1 Scattering at the plane interface between two media

Two kinds of features can be distinguished in the reflection and refraction of waves at the
plane interface between two media:

i) Kinematical properties:

a) the angle of reflection coincides with the angle of incidence

b) the angle of refraction relates to the angle of incidence and the refractive indices of the
media via Snel’s law

ii) Dynamical properties:

a) the intensitities of reflected and refracted radiation

b) phase shifts and polarization

The kinematical properties follow from the wave nature of the phenomena and the exis-

tence of the boundary conditions. The dynamical properties depend fully on the characteris-
tics of the waves and their boundary conditions.
The coordinate systems and symbols are defined in Fig. 1. The original plane wave (wave vec-
tor k, angular frequency w) is incident on the interface from the medium p, € (refractive index
m = y/€u/eopto). The refracted plane wave propagates in the medium p/, € (m’ = /€' /o)
with wave vector k; and the reflected plane wave in the medium p, € with wave vector k,..

The kinematics are described by the angles of incidence 6;, reflection 6,., and refraction 6;.
Assume first that u, €, i/, € and therefor also m and m’ are real-valued.

Based on what has already been described before, we can write the incident, reflected, and
refracted fields as follows:
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The lengths of the wave vectors are
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The boundary conditions are to be valid at the interface z = 0 at all times. Therefore,
the spatial dependences of the fields need to coincide at the interface and, in particular, the
arguments of the phase factors

(kz : X>z=0 = (kT : X)ZZO = (kt ’ X>Z:0 (5)

independently of the detailed properties of the boundary conditions. It follows, first, that the
wave vectors must be confined to a single plane. Second, it follows that 6; = 6, and, third, we
obtain Snel’s law

k;sinf, = k;sinb;
& msinf;, = m’'sinb,. (6)
According to the boundary conditions of electromagnetic fields, the normal components of

D and B and the tangential components of E and H must be continuous across the boundary.
Then, at the interface z = 0, we have
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Let us divide the scattering problem into two cases: first, the incident field is linearly
polarized so that the electric field is perpendicular to the plane defined by k; and n; second,
the electric field is within that plane. An arbitrary elliptic polarization can be treated as a
linear sum of the results following for the two cases defined above.
First, let the electric field be perpendicular to the plane of incidence (see Fig. 2). The choice
of B-vectors guarantees a positive flow of energy in the direction of the wave vectors. With
the help of the third and fourth boundary conditions above, we obtain
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Denote the Fresnel coefficients by
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and it follows that
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and, furthermore, we obtain, for the Fresnel coefficients,
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Second, let the electric field be within the plane of incidence (see Fig. 3). Again, based on
the third and fourth boundary conditions above, we have
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Denote the Fresnel coefficients by

=

Then,
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and we obtain the following pair of equations,
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allowing for the Fresnel coefficients to be explicitly solved for:
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In the case of a plane wave normally incident on the interface (6; = 0), we obtain
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The Fresnel coefficients derived above are also valid for complex-valued €, p, €, and p'.

Usually, for visible light, u = p' = pg. The generalization of Snel’s law for complex m’ is
left for an exercise. In addition, the derivation of the 4 x 4 reflection and refraction matrices
relating the Stokes parameters of incident, reflected, and refracted light is left for an exercise.
In the case of incident electric field polarized in the plane of incidence, we can find the so-called
Brewster angle, at which there is no reflected wave. Let = p/. At the Brewster angle,
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The physical solution is
!/
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As a rule for other angles of incidence, too, the reflected light tends to be polarized
perpendicular to the plane of incidence.

Total internal reflection can occur when m > m’' (the incident wave is ”internal”). If
m >m’, 0; > 6;y according to Snel’s law and

/
;0 = arcsin % (18)

When the angle of incidence is 6,9, the refracted wave is propagating parallel to the interface
and there is no energy flow across the interface. Thus, all the incident energy is reflected back.
When 6; > 6,9, sinf; > 1 and 6; must be a complex-valued angle that has a purely imaginary
cosine,

sin 6; 21 (19)
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The refracted wave is of the form
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and, thus, attenuates exponentially in the medium m’ and propagates only in the direction
of the interface.



1 Scattering at the short-wavelength limit. Scalar dif-
fraction theory.

Traditionally, diffraction entails those deviations from geometric optics that derive from the
finite wavelength of the waves. Thereby, diffraction is connected to objects (e.g., holes, obs-
tacles) that are large compared to the wavelength. The possible geometries are described in
the figure below (see Jackson). The sources of the radiation are located in region I and we
want to derive the diffracted fields in the diffraction region II. The regions are bounded by
the interfaces S; and S;. Kirchhoff was the first one to treat this topic systematically.

