
Computational electromagnetics

Electromagnetic scattering 1:
Finite-element method (FEM)

Johannes Markkanen

University of Helsinki

September 18, 2014

Computational electromagnetics

Finite-element method (FEM)

Strengths:

• Solid mathematical background

• Applicability

• Sparse matrix

• Simple implementation

Weaknesses:

• Matrix conditioning → preconditioning needed

• PML is needed for open region problems

Computational electromagnetics

FDTD literature

Introduction to FDTD, FEM, IEM

• Sheng Xin-Qing, Song Wei, Essentials of computational
electromagnetics, IEEE,Wiley, 2012.

Some FEM books

• Jin, J., The Finite Element Method in Electromagnetics, John Wiley
& Sons, Inc., New York, 2002.

• Monk, P., Finite Element Methods for Maxwell’s Equations, Oxford
Science Publications, Clarendon Press, Oxford, 2003.

Computational electromagnetics

Maxwell’s equation

Faraday’s law

∇× E = −∂B

∂t
(1)

Ampères law

∇×H =
∂D

∂t
+ σE+ J (2)

Gauss’s law for elecric field
∇ ·D = ρ (3)

Gauss’s law for magnetic field

∇ · B = 0 (4)

Constitutive relations:
D = ǫ ∗ E (5)

B = µ ∗H (6)

ǫ electric permittivity
µ magnetic permeability

Computational electromagnetics

Vector wave equation

Time-harmonic case (exp(−iωt))

∇× E = iωµH (7)

∇×H = −iωǫE+ Js (8)

Radiation condition

lim
|r|→∞

|r|
(

ηH(r)× r

|r| − E(r)

)

= 0 (9)

Vector wave equation

∇×
(

µ−1∇× E
)

− ǫω2E = iωJs (10)

Computational electromagnetics

Function spaces

Spaces for potentials:

H1(Ω) := {p ∈ L2(Ω),∇p ∈ L2(Ω)3} (11)

H1
0 (Ω) := {p ∈ L2(Ω) ,∇p ∈ L2(Ω)3 , p|∂Ω = 0} (12)

Spaces for fields:

Hcurl (Ω) := {f ∈ L2(Ω)3 ,∇× f ∈ L2(Ω)3} (13)

H0,curl(Ω) := {f ∈ L2(Ω)3 ,∇× f ∈ L2(Ω)3, n× f|∂Ω = 0} (14)

Spaces for flux densities:

Hdiv(Ω) := {g ∈ L2(Ω)3 ,∇ · g ∈ L2(Ω)} (15)

H0,div(Ω) := {g ∈ L2(Ω)3 ,∇ · g ∈ L2(Ω), n · g|∂Ω = 0} (16)

L2(Ω) is a space of square integrable functions in Ω (if Ω is unbounded,
square integrability is defined locally on each bounded subset of Ω)

Computational electromagnetics

Inner products

L2-inner product

< f, g >L2,Ω=

∫

Ω

f · g dr (17)

H1-inner product

< f , g >H1,Ω=

∫

Ω

fg dr +

∫

Ω

∇f · ∇g dr (18)

Hcurl -inner product

< f, g >Hcurl ,Ω=

∫

Ω

f · g dr+
∫

Ω

∇× f · ∇ × g dr (19)

Hdiv -inner product

< f, g >Hdiv ,Ω=

∫

Ω

f · g dr +
∫

Ω

∇ · f · ∇ · g dr (20)

Computational electromagnetics

Norms

L2-norm

||v||0 =
(∫

Ω

|v|2 dΩ
)1/2

(21)

H1-norm

||p||1,Ω =

(∫

Ω

|∇p|2 dΩ +

∫

Ω

|p|2 dΩ
)1/2

(22)

Hcurl -norm

||f||curl,Ω =

(∫

Ω

|∇ × f|2 dΩ +

∫

Ω

|f|2 dΩ
)1/2

(23)

Hdiv -norm

||g||div,Ω =

(∫

Ω

|∇ · g|2 dΩ +

∫

Ω

|g|2 dΩ
)1/2

(24)

Computational electromagnetics

Trace operators

Tangential trace operator:

γtF = −n× n× F|∂Ω (25)

Defines mapping: Hcurl(Ω) → H
−1/2
Curl (∂Ω)

Rotated tangential trace operator:

γrF = n× F|∂Ω (26)

Defines mapping: Hcurl(Ω) → H
−1/2
Div (∂Ω)

Normal trace operator:
γnF = n · F|∂Ω (27)

Defines mapping: Hdiv(Ω) → H−1/2(∂Ω)

Computational electromagnetics

Some useful vector identities

∇ · (f F) = f∇ · F+ F · ∇f (28)

