
1 Scattering by an ensemble of small particles in the

dipole approximation

Consider an ensemble of numerous small particles which have fixed locations in space and

the scattering amplitudes of which can be expressed in the dipole approximation. Assume

presently that the particles do not interact with each other. Since the induced dipole moments

are proportional to the incident field, the moments will depend on the phase factor eikn̂0·xj ,

where xj is the location of the jth scatterer. When the observer is located far away from the

scatterer, the exponential part of the Green’s function results in an additional phase factor

for the jth scatterer, e�ikn̂·xj . In the dipole approximation, the ensemble of particles scatters

as follows:
d�

d⌦
=

k4

(4⇡✏0E0)
2
|
X

j

✏̂⇤ · pje
iq·xj |, q = k(n̂0 � n̂) (1)

Except for the forward-scattering direction (q = 0), scattering will depend sensitively on how

the small particles are located in space.

Assume now that all the particles are identical so that p = pj for all j and
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where F (q) is the so-called structure factor,
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If the small particles are located in random positions, the terms j 6= j0 will cause a

negligible contribution to the sum. Only the terms j = j0 are significant and F (q) = N , where

N is the number of scatterers. In this case, the total scattering is the incoherent superposition

of the individual contributions.

If the small particles are regularly located in space, the structure factor disappears almost

everywhere except for the proximity of the forward-scattering direction. Therefor, large regular

arrays of small particles do not scatter (for example, individual transparent crystals of rock

salt and quartz).

Consider scatterers located in a regular cubic lattice. The structure factor can be calculated

analytically, since
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where a is the lattice constant (distance between the lattice points) and where N1, N2, and

N3 are the numbers of lattice points in each direction hilapisteiden so that the total number

of lattice points equals N = N1N2N3 (this was utilized to obtain the final result above). The

components of the vector q in each direction are q1, q2, and q3.
We note that, at short wavelengths (ka � ⇡), the structure factor has peaks when the

Bragg condition is fulfilled: qia = 0, 2⇡, 4⇡ . . ., where i = 1, 2, 3 . . .. This is typical in X-ray

di↵raction. At long wavelengths, only the peak qia = 0 is relevant, since max |qia| = 2ka << 1.

In this limit, the structure factor is a product of three sin
2 xi/x2

i -type factors (xi =
1
2Niqia),

and scattering is confined to the region qi  2⇡/Nia, corresponding to the angles �/L, where
L is the size of the lattice.

2 Volume integral equation for scattering

In a uniform medium, the electromagnetic wave propagates undisturbed and wiythout chan-

ging its direction of propagation. If there are fluctuations in the medium depending on space

or time, the wave is scattered, and part of its energy is redirected. If the fluctuations in the

medium are small, scattering is weak and one may utilize methods based on perturbation

series.

Consider a uniform isotropic medium with electric permittivity ✏m and magnetic permea-

bility equal to the permeability of vacuum, µm = µ0. Fluctuations in the medium result in

D 6= ✏mE in some constrained region. Let us start from Maxwell’s equations in sourceless

space:
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Moreover, after further manipulation,
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that is the exact wave equation for the D-field derived without any approximations. Later,

the right-hand side of the equation is treated as a small perturbation.

If the right-hand side of the equation were known, the solution of the wave equation could

be written an a suitable integral of it. Although the right-hand side is usually unknown, the

integral form is useful, since it allows the derivation of important approximations.

Assume again harmonic time dependence e�i!t
, in which case

(r2
+ k2

)D = �r⇥r⇥ (D� ✏mE)

k2
= µ0✏m!