For simplicity, we will first study scalar fields, whereafter we will extend the analysis to
vector fields. Let ¢(x,t) be a scalar field, for which we assume a harmonic time dependence
e~ In essence, ¢ is one of the components of the E or B fields. We assume that ¢ fulfils
the scalar Helmholtz wave equation

(V2 + k) (x) = 0
in the volume V bounded by S; and Sy. We introduce the Green’s function G(x,x’),
(V2 + k)G (x,%) = —d(x — )

and start from Green’s theorem
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where n’ is the unit inward normal vector of S. Let us now set ¢y = G and ¢ = 1 so that,
with the help of the wave equations for 1) and G,

»(x) = ]gdA'W(X’)n' -V'G(x,x") — G(x,x")n" - V' (x')]

Kirchhoft’s diffraction integral follows from this relation when G is chosen to be the free-space
Green’s function describing outgoing waves,
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The surface S is composed of S; and Sy and the integration can be divided into two parts. In
the proximity of Sy, ¥ is an outgoing wave and fulfils the so-called radiation condition

¢ikr 100 1
@b%f(ea@)ra EE%(Z]{:_;)

By inserting these results into the integral above, it is possible to show that the integral over
S vanishes at least as the inverse of the radius of the sphere when the radius approaches
infinity. There remains the integral over Si, giving the final form of the Kirchhoff integral
relation,
1 e'F i 1 R
X)=—— [ dA'—n"- [V +ik(1+ —)=
V) = g [ A [V ) Rl

In applying the integral relation, it is necessary to know both ¢ and 0v)/0n on the surface
S1. In general, these are not known, at least not precisely. Kirchhoff’s approach was based
on the idea that ¢ and 0v/0n are approximated on S; for the computation of the diffracted
wave. This so-called Kirchhoft’s approximation consists of the following assumptions:

1. ¢ and 0v¢/On vanish everywhere else but the holes of S}

2. ¢ and 0v/0n in the holes are equal to the original field values when there are no
diffracting elements in space.

These assumptions contain a serious mathemtical inconsistency: if ¢ and 9v/On are zero
on a finite surface, then v = 0 everywhere. In spite of the inconsistency, the Kirchhoff ap-
proximation works in an excellent way in practical problems and constitutes the basis of all
diffraction calculus in classical optics.

The mathematical inconsistencies can be removed by a proper choice of the Green’s func-
tion. In the setup of the figure below (see Jackson), (both P and P’ are located several
wavelengths away from the hole) we obtain
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The obliquity factor O(#,0") assumes less significance than the phase factors, which partly
explains the success of the Kirchhoff approximation.



2 Vector Kirchhoff integral relation

The scalar Kirchhoff integral relation is an exact relation between the scalar fields on the
surface and at infinity. In a corresponding way, the vector Kirchhoff integral relation is an
exact relation between the E, B fields on the surface S and the diffracted or scattered fields
at infinity. Such a relation is interesting in itself and it is a correct guess that the relation
carries practical significance, too.

In what follows, we derive the vector relation for the electric field E, starting from the
generalization of Green’s theorem already appearing in the scalar case for all components of

the E-field,
E(x) ]{ JAEMm - V'G) — G(n' - V')E,
S

when x € V and V is the volume bounded by S. Again, n’ is the unit normal vector pointing

into the volume V. Since G is singular at x’ = x and we make use of vector calculus valid for

smooth functions, we assume that S is composed of the outer surface S’ and an infinitesimally

small inner surface S” so that the point x’ = x is left out from volume V' (but the point is

inside S”). In such a case, the left-hand side of the previous equation disappears, but the

integration over S” on the right-hand side returns —E(x) when the radius of S” goes to zero.
The vector relation can now be written in the form

0= ]{ JAREM - V'G) -1 - V(GE)]
S
and, with the help of the divergence theorem ja divergenssiteoreeman

/dV’V-A:j{dA/A-n,
14 S

the latter term can be transformed to a volume integral
0= 7{ dA2E(n’ - V'G) + / dV'V"”?(GE)
S v

Now

VZA=V(V-A) -V x(VxA)

