Computational light scattering, fall 2020 (PAP315, 5 cr)
Exercise 3 (geometric optics and FDTD)

1. (9 points) Starting from Maxwell's equations, derive the update equations for a one-dimensional finitedifference time-domain algorithm. You can assume that the space is uniform in the x - and y -direction. Assume also that the material parameters, permittivity ϵ_{r}, permeability μ_{r}, and electric conductivity σ are isotropic.
2.(12 points) Implement a one-dimensional FDTD-algorithm for the $E_{y} / H_{x^{-}}$mode based on the update equations derived in the problem 1. The program should include

- total-field / scattered field source (Gaussian pulse),
- perfectly (ideally) absorbing boundary conditions,
- computation of the reflectance and transmittance,
- visualization of the eletric and magnetic fields.

You may use the following parameters:

- grid size $N_{k}=1000$,
- $\Delta z=10^{-8}$,
- Gaussian pulse width $\tau=5 \times 10^{-16}$,
- Gaussian pulse delay $t_{0}=6 \tau$,
- $\epsilon_{r}(1: 299)=1, \epsilon_{r}(300: 500)=5, \epsilon_{r}(501: 700)=3, \epsilon_{r}(701: 1000)=1$,

Plot the reflection and transmission as a function of frequency (430-850 THz).

