1 Vector spherical harmonics expansion for a plane wave

In the scattering and absorption problem for localized objects, we need the vector sphericalharmonics expansion of the electromagnetic plane wave.

Let us first derive the spherical-harmonics expansion of the scalar plane wave using the Green's function $e^{i k R} / 4 \pi R$:

$$
\frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=i k \sum_{l=0}^{\infty} j_{l}\left(k r_{<}\right) h_{l}^{(1)}\left(k r_{>}\right) \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)
$$

In the limit $\left|\mathbf{x}^{\prime}\right| \rightarrow \infty$ pätee $\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \approx r^{\prime}-\frac{\mathbf{x}^{\prime}}{r^{\prime}} \cdot \mathbf{x}$ ja $r_{>}=r^{\prime}, r_{<}=r$ and $h_{l}^{(1)}\left(k r_{>}\right) \approx(-i)^{l+1} \frac{e^{i k r_{>}}}{k r_{>}}$. Then,

$$
\frac{e^{i k r^{\prime}}}{4 \pi r^{\prime}} e^{-i k \frac{\mathbf{x}^{\prime}}{r^{\prime}} \cdot \mathbf{x}}=i k \frac{e^{i k r^{\prime}}}{k r^{\prime}} \sum_{l m}(-i)^{l+1} j_{l}(k r) Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)
$$

After reorganizing the terms and taking the complex conjugate,

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=4 \pi \sum_{l=0}^{\infty} i^{l} j_{l}(k r) \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)
$$

where \mathbf{k} id the wave vector $k, \theta^{\prime}, \varphi^{\prime}$. According to the addition rule for the spherical harmonics,

$$
\begin{equation*}
P_{l}(\cos \gamma)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi) \tag{1}
\end{equation*}
$$

where γ is the great-circle angle between (θ, φ) and $\left(\theta^{\prime}, \varphi^{\prime}\right)$. With the help of the addition rule,

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{l=0}^{\infty} i^{l}(2 l+1) j_{l}(k r) P_{l}(\cos \gamma)
$$

where γ is now the angle between \mathbf{k} and \mathbf{x}. Moreover,

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{l=0}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)} j_{l}(k r) Y_{l 0}(\gamma)
$$

In what follows, we develop the corresponding expansion for a circularly polarized vector plane wave

$$
\begin{aligned}
\mathbf{E}(\mathbf{x}) & =\left(\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}\right) e^{i k z} \\
c \mathbf{B}(\mathbf{x}) & =\hat{\epsilon}_{3} \times \mathbf{E}=\mp i \mathbf{E}(\mathbf{x})
\end{aligned}
$$

where $\hat{\epsilon}_{3}=\hat{e}_{z}$. Since the plane wave is finite everywhere, we write its multipole expansion using the regular radial functions $j_{l}(k r)$:

$$
\begin{aligned}
\mathbf{E}(\mathbf{x}) & =\sum_{l m}\left[a_{ \pm}(l, m) j_{l}(k r) \mathbf{X}_{l m}+\frac{i}{k} b_{ \pm}(l, m) \nabla \times j_{l}(k r) \mathbf{X}_{l m}\right] \\
c \mathbf{B}(\mathbf{x}) & =\sum_{l m}\left[\frac{-i}{k} a_{ \pm}(l, m) \nabla \times j_{l}(k r) \mathbf{X}_{l m}+b_{ \pm}(l, m) j_{l}(k r) \mathbf{X}_{l m}\right]
\end{aligned}
$$