/ dVVe¢ = 7{ dAng, (n ulkonormaali)
1% S
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and the volume integral can be returned back to a surface integral
0= f JAPEM - V'G) — (V- (GE)) + ' x (V' x (GE))]
S
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When the V-operations are carried out for GE and use is made of Maxwell’s equations
V'-E =0,V x E =iwB, one obtains

0= ]{ dA'liw(n"-B)G + (n' X E) x V'G+ (n' - E)V'G]
S
and, furthermore,
E(x) = f dA'liw(n’-B)G + (n' X E) x V'G + (n' - E)V'G]
S

where the volume bounded by S now again includes the point x.
As in the case of the scalar relation, we can now derive the vector Kirchhoff integral
relation

E(x) = fi dAiw(n' - B)G + (0’ x E) x VG + (1 - E)V'G],

where the integration extends over S; only.

Finally, we derive a relation between the scattering amplitude and the near fields. For the
fields in the vector Kirchhoff integral relation, we choose the scattered fields Eg, By, that is,
the total fields E, B minus the original fields E;, B;. If the observation point is far away from
the scatterer, both the Green’s function and the scattered electric field can be given in their
asymptotic forms

G N 1 eikr il
(x,x') =— py—
ikr

E,(x) — er F(k, ko)

where k is a wave vector pointing in the direction of the observer, kg is the wave vector of
the original field, and F(k, kq) is the vector scattering amplitude. In this limit, V'G = —ikG
and we obtain an integral relation for the scattering amplitude,

F(k, ko) = ﬁ ]i dA' e ¥ [u(n' - B,) + k x (0’ x E,) — k(n' - E,)]

The relation depends explicitly on the direction of k and the dependence on kg is implicit in
E, and B,. Since k- F = 0, we can reduce the relation to

) k

Alternatively, one may want the scattering amplitude in direction k for a specific polarization
state €*,

1 ek x (0 x B
F(k ko) = —k x ¢ dA'e x5 ' xBs) _ i« E,]
4 .,

€ -F(k, ko) = L?{ dA e ¥ [we* - (n' x B,) 4+ € - (k x (n' x E,))]
47 S
These integral relations are useful in scattering problems entailing short wavelengths and in

the derivation of the optical theorem.



3 Diffraction by a circular aperture

Diffraction is divided into Fraunhofer and Fresnel diffraction depending on the geometry under
consideration. There are three length scales involved: the size of the diffracting system d, the
distance from the system to the observation point r and the wavelength A. The diffraction
pattern is generated when r >> d. In tht case, the slowly changing parts of the vector integral
relation can be kept constant. Particular attention needs to be paid to the phase factor e**%.
When r >> d, we obtain

, (1)

k
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X
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where n is a unit vector pointing in the direction of the observer. The magnitudes of the
terms in the expansion are kr, kd, (kd)?/kr. In Fraunhofer diffraction, the terms from the
third one (inclusive) onwards are negligible. When the third term becomes significant (e.g.,
large diffracting systems), we enter the domain of Fresnel diffraction. Far enough from any
diffracting system, we end up in the domain of Fraunhofer diffraction.

If the observation point is far away from the diffracting system, Kirchhoft’s scalar integral
relation assumes the form

ikr
U(x) = —ZWT /S dA e [n -V'U(x') + ik - n¥(x), (2)

where n now is the unit normal vectoron, x’ denotes the position of the element dA’, and
r = |x|,k = k(x/r). The so-called Smythe-Kirchhoff integral relation is an improved version
of the pure Kirchhoff relation and, in the present limit, takes the form

,L'ezk:r
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Let us study next what the different diffraction formulae give for a circular hole (radius a) in
an infinitesimally thin perfectly conducting slab.

Figure (see Jackson)

In the vector relation,

(n x E;).—q = Eye, cos aesner’ (4)
and, in polar coordinates,
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in which case the integral takes the form
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27 Jo

" dgeihiEest _ . (hce) (7)

that is, the result is the Bessel function Jy. Hereafter, the integration over the radial part can
be calculated analytically, and

ietkr Ji(ka
E(x) = a’Eycosa(k x €) llg:a;) (8)
The time-averaged power as per unit solid angle is then
P 2 2
fl_Q = P,cosa (IZT) (cos? 0 + cos® @ sin® 9)|%§6)|2 9)

