
1 Plane wavesThe eletromagneti plane wave
E = E0e

ik·x−iωt

H = H0e
ik·x−iωt (1)an, under ertain onditions, ful�l Maxwell's equations. The physial �eldsorrespond to the real parts of the omplex-valued �elds. The vetors E0and H0 above are onstant vetors and an be omplex-valued. Similarly,the wave vetor k an be omplex-valued:

k = k
′ + ik′′, k

′, k′′ ∈ Rn (2)Inserting (2) into equation (1), we obtain
E = E0e

−k
′′·xeik

′·x−iωt

H = H0e
−k

′′·xeik
′·x−iωt (3)In Eq. (3), E0e

−k
′′·x and H0e

−k
′′·x are amplitudes and k

′ ·x− ωt = φ is thephase of the wave.An equation of the form k · x =onstant de�nes, in the ase of a real-valued vetor k, a planar surfae, whose normal is just the vetor k. Thus,
k
′ is perpendiular to the planes of onstant phase and k

′′ is perpendiularto the planes of onstant amplitude. If k
′ ‖ k

′′, the planes oinide and thewave is homogeneous. If k
′ ∦ k

′′, the wave is inhomogeneous. A plane wavepropagating in vauum is homogeneous.In the ase of plane waves, Maxwell's equaitons an be written as
k · E0 = 0

k · H0 = 0

k × E0 = ωµH0

k × H0 = −ωǫE0 (4)The two upmost equations are onditions for the transverse nature of thewaves: k is perpendiular to both E0 and H0. The two lowermost equations1



show that E0 and H0 are perpendiular to eah other. Sine k, E0, and
H0 are omplex-valued, the geometri interpretaion is not simple unless thewaves are homogeneous.It follows from Maxwell's equations (4) that, on one hand,

k × (k × E0) = ωµk × H0 = −ω2ǫµE0 (5)and, on the other hand,
k × (k × E0) = k(k · E0) − E0(k · k) = −E0(k · k), (6)so that

k · k = ω2ǫµ. (7)Plane waves solutions are in agreement with Maxwell's equations if
k · E0 = k · H0 = E0 · H0 = 0 (8)and if

k′2 − k′′2 + 2ik′ · k′′ = ω2ǫµ. (9)Note that ǫ and µ are properties of the medium, whereas k
′ and k

′′ areproperties of the wave. Thus, ǫ and µ do not unambiguously determine thedetails of wave propagation.In the ase of a homogeneous plane wave (k′‖k′′),
k = (k′ + ik′′)ê, (10)where k′ and k′′ are non-negative and ê is an arbitrary real-valued unitvetor.Aording to Eq. (7),

(k′ + ik′′)2 = ω2ǫµ =
ω2m2

c2
, (11)where c = 1/

√
ǫ0µ0 is the speed of light in vauum and m is the omplex-valued refrative index

m =

√

ǫµ

ǫ0µ0

= mr + imi, mr, mi ≥ 0. (12)2



In vauum, the wave number is ω/c = 2π/λ, where λ is the wavelength. Thegeneral homogeneous plane wave takes the form
E = E0e

− 2πmis

λ ei
2πmrs

λ
−iωt (13)where s = e · x. The imaginary and real parts of the refrative index deter-mine the attenuation and phase veloity v = c/mr of the wave, respetively.2 Poynting vetorLet us study the eletromagneti �eld E, H that is time harmoni. For thephysial �elds (the real parts of the omplex-valued �elds), the Poyntingvetor

S = E × H (14)desribes the diretion and amount of energy transfer everywhere in thespae.Let n be the unit normal vetor of the planar surfae element A. Eletro-magneti energy is transferred through the planar surfae with power S ·n A,where S is assumed onstant on the surfae. For an arbitrary surfae and Sdepending on loation, the power is
W = −

∫

A

S · ndA, (15)where n is the outward unit normal vetor and the sign has been hosen sothat positive W orresponds to absorption in the ase of a losed surfae.The time-averaged Poynting vetor
〈S〉 =

1

τ

∫

t+τ

t

S(t′)dt′ τ >> 1/ω (16)is more important than the momentary Poynting vetor (f. measurements).The time-averaged Poynting vetor for time-harmoni �elds is
〈S〉 =