When deriving the coefficients $a_{ \pm}(l, m)$ and $b_{ \pm}(l, m)$, we make use of the orthogonality properties of the vector spherical-harmonics functions $\mathbf{X}_{l m}$ that we summarize in the following:

$$
\begin{gathered}
\int_{4 \pi} d \Omega\left[f_{l}(r) \mathbf{X}_{l^{\prime} m^{\prime}}\right]^{*} \cdot\left[g_{l}(r) \mathbf{X}_{l m}\right]=f_{l}^{*} g_{l} \delta_{l l^{\prime}} \delta_{m m^{\prime}}, \\
\int_{4 \pi} d \Omega\left[f_{l}(r) \mathbf{X}_{l^{\prime} m^{\prime}}\right]^{*} \cdot\left[\nabla \times g_{l}(r) \mathbf{X}_{l m}\right]=0 \\
\frac{1}{k^{2}} \int_{4 \pi} d \Omega\left[\nabla \times f_{l}(r) \mathbf{X}_{\left.l^{\prime} m^{\prime}\right]^{\prime}}\right]^{*} \cdot\left[\nabla \times g_{l}(r) \mathbf{X}_{l m}\right]=\delta_{l l^{\prime}} \delta_{m m^{\prime}}\left\{f_{l}^{*} g_{l}+\frac{1}{k^{2} r^{2}} \frac{d}{d r}\left[r f_{l}^{*} \frac{d}{d r}\left(r g_{l}\right)\right]\right\} .
\end{gathered}
$$

Above, $f_{l}(r)$ and $g_{l}(r)$ are, again, linear combinations of spherical Bessel, Neumann, and Hankel functions. The second and third relation follow from the results

$$
\begin{gathered}
i \nabla \times \mathbf{L}=\mathbf{r} \nabla^{2}-\nabla\left(1+r \frac{\partial}{\partial r}\right), \\
\nabla=\frac{\mathbf{r}}{r} \frac{\partial}{\partial r}-\frac{i}{r^{2}} \mathbf{r} \times \mathbf{L}, \\
{\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}+k^{2}-\frac{l(l+1)}{r^{2}}\right] f_{l}(r)=0,}
\end{gathered}
$$

and the proof is left for an exercise.
The coefficients $a_{ \pm}(l, m)$ and $b_{ \pm}(l, m)$ are determined via the scalar product between $\mathbf{X}_{l m}^{*}$ and the multipole expansions of the fields and the integration over the angular variables:

$$
\begin{aligned}
& a_{ \pm}(l, m) j_{l}(k r)=\int_{(4 \pi)} d \Omega \mathbf{X}_{l m}^{*} \cdot \mathbf{E}(\mathbf{x}), \\
& b_{ \pm}(l, m) j_{l}(k r)=\int_{(4 \pi)} d \Omega \mathbf{X}_{l m}^{*} \cdot \mathbf{B}(\mathbf{x}) .
\end{aligned}
$$

Explicitly,

$$
a_{ \pm}(l, m) j_{l}(k r)=\int_{(4 \pi)} d \Omega\left(\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}\right) \cdot \frac{\mathbf{L}^{*} Y_{l m}^{*}}{\sqrt{l(l+1)}} e^{i k z}=\int_{(4 \pi)} d \Omega \frac{\left(L_{\mp} Y_{l m}\right)^{*}}{\sqrt{l(l+1)}} e^{i k z}
$$

where the operators L_{\mp} have been defined earlier. Here we recognize the strength of these operators together with the analyses based on circular polarization, as it follows, in a straightforward way, that

$$
a_{ \pm}(l, m) j_{l}(k r)=\frac{\sqrt{(l \pm m)(l \mp m+1)}}{\sqrt{l(l+1)}} \int_{(4 \pi)} d \Omega Y_{l, m \mp 1} e^{i k z}
$$

and, by incorporating the expansion for $e^{i k z}$,

$$
\begin{aligned}
a_{ \pm}(l, m) & =i^{l} \sqrt{4 \pi(2 l+1)} \delta_{m, \pm 1} \\
b_{ \pm}(l, m) & =\mp i a_{ \pm}(l, m)
\end{aligned}
$$

The multipole expansion of the circularly polarized vector plane wave is thus

$$
\begin{gathered}
\mathbf{E}(\mathbf{x})=\sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[j_{l}(k r) \mathbf{X}_{l, \pm 1} \pm \frac{1}{k} \nabla \times j_{l}(k r) \mathbf{X}_{l, \pm 1}\right], \\
c \mathbf{B}(\mathbf{x})=\sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[-\frac{1}{k} \nabla \times j_{l}(k r) \mathbf{X}_{l, \pm 1} \mp i j_{l}(k r) \mathbf{X}_{l, \pm 1}\right] .
\end{gathered}
$$