P = (E} /22)ma’ cos a, (10)

where P, is the total power normally incident on the hole. If ka >> 1, the function [(2J; (ka&)/ka&)?]
peaks sharply at 1 with the argument £ = 0 and falls down to zero at A& ~ 1/ka. The main
part of the wave propagates according to geometric optics and only modest diffraction effects
show up. If, however, ka =~ 1, the Bessel function varies slowly as a function of the angles
and the transmitted wave bends into directions considerably deviting from the propagation
direction of the incident field. In the extreme limit ka << 1, the angular dependence derives
from the polarization factor k x €5, but the analysis fails because the field in the hole can no
longer be the original undisturbed field as assumed earlier.

let us study the scalar solution assuming that U corresponds the magnitude of the E field,

ikr 1
U(x) = —ik:er CL2EO§(COS o + cos 8)%?
dpP (ka)? cosa + cos B 2Jy(ka&)
— = P 11
ds? 4T cosa( 2 cos ) ka& | (11)

Both the vector and scalar results include the Bessel part [(2.J; (ka)/ka€)?] and the same wave
number dependence. But whereas there is no azimuthal dependence in the scalar result, the
vector result is significantly affected by the azimuthal dependence. The dependence derives
from the polarization of the vector field. For an original field propagating in the direction of
the normal vector, the polarization effects are not important, when additionally ka >> 1.
Then, all the results reduce into the familiar expression

dP _ P (ka)? Ji(kasin@) ,

a "o ka sin 6 |
However, for oblique directions, there are large deviations and, for very small holes, the
analysis fails completely.

(12)



4 Scattering in detail

Let us now consider a small particle that is much larger than the wavelength and study what
kind of tools the vector Kirchhoff integral relation offers, if the fields close to the surface can
be estimated somehow.

For example, the surface of the scatterer is divided into the illuminated and shadowed
parts. The boundary between the two parts is sharp only in the limit of geometric optics and,
in the transition zone, the breadth of the boundary is of the order of (2/kR)'/? - R, where R
is a typical radius of curvature on the surface of the particle.

On the shadow side, the scattered field must be equal to the original field but opposite
in sign, in which case the total field vanishes. On the illuminated side, the field depends in
a detailed way on the properties of the scattering particle. If the curvature radii are large
compared to the wavelength, we can make use of Fresnel’s coefficients and geometric optics
in general. The analysis can be generalized into the case of a transparent particle and the
method is known as the physical-optics approximation (or Kirchhoff approximation).

Let us write the scattering amplitude explicitly in two parts,

& -F=¢ -Fgy+ -Fy (13)
and assume that the incident fields is a plane wave

Ei = EO €0€Zk0 *

Bi = ko X E,L/k'C
The shadow scattering amplitude is then (E; ~ —E;, By ~ —B;)

€ - Fsh - .
AT J g

dA'e [’ x (ko X €) + k x (n' x ¢)] - e!ko1x (14)
where the integration is over the shadowed region. The amplitude can be rearranged into the
form g

- -Fy = 4—0_ dA'e - [(k + ko) x (0’ X €) + (0 - €)ky] - e'ko7Rx (15)

T Jsh

In the short-wavelength limit, kq - X’ and k - X’ vary across a large regime and the exponential
factor fluctuates rapidly and eliminates the integral everywhere else but the forward-scattering
direction k ~ kq. In that direction (# < 1/kR), the second factor is negligible compared to
the first one since (e* - ko)/k is of the order of sinf << 1, (¢* - k = 0, ko ~ k). Thus,

1By

6* 'Fsh = o

(€ - €0) /h dA' (ko - m')e'ko 10 (16)

In this approximation, the integral over the shadow side only depends on the projected area
against the propagation direction of the original field. This can be seen from the fact that
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ko -n'dA’ = kdx'dy’ = kd*x', ja (ko — k) -x' = k(1 —cosf)z’ —k, - x| ~ —k, -x/. The final
form of the shadow scattering amplitude is thus
* ik * 2, —ik | X/
€ -Fg=—FEo(€" - eo) [ d*x/ e+ (17)
27 h
In this limit, all scatterers producing the same prohjected area will have the same shadow
scattering amplitude. For example, in the case of a circular cylindrical slab (radius a)

P Ji(kasin6)
2./ tky x| 2) 2Y1 1
/Shd i ST s (18)
Ji(kasin6)

e - Fa, 2 ika*Ey(e" - €) (19)

ka sin 6
This explains nicely the forward diffraction pattern in scattering by small particles.

