Electromagnetic Scattering I (53919, 5 cr)
Exercise 1

1. Derive the following relation between the Stokes parameters $\mathbf{I}=(I, Q, U, V)^{T}$ and the ellipsometric parameters

$$
\begin{aligned}
I & =c^{2} \\
Q & =c^{2} \cos 2 \eta \cos 2 \gamma \\
U & =c^{2} \cos 2 \eta \sin 2 \gamma \\
V & =c^{2} \sin 2 \eta
\end{aligned}
$$

where $c^{2}=a^{2}+b^{2}$ (a and b being the semimajor and semiminor axis, respectively), γ the clockwise angle between $\mathbf{e}_{\|}$(Bohren-Huffman, p. 50) and major axis, and $|\tan \eta|=b / a$ (ellipticity). (6 points)
2. Draw the vibration ellipses for the Stokes parameters $\mathbf{I}=(3,1,2,-2)^{T}$ and $\mathbf{I}=(25,0,24,7)^{T}$. $(6$ points)
3. An electromagnetic plane wave propagating in a nonabsorbing medium is normally incident on an infinite slab between $z=0$ and $z=h$ with a refractive index $m_{1}=n_{1}+i k_{1}$. Derive the expressions for the slab reflectance and transmittance. (12 points)
4. Derive expressions for the electric and magnetic fields \mathbf{E} and \mathbf{B} in the electric dipole approximation. Vector potential is

$$
\mathbf{A}(\mathbf{r})=\frac{-i k c \mu_{0}}{4 \pi} \mathbf{p} \frac{e^{i k r}}{r}
$$

where \mathbf{p} is the electric dipole moment. (Jackson 9.2; 12 points)