∇ · (F× G) = G · (∇× F)− F · (∇× G) (29)

∇× (f F) = f∇× F+∇f × F (30)

∇× (∇× F) = ∇(∇ · F)−∇2F (31)

∇ · (∇× F) = 0 (32)

∇× (∇f) = 0 (33)

∫

V

∇ · F dV =

∫

∂V

n · F dS (34)

∫

V

∇× F dV =

∫

∂V

n× F dS (35)

Computational electromagnetics

Weak problem

Let Ω be simply connected and bounded domain with the PEC boundary
condition n× E = 0 on ∂Ω. Find E ∈ H0,curl (Ω) such that

< w,∇× µ−1∇× E− ǫω2E >= iω < w, Js >, (36)

∀w ∈ H0,curl(Ω). Here < ·, · > denotes the L2(Ω)-inner product.

The above equation can be written as

< ∇×w, µ−1∇× E > −ǫω2 < w,E >= iω < w, Js > . (37)

It is clear that any solution for the wave-equation satisfies (37) but does
a solution of (37) satisfy the wave-equation?

Computational electromagnetics

Finite-element solution

• In the finite-element method, a weak problem is solved in a
finite-dimensional space Bh

• The finite-element space is constructed by dividing the domain into
smaller elements e.g. tetrahedral elements Th.

• Basis functions (associated with elements Th) should span the
finite-dimensional subspace “finite-element space” Bh ⊂ H0,curl(Ω)

• Testing functions should span the finite-dimensional subspace
Wh ⊂ H0,curl(Ω)

Computational electromagnetics

Projection method

Solve linear problem of the form

Lu = f , L : U → F , f ∈ F

U and F are some Hilbert spaces, and the unknown u ∈ U

Expand the unknown with a set of basis functions bn span BN ⊂ U

u ≈ ũN =

N
∑

n=1

cnbn

Require the residual
RN = LũN − f ,

to be orthogonal to the space TM ⊂ F spanned by testing functions tm

< tm,RN >F= 0, ∀m = 1, 2, ...,M

Computational electromagnetics

Finite-element solution

Expand the unknown electric field as a linear combination of known basis
functions bn as

E ≈
N
∑

n=1

cnbn, (38)

where cn are unknown coefficients.
Taking the inner product with testing functions tm, gives rise to a matrix
equation

Amncn = fm (39)

where
Amn =< ∇× tm, µ

−1∇× bn > −ǫω2 < tm, bn >, (40)

and the force vector read as

fm = iω < tm, J
s > . (41)

The unknown coefficients can be solve by inverting the matrix

Computational electromagnetics

Shape functions

Consider tetrahedral element Tk

p1

p2

p3

p4

h1

n1

Linear shape functions Npi (x , y , z):

• Npi (x , y , z) = 1 at node pi

• Npi (x , y , z) = 0 at other nodes

• linear inside the tetrahedron

• ∇Npi = −ni

hi

Any linear function inside the tetrahedron can be expressed as

f (x , y , z) =

4
∑

i=1

aiNpi , (42)

where ai are some coefficients.

Computational electromagnetics

Basis functions H1

Basis functions should have the same differentiability and continuity
properties as the original unknown functions e.g. E, H, D, B etc.

Let a first consider a scalar space H1(Ω), i.e., the space of square
integrable functions whose gradients are also square integrable. These
functions are continuous!

Functions in H1(Ω) can be approximated in tetrahedral mesh as a
combinations of shape functions

φ ≈
N
∑

n=1

cnNn (43)

where N is the number of nodes. (Degrees of freedom = number of
nodes)

This is suitable space for e.g. Poisson equation (electrostatic)

∇2φ = ρ (44)

Computational electromagnetics

Basis functions Hcurl

Hcurl is a suitable space for fields.

The lowest order curl-conforming basis function associated into the edge
eij(between nodes ij) and can be expressed as

weij = Ni∇Nj − Nj∇Ni (45)

This function has a continuous tangential component, and its curl,

∇×weij = 2(∇Ni ×∇Nj), (46)

is piecewise constant and square integrable.

Therefore, the electric or magnetic field can be expanded as

E ≈
E
∑

e=1

cewe , (47)

where E is the number of edges

Computational electromagnetics

Hcurl -function

Edge-element: continuous tangential component

Computational electromagnetics

Basis functions Hdiv

Hdiv is a suitable space for flux densities or currents.

The lowest order div-conforming basis function associated into the face
fijk (between nodes ijk) and can be expressed as

vfijk = Ni (∇Nj ×∇Nk) + Nj(∇Nk ×∇Ni) + Nk(∇Ni ×∇Nj) (48)

This function has a continuous normal component, and its div,

∇ · veijk = 1/V , (49)

where V is the volume of tetrahedron.