The expansions for plane waves linearly polarized in the directions of the vectors $\hat{\epsilon}_{1}$ and $\hat{\epsilon}_{2}$ can be obtained from the previous results,

$$
\begin{aligned}
\hat{\epsilon}_{1} e^{i k z} & =\sum_{l=1}^{\infty} i^{l} \sqrt{\pi(2 l+1)}\left[j_{l}(k r)\left[\mathbf{X}_{l, 1}+\mathbf{X}_{l,-1}\right]+\frac{1}{k} \nabla \times j_{l}(k r)\left[\mathbf{X}_{l, 1}-\mathbf{X}_{l,-1}\right]\right] \\
\hat{\epsilon}_{2} e^{i k z} & =\sum_{l=1}^{\infty} i^{l-1} \sqrt{\pi(2 l+1)}\left[j_{l}(k r)\left[\mathbf{X}_{l, 1}-\mathbf{X}_{l,-1}\right]+\frac{1}{k} \nabla \times j_{l}(k r)\left[\mathbf{X}_{l, 1}+\mathbf{X}_{l,-1}\right]\right] .
\end{aligned}
$$

2 Scattering by a spherical particle

Outside the spherical particle, the electromagnetic field is a superposition of the original incident field and the scattered field:

$$
\begin{aligned}
\mathbf{E}(\mathbf{x}) & =\mathbf{E}_{i}(\mathbf{x})+\mathbf{E}_{s}(\mathbf{x}) \\
\mathbf{B}(\mathbf{x}) & =\mathbf{B}_{i}(\mathbf{x})+\mathbf{B}_{s}(\mathbf{x}) .
\end{aligned}
$$

where the plane-wave fields $\mathbf{E}_{i}, \mathbf{B}_{i}$ have been given earlier. Since the scattered fields are, asymptotically at the infinity, outgoing waves, they must be of the form

$$
\mathbf{E}_{s}=\frac{1}{2} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\alpha_{ \pm}(l) h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1} \pm \frac{\beta_{ \pm}(l)}{k} \nabla \times h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1}\right]
$$

$$
c \mathbf{B}_{s}=\frac{1}{2} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\frac{-i \alpha_{ \pm}(l)}{k} \nabla \times h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1} \mp i \beta_{ \pm}(l) h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1}\right],
$$

where the coefficients $\alpha_{ \pm}(l)$ and $\beta_{ \pm}(l)$ are determined from the boundary conditions on the surface of the particle. Generally, the expansions include a summation over the order m but, in the case of the spherical symmetry, only the multipoles $m= \pm 1$ contribute to the expansion.

With the help of the coefficients $\alpha(l)$ and $\beta(l)$, we obtain the total scattered and absorbed power. The scattered power follows from the integration of the outward directed component of the scattered-field Poynting vector over the spherical surface. The absorbed power follows from the integration of the inward directed Poynting-vector component of the total field. By reorganizing triple scalar products, we obtain

$$
\begin{aligned}
P_{s} & =-\frac{a^{2}}{2 \mu_{0}} \Re \int_{(4 \pi)} d \Omega \mathbf{E}_{s} \cdot\left(\mathbf{n} \times \mathbf{B}_{s}\right) \\
P_{a} & =\frac{a^{2}}{2 \mu_{0}} \Re \int_{(4 \pi)} d \Omega \mathbf{E} \cdot(\mathbf{n} \times \mathbf{B})
\end{aligned}
$$

where $\mathbf{n}=\hat{e}_{r}$. Only the transverse field components contribute to the values of the integrals.
Explicitly,