The scattering amplitude due to the illuminated side of the scatterer cannot be calculated
without defining the shape and optical properties of the particle. Let us assume in the following
example that the illuminated region is perfectly conducting. Then, the tangential components
of the fields E; and B, on S; are approximately opposite and similar to those of the original
fields, respectively. The scattering amplitude due to the illuminated part is then

€ -Fu = ﬂ dA'e - [—n’ x (kg X €) + k x (n' X ¢)] - elko7Rx
Ami Ja
When this is compared with the shadow amplitude, the only notable difference is the sign in
the first term. This sign difference results in a completely different scattering amplitude that
can also be written in the form muodossa
e -Fy = EO. dA'e" - [(k — ko) x (n' X &) — (n - y)ko] - giko—k)x'
A Jin
When again kR >> 1, the exponential factor fluctuates rapidly and one would expect a
strong contribution in the forward direction; however, the first term goes to zero in the
forward direction and no strong contribution can follow. The illuminated region contributes
to scattering in the form of a reflected wave.

Assume next that the scattering particle is spherical (radius a). The predominating cont-
ribution to the scattering amplitude now derives from a region of integration where the phase
of the exponential factor is stationary. If (6, ¢) are the coordinates of k and («, ) those of n’
(with respect to ko), the phase factor is

o(a, B) = (kg — k) - X' = ka[(1 — cos ) cos a — sin f sin acos( — )]

The stationary point can be found at angles ag, By, where ag = /2 +6/2 and 5y = ¢. These
angles correspond exactly to the angles of reflection on the surface of the sphere as dictated



by geometric optics. At that point, the vector n’ points in the direction of (k — ko). In the
proximity of angles a = ay and § = [y
0

0 1
o(a, B) = —2kasin 5[1 - 5(:{:2 + cos? 53/2) + ...

where © = a — ap and y = 8 — y. The integration can be carried out approximately:

2] [ QQ]yQ

. 9 . ‘A . . Q 2 . . 6
e . Fi ]fCL2E0 sin fe 2ikasin 3 (E* . 67’) . /dmez[kasm sl /dyel[kasm 5 cos® 3

k -k
e = —€o + 2(n, - €)n,, n, = — %

|k — ko
When 2ka sing >> 1, the integrals can be calculated using the result ffooo dxetor® = \ /i /o,

€ . Fill ~ Eoge—%lmsinge* €,
For large 2ka sin g, the intensity of the reflected part of the radiation is constant as a function
of the angle, but the part has a rapidly varying phase. When 6 — 0, the intensity vanishes as
62 (see the integral above).

Comparison of the amplitudes due to the shadowed and illuminated parts of the surface
shows that, in the forward direction, the former amplitude predominates over the latter by a
factor ka >> 1 whereas, at the scattering angles 2kasin @ >> 1, the ratio of the amplitudes
is of the order of 1/(kasin®#)'/2. The differential scattering cross section (summed over the
polarization states of the original and scattered waves) is

do
a2

The total scattering cross section is twice the geometric cross section of the particle.

J1(kasin 6
(k) A

1
T 9>>E

p< 10

Y ~ ka )

a
a

5 Optical theorem

The optical theorem is a fundamental relation that connects the exticntion cross section to the
imaginary part of the forward-scattering amplitude. Consider a plane wave with a wave vector
ko and field components E;, B;. The plane wave is incident on a finite-sized scatterer inside
the surface S;. The scattered field E,, B propagates away from the scatterer and is observed
in the far zone in the direction k. The total field outside the surface Sy is, by definition,

E = E +E,
B = B;+B,.



In the general case, the scatterer absorbs energy from the original field. The absorbed power
can be calculated by integrating the inward-directed Poynting-vector component of the total
field over the surface S;:

Pus = S dA'Re(E x B*) -1’
20 Js,
The scattered power is computed in the usual way from the asymptotic form of the Poynting
vector for the scattered fields in the regime, where the fields are simple transverse spherical
waves that attenuate as 1/r. But since there are no sources between S; and infinity, the
scattered power can as well be calculated as an integral of the outward-directed component
of the Poynting vector for the scattered field over S;:

1
Pseo = —j{ dA'Re(Es x BY) -1’
2410 Js,
The total power is the sum of the absorbed and scattered power so that, after rearranging,
1
P=Py,+ Py = —— dA'Re(E; x Bf + Ef x By) - n’
Ho Js,
When the original field in written explicitly in the form
Ei = E()Eoeiko.x
1
Bi = —ky X Ez
C k‘ 0

the total power can be transformed to the form

1 , ko X (n" x Ey)
P=—ReE' ¢ dAe ™ x[er . (n' x B,) + € - 2
oo 5 (n' % B,) + 5 - <02 X B,
By comparing this with the scattering amplitude F(k, k() derived earlier, we can recognize
that the total power is proportional to the value of F in the forward-scattering direction
k = kg in the polarization state coinciding with that of the original field:

2T . s
P= k—ZOIm[EOEO . F(k = ko)],

which is the basic form of the optical theorem.