2, (9)

where ✏m is the permittivity corresponding to the angular frequency !. The solution of the

undisturbed problem is obtained by setting the right-hand side equal to zero; denote this

solution by D
(0)
. The formal complete solution is then, in an exact way,
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In a scattering problem, the integral on the right-hand side is taken over a constrained region

of space and D
(0)

describes the incident field. Then, in the far zone,
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where the scattering amplitude As is
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After some partial integration and noticing that the substitution terms diappear, one obtains
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The vector characteristics of the integrand can be compared with the field scattered by an

electric dipole: the contribution from the term D � ✏mE is precisely the field of the elect-

ric dipole so that the scattering amplitude is a vector sum from all induced electric dipole

moments. The di↵erential cross section is
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where ✏̂ is the polarization vector of scattered radiation. In principle, we have solved the

scattering problem for an arbitrary scatterer in an exact way. The caveat is that we do not

know the field inside the scatterer.
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1 Rayleigh-Gansin or Born approximation

The integral equation derived above allows for a solution via perturbation series, where the
internal field of the scatterer is first approximated by the incident field. What follows is
the so-called Rayleigh-Gans approximation or the first Born approximation based on the
corresponding integral equation in quantum mechanics.

Consider purely spatial fluctuations from an otherwise uniform medium and assume, in
addition, that the fluctuations are linear, D(x) = [✏m + �✏(x)]E(x), where �✏(x) is small
compared to ✏m. The di↵erence D� ✏mE showing up in the integral equation is proportional
to �✏(x). In the lowest order,
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D(0). (1)

Let the incident field be a plane wave so that D(0)(x) = ✏̂0D0eikn̂0·x. Then

✏̂⇤ ·A(0)
s

D0
=

k2

4⇡

Z
d3x0eiq·x✏̂⇤ · ✏̂0

�✏(x)

✏m
q = k(n̂0 � n̂), (2)

the square of which, in absolute terms, gives the di↵erential cross section. If the wavelength is
much larger than the size of the region where �✏ 6= 0, the exponent in the integral can be set
to unity. This results in the dipole approximation that was treated before for a small spherical
particle.

Let us study the situation where the particle continues to be spherical and is located in
free space. Thus, �✏ 6= 0 inside a sphere of radius a. We obtain
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In the limit a ! 0, the term inside the parentheses approaches a3/3 so that, for scatterers
much smaller than the wavelength or for q approaching zero,
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This is in agreement with the long-wavelength limit studied earlier. The integral
R
S d

3x0eiq·x
0

is commonly called the form factor.

2 Why is the sky blue?

In the present context, we can consider the blueness of the sky and redness of the sunrises and
sunsets. Assume that the atmosphere is composed of individual molecules with locations xj

and that have the dipole moment pj = ✏̂0�molE(xj), where �mol is the molecular polarizability.
Then, the fluctuations of the electric permittivity can be described with the sum
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The di↵erential scattering cross section is of the form
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where F is the structure factor treated before. For randomly distributed scatterers, F (q) is
directly the number of the molecules. For low-density gas, the relative permittivity is ✏r =
✏/✏0 = 1+N�mol, where N is now the number of molecules in unit volume. The total scattering
cross section as per molecule is
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where m is the refractive index and |m� 1| ⌧ 1.
When the radiation propagates a distance dx in the atmoshpere, the relative change in its

intensity is N�dx and I(x) = I0e�kex, where ke is the so-called extinction coe�cient:
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This is called Rayleigh scattering that is incoherent scattering by gas molecules and other
dipole scatterers, where each scatterer scatters radiation based on Rayleigh’s 1/�4 -law.

The 1/�4 -law means that blue light is scattered much more e�ciently than red light. In
practice, this shows up so that blue color predominates when looking in directions other than
the light source whereas, in the direction of the light source, red color predominates.

For visible light, � = 0.41 � 0.65µm and, under normal conditions, m � 1 ⇡ 2.78 · 10�4.
When N = 2.69 ·1019 molecules/cm3, we obtain for the mean free path 1/ke =30, 77, and 188
km at wavelengths 0.41 µm (violet), 0.52 µm (green), and 0.65 µm (red), respectively.

Polarization reaches its maximum of 75 % at the wavelength of 0.55 µm. The deviation
from 100 % derives from multiple scattering (6 %), the anisotropy of the molecules (6 %),
reflection from the surface (5 %, in particular, for green light in the case of vegetation), and
aerosols (8 %).
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