1 Plane waves

The electromagnetic plane wave

$$
\begin{align*}
\boldsymbol{E} & =\boldsymbol{E}_{0} e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega t} \\
\boldsymbol{H} & =\boldsymbol{H}_{0} e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega t} \tag{1}
\end{align*}
$$

can, under certain conditions, fulfil Maxwell's equations. The physical fields correspond to the real parts of the complex-valued fields. The vectors \boldsymbol{E}_{0} and \boldsymbol{H}_{0} above are constant vectors and can be complex-valued. Similarly, the wave vector \boldsymbol{k} can be complex-valued:

$$
\begin{equation*}
\boldsymbol{k}=\boldsymbol{k}^{\prime}+i \boldsymbol{k}^{\prime \prime}, \quad \boldsymbol{k}^{\prime}, \boldsymbol{k}^{\prime \prime} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

Inserting (2) into equation (1), we obtain

$$
\begin{align*}
\boldsymbol{E} & =\boldsymbol{E}_{0} e^{-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{x}} e^{i \boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-i \omega t} \\
\boldsymbol{H} & =\boldsymbol{H}_{0} e^{-\boldsymbol{k}^{\prime} \cdot \boldsymbol{x} \cdot} e^{i \boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-i \omega t} \tag{3}
\end{align*}
$$

In Eq. (3), $\boldsymbol{E}_{0} e^{-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{x}}$ and $\boldsymbol{H}_{0} e^{-\boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{x}}$ are amplitudes and $\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}-\omega t=\phi$ is the phase of the wave.

An equation of the form $\boldsymbol{k} \cdot \boldsymbol{x}=$ constant defines, in the case of a realvalued vector \boldsymbol{k}, a planar surface, whose normal is just the vector \boldsymbol{k}. Thus, \boldsymbol{k}^{\prime} is perpendicular to the planes of constant phase and $\boldsymbol{k}^{\prime \prime}$ is perpendicular to the planes of constant amplitude. If $\boldsymbol{k}^{\prime} \| \boldsymbol{k}^{\prime \prime}$, the planes coincide and the wave is homogeneous. If $\boldsymbol{k}^{\prime} \nVdash \boldsymbol{k}^{\prime \prime}$, the wave is inhomogeneous. A plane wave propagating in vacuum is homogeneous.

In the case of plane waves, Maxwell's equaitons can be written as

$$
\begin{align*}
\boldsymbol{k} \cdot \boldsymbol{E}_{0} & =0 \\
\boldsymbol{k} \cdot \boldsymbol{H}_{0} & =0 \\
\boldsymbol{k} \times \boldsymbol{E}_{0} & =\omega \mu \boldsymbol{H}_{0} \\
\boldsymbol{k} \times \boldsymbol{H}_{0} & =-\omega \epsilon \boldsymbol{E}_{0} \tag{4}
\end{align*}
$$

The two upmost equations are conditions for the transverse nature of the waves: \boldsymbol{k} is perpendicular to both \boldsymbol{E}_{0} and \boldsymbol{H}_{0}. The two lowermost equations
show that \boldsymbol{E}_{0} and \boldsymbol{H}_{0} are perpendicular to each other. Since $\boldsymbol{k}, \boldsymbol{E}_{0}$, and \boldsymbol{H}_{0} are complex-valued, the geometric interpretaion is not simple unless the waves are homogeneous.
It follows from Maxwell's equations (4) that, on one hand,

$$
\begin{equation*}
\boldsymbol{k} \times\left(\boldsymbol{k} \times \boldsymbol{E}_{0}\right)=\omega \mu \boldsymbol{k} \times \boldsymbol{H}_{0}=-\omega^{2} \epsilon \mu \boldsymbol{E}_{0} \tag{5}
\end{equation*}
$$

and, on the other hand,

$$
\begin{equation*}
\boldsymbol{k} \times\left(\boldsymbol{k} \times \boldsymbol{E}_{0}\right)=\boldsymbol{k}\left(\boldsymbol{k} \cdot \boldsymbol{E}_{0}\right)-\boldsymbol{E}_{0}(\boldsymbol{k} \cdot \boldsymbol{k})=-\boldsymbol{E}_{0}(\boldsymbol{k} \cdot \boldsymbol{k}), \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\boldsymbol{k} \cdot \boldsymbol{k}=\omega^{2} \epsilon \mu \tag{7}
\end{equation*}
$$