The total or extinction cross section o, is defined as the ratio of the total and original flux
densities (|Ey|*/2Zy, power as per unit surface area).

In a corresponding way, one can define a normalized scattering amplitude f (against the
original field value at origin)

F(k, ko)
k=kj)=—7T—7+
f( 0) Eo
The final form of the optical theorem is then
47
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1 Scattering by nonspherical particles (lecture 14)

Perfectly spherical particles constitute, practically, an exception in nature and even in in-
dustrial applications. In the recent past, numerical methods have been actively developed for
light scattering by nonspherical particles. In practice, the methods require extensive compu-
tational capacity including supercomputers.

In what follows, one possible modeling of a nonspherical particle geometry is presented:
the Gaussian random sphere. Thereafter, computation of scattering by Gaussian particles is
discussed in various approxiamtions, whereafter a summary is given on essentially exact nu-
merical methods and possibilities to apply these methods to scattering by Gaussian particles.

2 Gaussian random particle

Statistical modeling of nonspherical particle shapes seems reasonable, since nonspherical sha-
pes usually show up as a wide spectrum of different-looking shapes. In the Gaussian-random-
sphere model, the particle is assumed to be mathematically star-like so that there is an origin
with respect to which the shape can be expressed as a function of the spherical coordinates.
In the spherical geometry, the so-called lognormal statistics are being used so that the radial
distance of the particle varies within |0, oo[. The shape is unambiguously defined by the mean
of the radial distance a and the covariance function of the logarithm of the radial distance
Y. Explicitly,
r(0,¢) = ae" @92,

where s is the logarithmic radial distance and 3% = ¥,(0) is the variance of s. Now
8(07 @) = Z Slm%m(ea %0)
Im

and, due to s being real-valued,
m x l:071727"'7 ;
St-m = (=1) Slm{ m=—l,...,—1,0,1,...,1,
Im(sp) = 0.

The spherical harmonics coefficients of the logarithmic radial distance s,,, m > 0 are inde-
pendent Gaussian random variables with zero means and with variances (I and m as above)

Var[R(sim)] = (1+ dmo) 5771

2124-
Var[S(sim)] = (1 = dmo) 5727

The coefficients ¢; > 0,1 = 0,...,00 are the coefficients of the Legendre expansion for the
covariance function Xg:

S.(7) = BCs(7) =) aPcosy), Y a=p
=0 =0
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where 7 is the angualr distance between two directions (6, ¢1) and (62, ¢2).
The two slopes on the Gaussian random particle (subscripts refering to partial derivatives)

Ty 1 Ty

S —

: Sp = :
r’ sinf ¥ rsinf
are, again, independent Gaussian random variables with zero means and with standard de-
viations

p=1/-22(0),

where ¥ is the second derivative of the covariance function with respect to . The correlation
length [, and correlation angle T, are

1

l. = 2sin %FC S —
—(0)

Natural random shapes often exhibit covariance functions, for which the coefficients ¢
follow the exponent form ¢; o< [7%,1 > 2. For v = 4, one obtains random shapes applicable,
in the first place, to modeling Saharan sand particles, asteroids, as well as the shapes of
terrestrial planets.

In the limiting case, the Gaussian random shape thus depends on a single free parameter
insofar as the shape is concerned: the variance 32 of the logarithmic radial distance. 3% relates
to the relative variance of the radius o2 via the simple relation

o2 = 1.

Increasing o results in shapes, where the radial fluctuations are enhanced.

If, additionally, v is treated as a free parameter, one obtains shorter correlation lengths
with smaller values of v (when the expansions are always truncated at a certain degree l,,4.)
and thereby Irger numbers of hills and valleys as per unit solid angle.

For v > 4, non-fractal smooth shapes are obtained whereas, for v < 4, fractal shapes
follow, in which case infinite expansions would yield non-differentiable surfaces rendering the
discussion of slopes meaningless.

