Electromagnetic Scattering I (53919, 5 cr)

Exercise 1

1. Derive the following relation between the Stokes parameters $\mathbf{I} = (I, Q, U, V)^T$ and the ellipsometric parameters

$$I = c^{2}$$

$$Q = c^{2} \cos 2\eta \cos 2\gamma$$

$$U = c^{2} \cos 2\eta \sin 2\gamma$$

$$V = c^{2} \sin 2\eta$$

where $c^2 = a^2 + b^2$ (*a* and *b* being the semimajor and semiminor axis, respectively), γ the clockwise angle between \mathbf{e}_{\parallel} (Bohren-Huffman, p. 50) and major axis, and $|\tan \eta| = b/a$ (ellipticity). (6 points)

2. Draw the vibration ellipses for the Stokes parameters $\mathbf{I} = (3, 1, 2, -2)^T$ and $\mathbf{I} = (25, 0, 24, 7)^T$. (6 points)

3. An electromagnetic plane wave propagating in a nonabsorbing medium is normally incident on an infinite slab between z = 0 and z = h with a refractive index $m_1 = n_1 + ik_1$. Derive the expressions for the slab reflectance and transmittance. (12 points)

4. Derive expressions for the electric and magnetic fields \mathbf{E} and \mathbf{B} in the electric dipole approximation. Vector potential is

$$\mathbf{A}(\mathbf{r}) = \frac{-ikc\mu_0}{4\pi} \mathbf{p} \, \frac{e^{ikr}}{r},$$

where **p** is the electric dipole moment. (Jackson 9.2; 12 points)