Plane waves solutions are in agreement with Maxwell's equations if

$$
\begin{equation*}
\boldsymbol{k} \cdot \boldsymbol{E}_{0}=\boldsymbol{k} \cdot \boldsymbol{H}_{0}=\boldsymbol{E}_{0} \cdot \boldsymbol{H}_{0}=0 \tag{8}
\end{equation*}
$$

and if

$$
\begin{equation*}
k^{\prime 2}-k^{\prime \prime 2}+2 i \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=\omega^{2} \epsilon \mu \tag{9}
\end{equation*}
$$

Note that ϵ and μ are properties of the medium, whereas \boldsymbol{k}^{\prime} and $\boldsymbol{k}^{\prime \prime}$ are properties of the wave. Thus, ϵ and μ do not unambiguously determine the details of wave propagation.
In the case of a homogeneous plane wave $\left(\boldsymbol{k}^{\prime} \| \boldsymbol{k}^{\prime \prime}\right)$,

$$
\begin{equation*}
\boldsymbol{k}=\left(k^{\prime}+i k^{\prime \prime}\right) \hat{\mathbf{e}}, \tag{10}
\end{equation*}
$$

where k^{\prime} and $k^{\prime \prime}$ are non-negative and $\hat{\mathbf{e}}$ is an arbitrary real-valued unit vector.

According to Eq. (7),

$$
\begin{equation*}
\left(k^{\prime}+i k^{\prime \prime}\right)^{2}=\omega^{2} \epsilon \mu=\frac{\omega^{2} m^{2}}{c^{2}} \tag{11}
\end{equation*}
$$

where $c=1 / \sqrt{\epsilon_{0} \mu_{0}}$ is the speed of light in vacuum and m is the complexvalued refractive index

$$
\begin{equation*}
m=\sqrt{\frac{\epsilon \mu}{\epsilon_{0} \mu_{0}}}=m_{r}+i m_{i}, \quad m_{r}, m_{i} \geq 0 \tag{12}
\end{equation*}
$$

In vacuum, the wave number is $\omega / c=2 \pi / \lambda$, where λ is the wavelength. The general homogeneous plane wave takes the form

$$
\begin{equation*}
\boldsymbol{E}=\boldsymbol{E}_{0} e^{-\frac{2 \pi m_{i} s}{\lambda}} e^{i \frac{2 \pi m_{r s}}{\lambda}-i \omega t} \tag{13}
\end{equation*}
$$

where $s=\boldsymbol{e} \cdot \boldsymbol{x}$. The imaginary and real parts of the refractive index determine the attenuation and phase velocity $v=c / m_{r}$ of the wave, respectively.

2 Poynting vector

Let us study the electromagnetic field $\boldsymbol{E}, \boldsymbol{H}$ that is time harmonic. For the physical fields (the real parts of the complex-valued fields), the Poynting vector

$$
\begin{equation*}
S=E \times H \tag{14}
\end{equation*}
$$

describes the direction and amount of energy transfer everywhere in the space.

Let \boldsymbol{n} be the unit normal vector of the planar surface element A. Electromagnetic energy is transferred through the planar surface with power $\boldsymbol{S} \cdot \boldsymbol{n} A$, where \boldsymbol{S} is assumed constant on the surface. For an arbitrary surface and \boldsymbol{S} depending on location, the power is

$$
\begin{equation*}
W=-\int_{A} \boldsymbol{S} \cdot \boldsymbol{n} d A \tag{15}
\end{equation*}
$$

where \boldsymbol{n} is the outward unit normal vector and the sign has been chosen so that positive W corresponds to absorption in the case of a closed surface. The time-averaged Poynting vector

$$
\begin{equation*}
\langle\boldsymbol{S}\rangle=\frac{1}{\tau} \int_{t}^{t+\tau} \boldsymbol{S}\left(t^{\prime}\right) d t^{\prime} \quad \tau \gg 1 / \omega \tag{16}
\end{equation*}
$$