1

2
Re{E × H

∗} (17)3



and, in what follows, this is the Poynting vetor meant even though theaveraging is not always shown expliitly.For a plane wave �eld, the Poynting vetor is
S =

1

2
Re{E × H

∗} = Re

{

E × (k∗ × E
∗)

2ωµ∗

}

, (18)where
E × (k∗ × E

∗) = k
∗(E · E∗) − E

∗(k∗ · E). (19)For a homogeneous plane wave,
k · E = k

∗ · E = 0 (20)and
S =

1

2
Re

{√
ǫµ

µ∗

}

|E0|2e−
4πIm(m)z

λ êz. (21)3 Stokes parametersConsider the following experiment for an arbitrary monohromati light soure(see Bohren & Hu�man p. 46). In the experiment, we make use of a measuringapparatus and polarizers with ideal performane: the measuring apparatusdetets energy �ux density independently of the state of polarization and thepolarizers do not hange the amplitude of the transmitted wave.Denote
E = E0e

ikz−iωt, E0 = E⊥ê⊥ + E‖ê‖

E⊥ = a⊥e−iδ⊥

E‖ = a‖e
−iδ‖ a⊥, a‖ ≥ 0, δ⊥, δ‖ ∈ R (22)Experiment INo polarizer: the �ux density is proportional to
|E0|2 = E‖E

∗
‖ + E⊥E∗

⊥ (23)Experiment II 4



Linear polarizers ‖ and ⊥:1) ‖: the amplitude of the transmitted wave is E‖ and the �ux densityis E‖E
∗
‖2) ⊥: the amplitude of the transmitted wave is E⊥ and the �ux densityis E⊥E∗
⊥The di�erene of the two measurements is I‖ − I⊥ = E‖E

∗
‖ − E⊥E∗

⊥.Experiment IIILinear polarizers +45◦ ja −45◦: The new basis vetors are
{

ê+ = 1√
2
(ê‖ + ê⊥)

ê− = 1√
2
(ê‖ − ê⊥)and

E0 = E+ê+ + E−ê−

E+ =
1√
2
(E‖ + E⊥)

E− =
1√
2
(E‖ − E⊥).1) +45◦: the amplitude of the transmitted wave is E+ and the �ux den-sity is

E+E∗
+ = 1

2
(E‖E

∗
‖ + E‖E

∗
⊥ + E⊥E∗

‖ + E⊥E∗
⊥)2) −45◦: the amplitude of the transmitted wave is E− and the �ux den-sity is

E−E∗
− = 1

2
(E‖E

∗
‖ − E‖E

∗
⊥ − E⊥E∗

‖ + E⊥E∗
⊥)The di�erene os the measurements is I+ − I− = E‖E

∗
⊥ + E⊥E∗

‖ .Experiment IVCirular polarizers R and L:
êR =

1√
2
(ê‖ + iê⊥) êR · ê∗

R = 1

êL =
1√
2
(ê‖ − iê⊥) êL · ê∗

L
= 1 êR · ê∗

L
= 05



and
E0 = ERêR + ELêL

ER =
1√
2
(E‖ − iE⊥)

EL =
1√
2
(E‖ + iE⊥).1) R: the amplitude of the transmitted wave is ER and the �ux densityis ERE∗

R
= 1

2
(E‖E

∗
‖ − iE∗

‖E⊥ + iE∗
⊥E‖ + E⊥E∗

⊥)2) L: the amplitude of the transmitted wave is EL and the �ux densityis ELE∗
L

= 1

2
(E‖E

∗
‖ + iE∗

‖E⊥ − iE∗
⊥E‖ + E⊥E∗

⊥)The di�erene of the measurements is IR − IL = i(E∗
⊥E‖ − E∗

‖E⊥).With the help of Experiments I-IV, we have determined the Stokes para-meters I, Q, U , and V :
I = E‖E

∗
‖ + E⊥E∗

⊥ = a2

‖ + a2

⊥

Q = E‖E
∗
‖ − E⊥E∗

⊥ = a2

‖ − a2

⊥
U = E‖E

∗
⊥ + E⊥E∗

‖ = 2a‖a⊥ cos δ

V = i(E‖E
∗
⊥ − E⊥E∗

‖) = 2a‖a⊥ sin δ δ = δ‖ − δ⊥ (24)
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