Therefore, the electric or magnetic flux can be expanded as

D ≈
F
∑

f=1

cf vf , (50)

where F is the number of faces

Computational electromagnetics

Hdiv -function

Face-element: continuous normal component

Computational electromagnetics

Basis functions L2

Scalar L2-functions for the charge density ρ

Scalar case:

p =

T
∑

t=1

ct
1√
V
, (51)

where T is the number of tetrahedra
Vector case (equivalent volumetric currents):

p =
T
∑

t=1

cxt
1√
Vt

êx + c
y
t

1√
Vt

êy + czt
1√
Vt

êz , (52)

where T is the number of tetrahedra

These functions are discontinuous!

Computational electromagnetics

Hdiv -function

L2-element: discontinuous

Computational electromagnetics

Reference element

In practise, all integrals are evaluate in a reference element.

N1 = 1− ξ − η − ζ
N2 = ξ
N3 = η
N4 = ζ

∇N1 = [−1,−1,−1]
∇N2 = [1, 0, 0]
∇N3 = [0, 1, 0]
∇N4 = [0, 0, 1]

(53) N1

N2

N3

N4

η

ξ

ζ

Computational electromagnetics

Linear mapping

p̂1

p̂2

p̂3

p̂4

p1

p2

p3

p4

η

ξ

ζ F

F(ξ, η, ζ) =

x

y

z

 =

(p2 − p1)x (p3 − p1)x (p4 − p1)x
(p2 − p1)y (p3 − p1)y (p4 − p1)y
(p2 − p1)z (p3 − p1)z (p4 − p1)z

ξ
η
ζ

+

(p1)x
(p1)y
(p1)z

(54)

Computational electromagnetics

Integration on the reference element
Shape function on element Tk : Nnk

i
(x , y , z) = N̂i (F

−1
k (x , y , z))

∫

Tk

Nnk
i
(x , y , z)Nnk

j
(x , y , z) dxdydz =

∫

T̂

N̂i (ξ, η, ζ)N̂j (ξ, η, ζ)| det(JF k
)| dξdηdζ

(55)

where JF k
is the Jacobian of the mapping Fk

JF k
=

[

∂Fk

∂ξ
,
∂Fk

∂η
,
∂Fk

∂ζ

]

= [pk
2 − pk

1 , p
k
3 − pk

1 , p
k
4 − pk

1] (56)

The above integral can be numerically evaluated as

Iij = | det(JF k
)|

M
∑

m=1

N̂i (ξm, ηm, ζm)N̂j(ξm, ηm, ζm)wm (57)

where (ξm, ηm, ζm) are the Gaussian quadrature points for the reference
tetrahedron and wm are the corresponding weights.

Computational electromagnetics

Mapping of derivatives

Functions and their derivatives transforms differently!

N̂i (ξ, η, ζ) = Nnk
i
(F k(ξ, η, ζ)) (58)

Chain rule:

∂N̂i

∂ξ
=

∂Nnk
i

∂x

∂x

∂ξ
+

∂Nnk
i

∂y

∂y

∂ξ
+

∂Nnk
i

∂z

∂z

∂ξ
=

∂Nnk
i

∂x

∂Fx
k

∂ξ
+

∂Nnk
i

∂y

∂Fy
k

∂ξ
+

∂Nnk
i

∂z

∂F z
k

∂ξ

(59)

∂N̂i

∂η
=

∂Nnk
i

∂x

∂x

∂η
+

∂Nnk
i

∂y

∂y

∂η
+

∂Nnk
i

∂z

∂z

∂η
=

∂Nnk
i

∂x

∂Fx
k

∂η
+

∂Nnk
i

∂y

∂Fy
k

∂η
+

∂Nnk
i

∂z

∂F z
k

∂η

(60)

Computational electromagnetics

Mapping of derivatives

∂N̂i

∂ζ
=

∂Nnk
i

∂x

∂x

∂ζ
+

∂Nnk
i

∂y

∂y

∂ζ
+

∂Nnk
i

∂z

∂z

∂ζ
=

∂Nnk
i

∂x

∂Fx
k

∂ζ
+

∂Nnk
i

∂y

∂Fy
k

∂ζ
+

∂Nnk
i

∂z

∂F z
k

∂ζ

(61)

In other words
∇̂N̂i = JT

F k
∇Nnk

i
(62)

So we can write an expression for gradients in a general tetrahedron as

∇Nnk
i
= (JT

F k
)−1∇̂N̂i (63)

Computational electromagnetics

Data structures

3D tetrahedral mesh can be stored as follows:

