
1 (lecture 12)

The scattering amplitude due to the illuminated side of the scatterer cannot be calculated
without defining the shape and optical properties of the particle. Let us assume in the following
example that the illuminated region is perfectly conducting. Then, the tangential components
of the fields Es and Bs on S1 are approximately opposite and similar to those of the original
fields, respectively. The scattering amplitude due to the illuminated part is then

ǫ∗ · Fill =
E0

4πi

∫

ill

dA′ǫ∗ · [−n′ × (k0 × ǫ0) + k × (n′ × ǫ0)] · e
i(k0−k)·x′

When this is compared with the shadow amplitude, the only notable difference is the sign in
the first term. This sign difference results in a completely different scattering amplitude that
can also be written in the form muodossa

ǫ∗ · Fill =
E0

4πi

∫

ill

dA′ǫ∗ · [(k − k0) × (n′ × ǫ0) − (n′ · ǫ0)k0] · e
i(k0−k)·x′

When again kR >> 1, the exponential factor fluctuates rapidly and one would expect a
strong contribution in the forward direction; however, the first term goes to zero in the
forward direction and no strong contribution can follow. The illuminated region contributes
to scattering in the form of a reflected wave.

Assume next that the scattering particle is spherical (radius a). The predominating cont-
ribution to the scattering amplitude now derives from a region of integration where the phase
of the exponential factor is stationary. If (θ, ϕ) are the coordinates of k and (α, β) those of n′

(with respect to k0), the phase factor is

φ(α, β) = (k0 − k) · x′ = ka[(1 − cos θ) cos α − sin θ sin α cos(β − ϕ)]

The stationary point can be found at angles α0, β0, where α0 = π/2 + θ/2 and β0 = ϕ. These
angles correspond exactly to the angles of reflection on the surface of the sphere as dictated
by geometric optics. At that point, the vector n′ points in the direction of (k − k0). In the
proximity of angles α = α0 and β = β0

φ(α, β) = −2ka sin
θ

2
[1 −

1

2
(x2 + cos2 θ

2
y2) + . . .]

where x = α − α0 and y = β − β0. The integration can be carried out approximately:

ǫ∗ · Fill
∼= ka2E0 sin θe−2ika sin θ

2 (ǫ∗ · ǫr) ·

∫

dxei[ka sin θ

2
]x2

∫

dyei[ka sin θ

2
cos2 θ

2
]y2

ǫr = −ǫ0 + 2(nr · ǫ0)nr, nr =
k − k0

|k − k0|
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When 2ka sin θ
2

>> 1, the integrals can be calculated using the result
∫

∞

−∞
dxeiαx2

=
√

πi/α,

ǫ∗ · Fill
∼= E0

a

2
e−2ika sin θ

2 ǫ∗ · ǫr

For large 2ka sin θ
2
, the intensity of the reflected part of the radiation is constant as a function

of the angle, but the part has a rapidly varying phase. When θ → 0, the intensity vanishes as
θ2 (see the integral above).

Comparison of the amplitudes due to the shadowed and illuminated parts of the surface
shows that, in the forward direction, the former amplitude predominates over the latter by a
factor ka >> 1 whereas, at the scattering angles 2ka sin θ >> 1, the ratio of the amplitudes
is of the order of 1/(ka sin3 θ)1/2. The differential scattering cross section (summed over the
polarization states of the original and scattered waves) is

dσ

dΩ
∼=

{

a2(ka)2|J1(ka sin θ)
ka sin θ

|2, θ . 10
ka

;
a2

4
, θ >> 1

ka
.

The total scattering cross section is twice the geometric cross section of the particle.

2 Optical theorem

The optical theorem is a fundamental relation that connects the exticntion cross section to the
imaginary part of the forward-scattering amplitude. Consider a plane wave with a wave vector
k0 and field components Ei,Bi. The plane wave is incident on a finite-sized scatterer inside
the surface S1. The scattered field Es,Bs propagates away from the scatterer and is observed
in the far zone in the direction k. The total field outside the surface S1 is, by definition,

E = Ei + Es

B = Bi + Bs.

In the general case, the scatterer absorbs energy from the original field. The absorbed power
can be calculated by integrating the inward-directed Poynting-vector component of the total
field over the surface S1:

Pabs = −
1

2µ0

∮

S1

dA′Re(E ×B∗) · n′

The scattered power is computed in the usual way from the asymptotic form of the Poynting
vector for the scattered fields in the regime, where the fields are simple transverse spherical
waves that attenuate as 1/r. But since there are no sources between S1 and infinity, the
scattered power can as well be calculated as an integral of the outward-directed component
of the Poynting vector for the scattered field over S1:

Psca =
1

2µ0

∮

S1

dA′Re(Es × B∗

s) · n
′
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The total power is the sum of the absorbed and scattered power so that, after rearranging,

P = Pabs + Psca = −
1

2µ0

∮

S1

dA′Re(Es × B∗

i + E∗

i × Bs) · n
′

When the original field in written explicitly in the form

Ei = E0ǫ0e
ik0·x

cBi =
1

k
k0 ×Ei

the total power can be transformed to the form

P =
1

2µ0

ReE∗

0

∮

S1

dA′e−ik0·x[ǫ∗0 · (n
′ × Bs) + ǫ∗0 ·

k0 × (n′ ×Es)

kc
]

By comparing this with the scattering amplitude F(k,k0) derived earlier, we can recognize
that the total power is proportional to the value of F in the forward-scattering direction
k = k0 in the polarization state coinciding with that of the original field:

P =
2π

kZ0
Im[E∗

0ǫ
∗

0 · F(k = k0)],

which is the basic form of the optical theorem.
The total or extinction cross section σe is defined as the ratio of the total and original flux

densities (|E0|
2/2Z0, power as per unit surface area).

In a corresponding way, one can define a normalized scattering amplitude f (against the
original field value at origin)

f(k = k0) =
F(k,k0)

E0

The final form of the optical theorem is then

σe =
4π

k
Im[ǫ∗0 · f(k = k0)].
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