
1 Scattering by an ensemble of small particles in the

dipole approximation (lecture 5)

Consider an ensemble of numerous small particles which have fixed locations in space and
the scattering amplitudes of which can be expressed in the dipole approximation. Assume
presently that the particles do not interact with each other. Since the induced dipole moments
are proportional to the incident field, the moments will depend on the phase factor eikn̂0·xj ,
where xj is the location of the jth scatterer. When the observer is located far away from the
scatterer, the exponential part of the Green’s function results in an additional phase factor
for the jth scatterer, e−ikn̂·xj . In the dipole approximation, the ensemble of particles scatters
as follows:

dσ

dΩ
=

k4

(4πε0E0)2
|
∑
j

ε̂∗ · pje
iq·xj |, q = k(n̂0 − n̂) (1)

Except for the forward-scattering direction (q = 0), scattering will depend sensitively on how
the small particles are located in space.

Assume now that all the particles are identical so that p = pj for all j and
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where F (q) is the so-called structure factor,
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If the small particles are located in random positions, the terms j 6= j′ will cause a
negligible contribution to the sum. Only the terms j = j′ are significant and F (q) = N , where
N is the number of scatterers. In this case, the total scattering is the incoherent superposition
of the individual contributions.

If the small particles are regularly located in space, the structure factor disappears almost
everywhere except for the proximity of the forward-scattering direction. Therefor, large regular
arrays of small particles do not scatter (for example, individual transparent crystals of rock
salt and quartz).

Consider scatterers located in a regular cubic lattice. The structure factor can be calculated
analytically, since∣∣∣∣∣∑
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where a is the lattice constant (distance between the lattice points) and where N1, N2, and
N3 are the numbers of lattice points in each direction hilapisteiden so that the total number
of lattice points equals N = N1N2N3 (this was utilized to obtain the final result above). The
components of the vector q in each direction are q1, q2, and q3.

We note that, at short wavelengths (ka ≥ π), the structure factor has peaks when the
Bragg condition is fulfilled: qia = 0, 2π, 4π . . ., where i = 1, 2, 3 . . .. This is typical in X-ray
diffraction. At long wavelengths, only the peak qia = 0 is relevant, since max |qia| = 2ka << 1.
In this limit, the structure factor is a product of three sin2 xi/x

2
i -type factors (xi = 1

2
Niqia),

and scattering is confined to the region qi ≤ 2π/Nia, corresponding to the angles λ/L, where
L is the size of the lattice.

2 Volume integral equation for scattering

In a uniform medium, the electromagnetic wave propagates undisturbed and wiythout chan-
ging its direction of propagation. If there are fluctuations in the medium depending on space
or time, the wave is scattered, and part of its energy is redirected. If the fluctuations in the
medium are small, scattering is weak and one may utilize methods based on perturbation
series.

Consider a uniform isotropic medium with electric permittivity εm and magnetic permea-
bility equal to the permeability of vacuum, µm = µ0. Fluctuations in the medium result in
D 6= εmE in some constrained region. Let us start from Maxwell’s equations in sourceless
space:

∇ ·B = 0 , ∇× E = −∂B
∂t

∇ ·D = 0 , ∇×H =
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so that
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Moreover, after further manipulation,
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which can be written in the form
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that is the exact wave equation for the D-field derived without any approximations. Later,
the right-hand side of the equation is treated as a small perturbation.

If the right-hand side of the equation were known, the solution of the wave equation could
be written an a suitable integral of it. Although the right-hand side is usually unknown, the
integral form is useful, since it allows the derivation of important approximations.

Assume again harmonic time dependence e−iωt, in which case

(∇2 + k2)D = −∇×∇× (D− εmE)

k2 = µ0εmω
2, (9)

where εm is the permittivity corresponding to the angular frequency ω. The solution of the
undisturbed problem is obtained by setting the right-hand side equal to zero; denote this
solution by D(0). The formal complete solution is then, in an exact way,
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In a scattering problem, the integral on the right-hand side is taken over a constrained region
of space and D(0) describes the incident field. Then, in the far zone,
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where the scattering amplitude As is
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After some partial integration and noticing that the substitution terms diappear, one obtains
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The vector characteristics of the integrand can be compared with the field scattered by an
electric dipole: the contribution from the term D − εmE is precisely the field of the elect-
ric dipole so that the scattering amplitude is a vector sum from all induced electric dipole
moments. The differential cross section is

dσ

dΩ
=
|ε̂∗ ·As|
|D(0)|2
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where ε̂ is the polarization vector of scattered radiation. In principle, we have solved the
scattering problem for an arbitrary scatterer in an exact way. The caveat is that we do not
know the field inside the scatterer.
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