Computational light scattering, fall 2020 (PAP315, 5 cr)
Exercise 4 (Introduction to multiple scattering)

1. (12p) Consider a plane-parallel medium of normal optical thickness τ_{*} composed of scatterers with a single-scattering albedo $\tilde{\omega}$ and a single-scattering phase function P. Show that, in the first-order multiple-scattering approximation, the diffuse upward (I_{1}^{+}) and downward intensities $\left(I_{1}^{-}\right)$are $\left(\tau \in\left[0, \tau_{*}\right]\right)$

$$
\begin{aligned}
I_{1}^{+}(\tau ; \mu, \phi) & =\frac{\tilde{\omega}}{4 \pi} \pi F_{0} P\left(\mu, \phi ;-\mu_{0}, \phi_{0}\right) \frac{\mu_{0}}{\mu+\mu_{0}}\left\{\exp \left[-\frac{\tau}{\mu_{0}}\right]-\exp \left[-\frac{\tau_{*}-\tau}{\mu}-\frac{\tau_{*}}{\mu_{0}}\right]\right\}, \\
I_{1}^{-}(\tau ;-\mu, \phi) & =\frac{\tilde{\omega}}{4 \pi} \pi F_{0} P\left(-\mu, \phi ;-\mu_{0}, \phi_{0}\right) \cdot \begin{cases}\frac{\tau}{\mu_{0}} \exp \left[-\frac{\tau}{\mu_{0}}\right], & \mu=\mu_{0}, \\
\frac{\mu_{0}}{\mu-\mu_{0}}\left\{\exp \left[-\frac{\tau}{\mu}\right]-\exp \left[-\frac{\tau}{\mu_{0}}\right]\right\}, & \mu \neq \mu_{0},\end{cases}
\end{aligned}
$$

where $\mu=\cos \theta$ and $\mu_{0}=\cos \theta_{0}$ and where (θ, ϕ) and $\left(\theta_{0}, \phi_{0}\right)$ describe the directions of diffuse reflection and incidence, respectively. Here πF_{0} is the incident flux density. Discuss the limiting case of a semi-infinite plane-parallel medium with $\tau_{*} \rightarrow \infty$.
2. (9 points) next page
3. (12 points) next next page
(9p) The generalized two-stream approximation can be expressed by

$$
\begin{aligned}
& \frac{d F^{\uparrow}(\tau)}{d \tau}=\gamma_{1} F^{\uparrow}(\tau)-\gamma_{2} F^{\downarrow}(\tau)-\gamma_{3} \tilde{\omega} F_{\odot} e^{-\tau / \mu_{o}} \\
& \frac{d F^{\downarrow}(\tau)}{d \tau}=\gamma_{2} F^{\uparrow}(\tau)-\gamma_{1} F^{\downarrow}(\tau)+\left(1-\gamma_{3}\right) \tilde{\omega} F_{\odot} e^{-\tau / \mu_{o}}
\end{aligned}
$$

Starting from the following RT equation,
$\mu \frac{d I(\tau, \mu)}{d \tau}=I(\tau, \mu)-\frac{\tilde{\omega}}{2} \int_{-1}^{1} I\left(\tau, \mu^{\prime}\right) P\left(\mu, \mu^{\prime}\right) d \mu^{\prime}-\frac{\tilde{\omega}}{4 \pi} F_{\odot} P\left(\mu,-\mu_{o}\right) e^{-\tau / \mu_{o}}$
Represent the specific intensity $I(\tau, \mu)$ and phase function $P\left(\mu, \mu^{\prime}\right)$ by Legendre polynomials $P_{l}(\mu)$ up to degree N,

$$
\begin{gathered}
I(\tau, \mu)=\sum_{l=0}^{N} I_{l}(\tau) P_{l}(\mu) \\
P\left(\mu, \mu^{\prime}\right)=\sum_{l=0}^{N} P_{l}(\mu) P_{l}\left(\mu^{\prime}\right) .
\end{gathered}
$$

Show that when $N=1$, equation (5) is equivalent to the generalized two-stream approximation and give out explicit expressions for the coefficients γ_{i}.

Hint: Use the orthogonal and recurrence properties of Legendre polynomials.
(12p) A plane wave is scattered by two small interacting spherical particles of radius $a \ll \lambda$, where λ is the wavelength of the incident plane wave (size parameter $x=2 \pi a / \lambda$). One particle is set to the origin and the location of the other particle is denoted by a vector \mathbf{d}. In the dipole approximation, the internal fields of the particles \mathbf{E}_{1} and \mathbf{E}_{2} are related through

$$
\begin{align*}
& \mathbf{E}_{1}=\mathbf{E}_{i 1}+\beta \overline{\mathbf{T}}(u, v) \cdot \mathbf{E}_{2}, \\
& \mathbf{E}_{2}=\mathbf{E}_{i 2}+\beta \overline{\mathbf{T}}(u, v) \cdot \mathbf{E}_{1}, \tag{6}
\end{align*}
$$

where $\mathbf{E}_{i 1}$ and $\mathbf{E}_{i 2}$ are the incident fields at the locations of the particles, and the polarizability (m is the refractive index)

$$
\begin{equation*}
\beta=x^{3} \frac{m^{2}-1}{m^{2}+2} . \tag{7}
\end{equation*}
$$

The transformation $\overline{\mathbf{T}}$ denotes the interaction between the particles:

$$
\begin{align*}
\overline{\mathbf{T}}(u, v) & =u \overline{\mathbf{I}}+v \mathbf{d d} / d^{2} \\
u & =e^{\mathrm{i} \rho}\left(\rho^{2}+\mathrm{i} \rho-1\right) / \rho^{3}, \tag{8}\\
v & =e^{\mathrm{i} \rho}\left(-\rho^{2}-\mathrm{i} 3 \rho+3\right) / \rho^{3}, \rho=k d .
\end{align*}
$$

Solve the electric fields \mathbf{E}_{1} and \mathbf{E}_{2}. (See Muinonen 1990, PhD thesis.)
Note the following rules for an operator $\mathbf{a b}$:
$(\mathbf{a b}) \cdot \mathbf{c}=\mathbf{a}(\mathbf{b} \cdot \mathbf{c})$
$\mathbf{c} \cdot(\mathbf{a b})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}$
The unit operator $\overline{\mathbf{I}}$ has no effect on the operator $\mathbf{a b}$ or the vector \mathbf{c}.

