p4 − p1)x
(p2 − p1)y (p3 − p1)y (p4 − p1)y
(p2 − p1)z (p3 − p1)z (p4 − p1)z









ξ
η
ζ



+





(p1)x
(p1)y
(p1)z





(54)
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Integration on the reference element
Shape function on element Tk : Nnk

i
(x , y , z) = N̂i (F

−1
k (x , y , z))

∫

Tk

Nnk
i
(x , y , z)Nnk

j
(x , y , z) dxdydz =

∫

T̂

N̂i (ξ, η, ζ)N̂j (ξ, η, ζ)| det(JF k
)| dξdηdζ

(55)

where JF k
is the Jacobian of the mapping Fk

JF k
=

[

∂Fk

∂ξ
,
∂Fk

∂η
,
∂Fk

∂ζ

]

= [pk
2 − pk

1 , p
k
3 − pk

1 , p
k
4 − pk

1 ] (56)

The above integral can be numerically evaluated as

Iij = | det(JF k
)|

M
∑

m=1

N̂i (ξm, ηm, ζm)N̂j(ξm, ηm, ζm)wm (57)

where (ξm, ηm, ζm) are the Gaussian quadrature points for the reference
tetrahedron and wm are the corresponding weights.
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Mapping of derivatives

Functions and their derivatives transforms differently!

N̂i (ξ, η, ζ) = Nnk
i
(F k(ξ, η, ζ)) (58)

Chain rule:

∂N̂i

∂ξ
=

∂Nnk
i

∂x

∂x

∂ξ
+

∂Nnk
i

∂y

∂y

∂ξ
+

∂Nnk
i

∂z

∂z

∂ξ
=

∂Nnk
i

∂x

∂Fx
k

∂ξ
+

∂Nnk
i

∂y

∂Fy
k

∂ξ
+

∂Nnk
i

∂z

∂F z
k

∂ξ

(59)

∂N̂i

∂η
=

∂Nnk
i

∂x

∂x

∂η
+

∂Nnk
i

∂y

∂y

∂η
+

∂Nnk
i

∂z

∂z

∂η
=

∂Nnk
i

∂x

∂Fx
k

∂η
+

∂Nnk
i

∂y

∂Fy
k

∂η
+

∂Nnk
i

∂z

∂F z
k

∂η

(60)
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Mapping of derivatives

∂N̂i

∂ζ
=

∂Nnk
i

∂x

∂x

∂ζ
+

∂Nnk
i

∂y

∂y

∂ζ
+

∂Nnk
i

∂z

∂z

∂ζ
=

∂Nnk
i

∂x

∂Fx
k

∂ζ
+

∂Nnk
i

∂y

∂Fy
k

∂ζ
+

∂Nnk
i

∂z

∂F z
k

∂ζ

(61)

In other words
∇̂N̂i = JT

F k
∇Nnk

i
(62)

So we can write an expression for gradients in a general tetrahedron as

∇Nnk
i
= (JT

F k
)−1∇̂N̂i (63)
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Data structures

3D tetrahedral mesh can be stored as follows:

Coordinates of nodes (3× Nn):

mesh.coord =





p1x p2x p3x ... pNn
x

p1y p2y p3y ... pNn
x

p1z p2z p3z ... pNn
x





Nodes for each tetrahedron (4 × Nt)

mesh.etopol =









n11 n21 n31 ... nNt

1

n12 n22 n32 ... nNt

2

n13 n23 n33 ... nNt

3

n14 n24 n34 ... nNt

4









mesh.param = [ ǫ1r ǫ2r ǫ3r ... ǫNt
r ] (64)

Nt is the number of tetrahedra
Nn is the number of nodes
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Data structures

Some additional data structures:

Nodes of edges + boundary(3× Ne) (last line: 1 if boundary edge and 0
otherwise):

mesh.edges =





n11 n21 n31 ... nNe

1

n12 n22 n32 ... nNe

2

0 0 1 ... 0





Edges for each tetrahedron (6× Nt)

mesh.etopol2 =



















e11 e21 e31 ... eNt

1

e12 e22 e32 ... eNt

2

e13 e23 e33 ... eNt

3

e14 e24 e34 ... eNt

4

e15 e25 e35 ... eNt

5

e16 e26 e36 ... eNt

6



















Ne is the number of edges
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Data structures

Local edges in tetrahedron k

nk1
nk2

nk3

nk4

ek1

ek2
ek3 ek4

ek5

ek6

ek nk nk

1 1 2
2 1 3
3 1 4
4 2 3
5 3 4
6 2 4

Edge orientation may be different in global and local notations
⇒ we need to calculate a correct sign for each basis function

e.g. Global edge 19
node1 = mesh.edges(1, 19)
node2 = mesh.edges(2, 19)
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Calculation of matrix elements

Recall:
Amn =< ∇× tm, µ

−1∇× bn > −ǫω2 < tm, bn >, (65)

where tm and bn ∈ H0,curl(Ω)
3

We use lowest order edge elements (edge m between nodes nj andni):

tm = bm = Nnk
i
∇Nnk

j
− Nnk

j
∇Nnk

i
(66)

∇× tm = ∇× bm = 2(∇Nnk
i
×∇Nnk

j
) (67)

Loop over elements, compute local inner products elementwise and add
local contributions to the global matrix
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Matrix assembly
First term:

< ∇× tm, µ
−1∇× bn >Tk

=

∫

Tk

2(∇Nnk
i
×∇Nnk

j
) · µ−1

k 2(∇Nnkp
×∇Nnk

l
) dV

= 4(∇Nnk
i
×∇Nnk

j
) · µ−1

k (∇Nnkp
×∇Nnk

l
)Vk

(68)

Second term:

< tm, bn >Tk
=

∫

Tk

(Nnk
i
∇Nnk

j
− Nnk

j
∇Nnk

i
) · (Nnkp

∇Nnk
l
− Nnk

l
∇Nnkp

) dV

= ∇Nnk
j
· ∇Nnk

l

∫

Tk

Nnk
i
Nnkp

dV

−∇Nnk
j
· ∇Nnkp

∫

Tk

Nnk
i
Nnk

l
dV

−∇Nnk
i
· ∇Nnk

l

∫

Tk

Nnk
j
Nnkp

dV

+∇Nnk
i
· ∇Nnkp

∫

Tk

Nnk
j
Nnk

l
dV

(69)
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Example: Computation of resonant frequencies

Consider the eigenvalue problem

∇× µ−1∇× E− ω2ǫE = 0, inΩ
n× E = 0, on∂Ω

(70)

Corresponding weak problem: Find E ∈ H0,curl and ω ∈ R\{0} such that

< ∇× t, µ−1∇× E >L2(Ω) −ω2 < t, ǫE >L2(Ω)= 0 (71)

for all t ∈ H0.curl .

Use curl conforming edge-elements as basis and testing functions
(boundary edges removed), and solve the generalised eigenvalue problem

SE = ω2ME (72)

where S is the “stiffness” matrix arising from < ∇× t, µ−1∇× E >, and
S is the “mass” matrix arising from < t, ǫE >.
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Example: Computation of resonant frequencies

Analytical solution (solid lines) k2 = π2(l2 +m2 + n2), l ,m, n = 0, 1, ...

Numerical solution (stars) FEM with lowest order edge-elements

0 10 20 30 40 50 60
0

50

100

150

k2

index
0 10 20 30 40 50 60

0

50

100

150

k2

index

638 tetrahedra 2433 tetrahedra
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