is more important than the momentary Poynting vector (cf. measurements).
The time-averaged Poynting vector for time-harmonic fields is

$$
\begin{equation*}
\langle\boldsymbol{S}\rangle=\frac{1}{2} \boldsymbol{\operatorname { R e }}\left\{\boldsymbol{E} \times \boldsymbol{H}^{*}\right\} \tag{17}
\end{equation*}
$$

and, in what follows, this is the Poynting vector meant even though the averaging is not always shown explicitly.
For a plane wave field, the Poynting vector is

$$
\begin{equation*}
\boldsymbol{S}=\frac{1}{2} \operatorname{Re}\left\{\boldsymbol{E} \times \boldsymbol{H}^{*}\right\}=\boldsymbol{\operatorname { R e }}\left\{\frac{\boldsymbol{E} \times\left(\boldsymbol{k}^{*} \times \boldsymbol{E}^{*}\right)}{2 \omega \mu^{*}}\right\} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{E} \times\left(\boldsymbol{k}^{*} \times \boldsymbol{E}^{*}\right)=\boldsymbol{k}^{*}\left(\boldsymbol{E} \cdot \boldsymbol{E}^{*}\right)-\boldsymbol{E}^{*}\left(\boldsymbol{k}^{*} \cdot \boldsymbol{E}\right) . \tag{19}
\end{equation*}
$$

For a homogeneous plane wave,

$$
\begin{equation*}
\boldsymbol{k} \cdot \boldsymbol{E}=\boldsymbol{k}^{*} \cdot \boldsymbol{E}=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{S}=\frac{1}{2} \boldsymbol{R e}\left\{\frac{\sqrt{\epsilon \mu}}{\mu^{*}}\right\}\left|\boldsymbol{E}_{0}\right|^{2} e^{-\frac{4 \pi \mathbf{I I}(m) z}{\lambda}} \hat{\mathbf{e}}_{z} . \tag{21}
\end{equation*}
$$

3 Stokes parameters

Consider the following experiment for an arbitrary monochromatic light source (see Bohren \& Huffman p. 46). In the experiment, we make use of a measuring apparatus and polarizers with ideal performance: the measuring apparatus detects energy flux density independently of the state of polarization and the polarizers do not change the amplitude of the transmitted wave.

Denote

$$
\begin{align*}
\boldsymbol{E} & =\boldsymbol{E}_{0} e^{i k z-i \omega t}, & & \boldsymbol{E}_{0}=E_{\perp} \hat{\mathbf{e}}_{\perp}+E_{\|} \hat{\mathbf{e}}_{\|} \\
E_{\perp} & =a_{\perp} e^{-i \delta_{\perp}} & & \\
E_{\|} & =a_{\|} e^{-i \delta_{\|}} & & a_{\perp}, a_{\|} \geq 0, \delta_{\perp}, \delta_{\|} \in \mathbb{R} \tag{22}
\end{align*}
$$

Experiment I
No polarizer: the flux density is proportional to

$$
\begin{equation*}
\left|\boldsymbol{E}_{0}\right|^{2}=E_{\|} E_{\|}^{*}+E_{\perp} E_{\perp}^{*} \tag{23}
\end{equation*}
$$

$\underline{\text { Experiment II }}$

Linear polarizers $\|$ and \perp :

1) $\|$: the amplitude of the transmitted wave is $E_{\|}$and the flux density is $E_{\|} E_{\|}^{*}$
2) $\quad \perp$: the amplitude of the transmitted wave is E_{\perp} and the flux density is $E_{\perp} E_{\perp}^{*}$

The difference of the two measurements is $I_{\|}-I_{\perp}=E_{\|} E_{\|}^{*}-E_{\perp} E_{\perp}^{*}$.
Experiment III
$\overline{\text { Linear polarizers }}+45^{\circ} \mathrm{ja}-45^{\circ}$: The new basis vectors are

$$
\left\{\begin{array}{l}
\hat{\mathbf{e}}_{+}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{e}}_{\|}+\hat{\mathbf{e}}_{\perp}\right) \\
\hat{\mathbf{e}}_{-}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{e}}_{\|}-\hat{\mathbf{e}}_{\perp}\right)
\end{array}\right.
$$

and

$$
\begin{aligned}
& \boldsymbol{E}_{0}=E_{+} \hat{\mathbf{e}}_{+}+E_{-} \hat{\mathbf{e}}_{-} \\
& E_{+}=\frac{1}{\sqrt{2}}\left(E_{\|}+E_{\perp}\right) \\
& E_{-}=\frac{1}{\sqrt{2}}\left(E_{\|}-E_{\perp}\right)
\end{aligned}
$$