3 Scattering by Gaussian particles in different approxi-
mations

Light scattering by Gaussian random particles has been studied in the ray-optics, Rayleigh-
volume, Rayleigh-Gans, anomalous-diffraction and perturbation-series approximations, as well
as in the Rayleigh-ellipsoid approximation.

In the Rayleigh-volume approximation, the scattering by a small particle follows from its
volume. In the case of the Gaussian particle, the (ensemble-averaged) absorption cross section
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is proportional to the mean of the volume, whereas the scattering cross section is proportional
to the mean of the squared volume. The angular characteristics of the scattering matrix are
the same as in the Rayleigh approximation for spherical particles. The results are largely
analytical.

In the Rayleigh-ellipsoid approximation, an ellipsoid is fitted to each realization of the
Gaussian particle, the ellipsoid volume being equal to the volume of the realization. Scatte-
ring is then approximated with the existing electrostatics approximation for ellipsoidal scatte-
rers. The most significant challenge in the Rayleigh-ellipsoid approximation is the numerical
computation of the best-fit ellipsoid, whereafter the results follow in a straightforward way.

In the Rayleigh-Gans approximation (or the first Born approximation), the numerical
computation of the form factor can be aided by analytical intermediate results. In practice,
some numerical integrattion remains, preventing the treatment of arbitrarily large particles.

In anomalous diffraction, path lengths of rays inside the Gaussian sample particles are
numerically computed in cases where the refractive index is close to unity. The absorption
follows directly from the exponential attenuation and extinction is computed from the optical
theorem. The angular dependence of scattering is obtained by averaging the square of the
scattering amplitude. The most demanding task is the computation of the path lengths inside
the particle, which is difficult for extremely nonspherical shapes.

In the second-order perturbation-series approach for the boundary conditions, analytical
results follow for the cross sections and scattering matrices and the most challenging nu-
merical part is the computation of the so-called 3j-symbols. The unknown accuracy of the
results is a problem. In practice, the perturbation-series method is applicable to wavelength-
scale scatterers only, if the deviations from the spherical shape are small compared to the
wavelength.

Approximations can be taken to be ”the spice”that makes the scattering research ”de-
licious”, since, in practice, all so-called exact methods are based on approximation in some
part. One can make the provocative statement that only approximations allow the computa-
tion of light scattering by realistic small particles. The applicability of the exact methods is
usually limited to a narrow range of simple shapes. By the rapid development of computers
and by the development of new analytical methods, the applicability of certain exact methods
grows slowly but steadily.

4 Exact methods and their applicability to (Gaussian
particles

The numerical methods in light scattering can be divided into differential-equation and
integral-equation methods. The traditional computational method is the separation-of-varaibles
method that has been successful in the solution of the following scattering problems:

1. isotropic, homogeneous sphere



2. coated sphere consisting of the interior and coating (with common origin)

3. layered sphere that consists of several layers defined by concentric spherical cells

4. radially inhomogeneous sphere

5. optically active (chiral) sphere

6. homogeneous, istropic infinite circular cylinder

7. optically active infinite circular cylinder

8. isotropic infinite elliptic cylinder

9. isotropic, homogeneous spheroid
10. coated spheroid that consists of the interior and coating (with common origin)
11. optically active spheroid

The separation-of-variables method is not applicable to scattering by Gaussian particles.

The FEM-method (finite-element method) is a differenttial-equation method, where the
scatterer is placed in a finite computational volume that is discretized into numerous small
computational cells. Typically, there are 10-20 cells per wavelength and the electromagnetic
field is solved for in the nodal points of the cells. The resulting linear group of equations con-
sists of a sparse matrix. In the boundaries of the computational volume, an artifical absorbing
boundary condition is invoked. Although FEM allows for the computations for arbitrary, even
inhomogeneous particles, it has not yet been applied to Gaussian particles.

The FDTD-method (finite-difference time-domain method) is a differential-equation met-
hod that solves for the time dependence of the electromagnetic fields based on Maxwell’s curl
equations. Both time and spatial derivatives are expressed with finite differences and time
elapses in finite steps. The scattering particle is again palced in a finite computational volu-
me and an absorbing boundary condition is required in the boundary of the computational
volume. The density of the discretization is as in the FEM-method. In FDTD, there is no
need to solve a large group of equations. Recently, the method has yielded promising results
in light scattering by Gaussian particles.

