Electromagnetic Scattering I (53919, 5 cr)

Exercise 4

1. Fraunhofer diffraction by a spherical particle ($x=2 \pi a / \lambda$, where a is the radius and λ is the wavelength) is

$$
D(x, \theta)=x^{2} \cos \theta\left[\frac{2 J_{1}(x \sin \theta)}{x \sin \theta}\right]^{2} \Theta\left(90^{\circ}-\theta\right)+J_{0}(x)^{2}+J_{1}(x)^{2}
$$

where θ is the scattering angle, J_{1} is a Bessel function of the first kind and of the order 1 , and Θ is the Heaviside step function,

$$
\begin{gathered}
\Theta(s)=1, s \geq 0 \\
\Theta(s)=0, s<0
\end{gathered}
$$

Show that

$$
\begin{equation*}
\int_{(4 \pi)} \frac{d \Omega}{4 \pi} D(x, \theta)=1 . \tag{1}
\end{equation*}
$$

What is your interpretation of the term $D(x, \theta) /(4 \pi)$?
The following relationships are valid for the Bessel functions:

$$
\begin{aligned}
J_{0}^{\prime}(y) & =-J_{1}(y) \\
J_{n-1}(y) & =\frac{n}{y} J_{n}(y)+J_{n}^{\prime}(y)
\end{aligned}
$$

2. Consider diffraction by a circular hole in Smythe-Kirchhoff approximation for normal incidence. Show that the ratio of the transmitted power to incident power (i.e., the transmission coefficient) is

$$
T=1-\frac{1}{2 x} \int_{0}^{2 x} d t J_{0}(t)
$$

where $x=k a$ (a is the radius of the hole).
(6 p)
3. In the anomalous diffraction approximation (ADA), the size of the scatterer is assumed much larger than the wavelength (λ, wave number $k=2 \pi / \lambda$), and the refractive index (m) of the scatterer should not deviate much from that of the surrounding medium.

In ADA, the extinction and absorption cross sections are integrals over the 2 D projection S_{\perp} of the particle,

$$
\begin{aligned}
\sigma_{\mathrm{e}} & =2 \int_{S_{\perp}} d^{2} \underline{\underline{r}}_{\perp} \operatorname{Re}\left\{1-\exp \left[-i \Phi\left(\underline{\mathrm{r}}_{\perp}\right)\right]\right\} \\
\sigma_{\mathrm{a}} & =\int_{S_{\perp}} d^{2} \underline{\mathrm{r}}_{\perp}\left(1-\exp \left\{2 \operatorname{Im}\left[\Phi\left(\underline{\mathrm{r}}_{\perp}\right)\right]\right\}\right)
\end{aligned}
$$

(scattering cross section $\sigma_{\mathrm{s}}=\sigma_{\mathrm{e}}-\sigma_{\mathrm{a}}$) where the phase Φ is a function of the complex refractive index m, the wave number k, and the distance d a directly transmitted ray travels inside the scatterer,

$$
\Phi\left(\underline{\mathrm{r}}_{\perp}\right)=(m-1) k d\left(\underline{\mathrm{r}}_{\perp}\right)
$$

The scattering-matrix element $S_{11}=k^{2} \sigma_{\mathrm{s}} P_{11} / 4 \pi$ is

$$
S_{11}(\theta)=\frac{k^{4}}{4 \pi^{2}}\left|\int_{S_{\perp}} d^{2} \underline{\underline{r}}_{\perp} \exp (i k x \theta)\left\{1-\exp \left[i \Phi\left(\underline{\underline{r}}_{\perp}\right)\right]\right\}\right|^{2}
$$

when $x z$-plane is the scattering plane.
Calculate $\sigma_{\mathrm{e}}, \sigma_{\mathrm{a}}, \sigma_{\mathrm{s}}$, and S_{11} for a spherical scatterer of radius a in ADA.
(18 p)