1) $\quad+45^{\circ}$: the amplitude of the transmitted wave is E_{+}and the flux density is
$E_{+} E_{+}^{*}=\frac{1}{2}\left(E_{\|} E_{\|}^{*}+E_{\|} E_{\perp}^{*}+E_{\perp} E_{\|}^{*}+E_{\perp} E_{\perp}^{*}\right)$
2) -45° : the amplitude of the transmitted wave is E_{-}and the flux density is
$E_{-} E_{-}^{*}=\frac{1}{2}\left(E_{\|} E_{\|}^{*}-E_{\|} E_{\perp}^{*}-E_{\perp} E_{\|}^{*}+E_{\perp} E_{\perp}^{*}\right)$
The difference os the measurements is $I_{+}-I_{-}=E_{\|} E_{\perp}^{*}+E_{\perp} E_{\|}^{*}$.
Experiment IV
Circular polarizers R and L :

$$
\begin{array}{ll}
\hat{\mathbf{e}}_{R}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{e}}_{\|}+i \hat{\mathbf{e}}_{\perp}\right) & \hat{\mathbf{e}}_{R} \cdot \hat{\mathbf{e}}_{R}^{*}=1 \\
\hat{\mathbf{e}}_{L}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{e}}_{\|}-i \hat{\mathbf{e}}_{\perp}\right) & \hat{\mathbf{e}}_{L} \cdot \hat{\mathbf{e}}_{L}^{*}=1
\end{array}
$$

and

$$
\begin{aligned}
\boldsymbol{E}_{0} & =E_{R} \hat{\mathbf{e}}_{R}+E_{L} \hat{\mathbf{e}}_{L} \\
E_{R} & =\frac{1}{\sqrt{2}}\left(E_{\|}-i E_{\perp}\right) \\
E_{L} & =\frac{1}{\sqrt{2}}\left(E_{\|}+i E_{\perp}\right)
\end{aligned}
$$

1) $\quad R$: the amplitude of the transmitted wave is E_{R} and the flux density is $E_{R} E_{R}^{*}=\frac{1}{2}\left(E_{\|} E_{\|}^{*}-i E_{\|}^{*} E_{\perp}+i E_{\perp}^{*} E_{\|}+E_{\perp} E_{\perp}^{*}\right)$
2) $\quad L$: the amplitude of the transmitted wave is E_{L} and the flux density is $E_{L} E_{L}^{*}=\frac{1}{2}\left(E_{\|} E_{\|}^{*}+i E_{\|}^{*} E_{\perp}-i E_{\perp}^{*} E_{\|}+E_{\perp} E_{\perp}^{*}\right)$

The difference of the measurements is $I_{R}-I_{L}=i\left(E_{\perp}^{*} E_{\|}-E_{\|}^{*} E_{\perp}\right)$.
With the help of Experiments I-IV, we have determined the Stokes parameters I, Q, U, and V :

$$
\begin{align*}
I & =E_{\|} E_{\|}^{*}+E_{\perp} E_{\perp}^{*}=a_{\|}^{2}+a_{\perp}^{2} \\
Q & =E_{\|} E_{\|}^{*}-E_{\perp} E_{\perp}^{*}=a_{\|}^{2}-a_{\perp}^{2} \\
U & =E_{\|} E_{\perp}^{*}+E_{\perp} E_{\|}^{*}=2 a_{\|} a_{\perp} \cos \delta \\
V & =i\left(E_{\|} E_{\perp}^{*}-E_{\perp} E_{\|}^{*}\right)=2 a_{\|} a_{\perp} \sin \delta \quad \delta=\delta_{\|}-\delta_{\perp} \tag{24}
\end{align*}
$$