In the PM-method (point matching), the boundary conditions of the electromagnetic fields
are required in a finite number of points on the surface of the particle. In the original method,
there were as many points as unknown coefficients in the vector spherical harmonics expansion.
It was concluded that the method was numerically instable. There is, however, nothing that
prevents us from expanding the number of points and computing the coefficients using the
least-squares method. This version of the method has been noticed to be stable and is one of
the most popular numerical methods. The regime of application can be improved by expanding
the fields with a number of suitably chosen origins within the particle. PM is promising also
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for scattering by Gaussian particles. It is intriguing to ponder whether “an educated guess”
can help speed up the solution of the coefficients.

The integral-equation methods are divided into a wide spectrum of different methods. In
the VIEM method (volume-integral-equation), one considers the integral equation

e
ezk\r r'|

E(r) = Bi(r) + k2 / Fr[1+ VY] m2(r') — B().

v k2 Arlr — /|

By discretizing the integral on the right-hand side, one obtains a group of linear equations
for the field values at the discretization points within the volume of the particle. Solving the
equations results in the field inside the particle. Typically, again, 10-20 discretization points
are required as per wavelength so that, after a straightforward calculation, it is clear that
a group of equations with thousands of unknowns easily follows. In practice with current
computers, up to 200 million unknowns can be treated (as of December 12, 2008). Various
versions of the VIEM method have been successfully applied to Gaussian-particle scattering
(foremost DDA, discrete-dipole approximation).

In the case of VIEM, the matrix of the group of linear equations is full, which makes the
solution more difficult. When the internal field has been solved for, the same integral relation
gives the scattered field outside the particle via straightforward integration (subtracting the
original field).

DDA (discrete-dipole approximation) is a certain version of solution methods for the in-
tegral equation. DDA can be visualized in the following: the particle can be thought to be
composed of dipole scatterers interacting with each other. In practice, the VIEM methods
differ from one another in how they treat the singular self-term inside the integral, which is
essential for the accuracy of the method.

The surface-integral-equation methods (SIEM) make use of two-dimensional integral equa-
tions that seem like a reasonable starting point, in particular, for homogeneous particles.
However, the SIEM-methods are less stable than the VIEM-methods and usually require ad-
ditional regularization.

The integral equation shown above in connection to the VIEM-method is Fredholm-type
and the kernel has a singularity at r = r’. Via Fourier-transformation, handling of the singula-
rity can be improved and the integral equation can be solved numerically in the wavenumber
(or frequency) space. Surprisingly, the disadvantage of the method is the considerable ana-
lytical work needed for each different particle. These so-called FIEM-methods have not been
very popular.

In the TMM method (transition matrix method), the analysis proceeds with the help of
vector spherical harmonics functions and the word “transition” refers to the linear matrix
relation between the original field and the scattered field. Compared to the direct vector
spherical harmonics treatment of the boundary conditions, TMM has the advantage that
a linear relation is obtained purely between the internal and original fields, reducing the
number of unknowns in the group of linear equations. After solving the group of equations,



the scattered is computed from the vector Kirchhoff integral relation. The TMM method is
an efficient method, in particular, for axially symmetric particles and useful results have been
obtained, e.g., for spheroids to compare with the implications of the SVM method. However,
TMM suffers from unpredictable convergence and instability problems and have not yet been
extensively applied to scattering by Gaussian particles. As a tool the actual T-matrix is
quite useful and, for a single particle, needs to be computed only once (independently of the
orientation). Recently, an analytical version of the T-matrix method has been developed—this
version is highly promising for studying scattering by Gaussian random particles.

In the superposition method for spheres and spheroids, scattering by particle clusters is
computed using the translation and addition rules of vector spherical harmonics functions.
The field scattered by the cluster is expressed as a superposition of the fields scattered by each
constituent particle. The partial fields depend on each other due to the mutual electromagnetic
interactions of the constituent particles. The scattering problem again manifests itself in a
solution of a group of linear equations. Currently, precise solutions can be computed for
clusters with several dozens of constituent particles, when constituent-particle size approaches
the wavelength.

5 Applications of electromagnetic scattering

In his book, van de Hulst has presented an excellent review of the applications of light scatte-
ring in various fields of science. This is recommended reading bearing in mind, in particular,
modern computational methods for nonspherical particles. Bohren and Huffman offer addi-
tional material on the applications, as well as Mishchenko et al. Finally, the publications from
the meeting series entitled FElectromagnetic and Light Scattering by Nonspherical Particles:
Theory, Measurements, and Applications offer up-to-date information about the advances in
light scattering by small particles.