Coordinates of nodes (3× Nn):

mesh.coord =

p1x p2x p3x ... pNn
x

p1y p2y p3y ... pNn
x

p1z p2z p3z ... pNn
x

Nodes for each tetrahedron (4 × Nt)

mesh.etopol =

n11 n21 n31 ... nNt

1

n12 n22 n32 ... nNt

2

n13 n23 n33 ... nNt

3

n14 n24 n34 ... nNt

4

mesh.param = [ǫ1r ǫ2r ǫ3r ... ǫNt
r] (64)

Nt is the number of tetrahedra
Nn is the number of nodes

Computational electromagnetics

Data structures

Some additional data structures:

Nodes of edges + boundary(3× Ne) (last line: 1 if boundary edge and 0
otherwise):

mesh.edges =

n11 n21 n31 ... nNe

1

n12 n22 n32 ... nNe

2

0 0 1 ... 0

Edges for each tetrahedron (6× Nt)

mesh.etopol2 =

e11 e21 e31 ... eNt

1

e12 e22 e32 ... eNt

2

e13 e23 e33 ... eNt

3

e14 e24 e34 ... eNt

4

e15 e25 e35 ... eNt

5

e16 e26 e36 ... eNt

6

Ne is the number of edges

Computational electromagnetics

Data structures

Local edges in tetrahedron k

nk1
nk2

nk3

nk4

ek1

ek2
ek3 ek4

ek5

ek6

ek nk nk

1 1 2
2 1 3
3 1 4
4 2 3
5 3 4
6 2 4

Edge orientation may be different in global and local notations
⇒ we need to calculate a correct sign for each basis function

e.g. Global edge 19
node1 = mesh.edges(1, 19)
node2 = mesh.edges(2, 19)

Computational electromagnetics

Calculation of matrix elements

Recall:
Amn =< ∇× tm, µ

−1∇× bn > −ǫω2 < tm, bn >, (65)

where tm and bn ∈ H0,curl(Ω)
3

We use lowest order edge elements (edge m between nodes nj andni):

tm = bm = Nnk
i
∇Nnk

j
− Nnk

j
∇Nnk

i
(66)

∇× tm = ∇× bm = 2(∇Nnk
i
×∇Nnk

j
) (67)

Loop over elements, compute local inner products elementwise and add
local contributions to the global matrix

Computational electromagnetics

Matrix assembly
First term:

< ∇× tm, µ
−1∇× bn >Tk

=

∫

Tk

2(∇Nnk
i
×∇Nnk

j
) · µ−1

k 2(∇Nnkp
×∇Nnk

l
) dV

= 4(∇Nnk
i
×∇Nnk

j
) · µ−1

k (∇Nnkp
×∇Nnk

l
)Vk

(68)

Second term:

< tm, bn >Tk
=

∫

Tk

(Nnk
i
∇Nnk

j
− Nnk

j
∇Nnk

i
) · (Nnkp

∇Nnk
l
− Nnk

l
∇Nnkp

) dV

= ∇Nnk
j
· ∇Nnk

l

∫

Tk

Nnk
i
Nnkp

dV

−∇Nnk
j
· ∇Nnkp

∫

Tk

Nnk
i
Nnk

l
dV

−∇Nnk
i
· ∇Nnk

l

∫

Tk

Nnk
j
Nnkp

dV

+∇Nnk
i
· ∇Nnkp

∫

Tk

Nnk
j
Nnk

l
dV

(69)

Computational electromagnetics

Example: Computation of resonant frequencies

Consider the eigenvalue problem

∇× µ−1∇× E− ω2ǫE = 0, inΩ
n× E = 0, on∂Ω

(70)

Corresponding weak problem: Find E ∈ H0,curl and ω ∈ R\{0} such that

< ∇× t, µ−1∇× E >L2(Ω) −ω2 < t, ǫE >L2(Ω)= 0 (71)

for all t ∈ H0.curl .

Use curl conforming edge-elements as basis and testing functions
(boundary edges removed), and solve the generalised eigenvalue problem

SE = ω2ME (72)

where S is the “stiffness” matrix arising from < ∇× t, µ−1∇× E >, and
S is the “mass” matrix arising from < t, ǫE >.

Computational electromagnetics

Example: Computation of resonant frequencies

Analytical solution (solid lines) k2 = π2(l2 +m2 + n2), l ,m, n = 0, 1, ...

Numerical solution (stars) FEM with lowest order edge-elements

0 10 20 30 40 50 60
0

50

100

150

k2

index
0 10 20 30 40 50 60

0

50

100

150

k2

index

638 tetrahedra 2433 tetrahedra

	Computational electromagnetics