$$
\begin{align*}
\mathbf{X}_{l m}(\theta, \varphi)= & \frac{-m}{\sqrt{l(l+1)} \sin \theta}\left[\hat{e}_{\theta} Y_{l m}(\theta, \varphi)-\right. \\
& \left.i \hat{e}_{\varphi}\left[\sqrt{\frac{\left(l^{2}-m^{2}\right)}{(2 l-1)(2 l+1)}} Y_{l-1, m}(\theta, \varphi)+\sqrt{\frac{(l+1)^{2}-m^{2}}{(2 l+1)(2 l+3)}} Y_{l+1, m}(\theta, \varphi)\right]\right] \\
\frac{1}{k} \nabla \times Z_{l}(k r) \mathbf{X}_{l m}(\theta, \varphi)= & \frac{i \hat{e}_{r} \sqrt{l(l+1)}}{k r} Z_{l}(k r) Y_{l m}(\theta, \varphi)+ \\
& \frac{1}{k r} \frac{d}{d(k r)}\left[k r Z_{l}(k r)\right] \hat{e}_{r} \times \mathbf{X}_{l m}(\theta, \varphi) \tag{2}
\end{align*}
$$

where we see that $\mathbf{X}_{l m}$ is transverse and that, in the latter term, the transverse component is proportional to $\hat{e}_{r} \times \mathbf{X}_{l m}$. Upon inserting the multipole expansions of the fields into the expressions for the power, we obtain a double summation over l and l^{\prime} of relations that are of the form $\mathbf{X}_{l m}^{*} \cdot \mathbf{X}_{l^{\prime} m^{\prime}}, \mathbf{X}_{l m}^{*} \cdot\left(\hat{e}_{r} \times \mathbf{X}_{l^{\prime} m^{\prime}}\right),\left(\hat{e}_{r} \times \mathbf{X}_{l m}\right) \cdot\left(\hat{e}_{r} \times \mathbf{X}_{l^{\prime} m^{\prime}}\right)$. Integration over the angles removes the other summation. Each remaining term in the sum contains a product of spherical Bessel's functions and/or their derivatives - these products can be eliminated with the help of the Wronskian determinants. The cross sections of scattering and absorption are finally (exercise)

$$
\begin{aligned}
\sigma_{s} & =\frac{\pi}{2 k^{2}} \sum_{l}(2 l+1)\left[|\alpha(l)|^{2}+|\beta(l)|^{2}\right] \\
\sigma_{a} & =\frac{\pi}{2 k^{2}} \sum_{l}(2 l+1)\left[2-|\alpha(l)+1|^{2}-|\beta(l)+1|^{2}\right]
\end{aligned}
$$

and the exticntion cross section is the sum of the two above,

$$
\sigma_{t}=-\frac{\pi}{k^{2}} \sum_{l}(2 l+1) \Re[\alpha(l)+\beta(l)]
$$

The differential scattering cross section is

$$
\frac{d \sigma_{s}}{d \Omega}=\frac{\pi}{2 k^{2}}\left|\sum_{l} \sqrt{2 l+1}\left[\alpha_{ \pm}(l) \mathbf{X}_{l, \pm 1} \pm i \beta_{ \pm}(l) \hat{e}_{r} \times \mathbf{X}_{l, \pm \pm}\right]\right|^{2}
$$

for the original polarization state $\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}$. Thereby, scattered radiation is in general elliptically polarized.

Let us study the solution for the coefficients $\alpha(l)$ and $\beta(l)$ based on the boundary conditions and start by defining the fields. The original plane-wave field is $\mathbf{E}_{i}=\left(\hat{\epsilon}_{1} \pm i \hat{\epsilon}_{2}\right) e^{i k z}$:

$$
\begin{aligned}
\mathbf{E}_{i}(\mathbf{x}) & =\sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[j_{l}(k r) \mathbf{X}_{l, \pm 1} \pm \frac{1}{k} \nabla \times j_{l}(k r) \mathbf{X}_{l, \pm 1}\right] \\
\mathbf{H}_{i}(\mathbf{x}) & =\frac{1}{\mu_{0}} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\frac{-i}{k} \nabla \times j_{l}(k r) \mathbf{X}_{l, \pm 1} \mp i j_{l}(k r) \mathbf{X}_{l, \pm 1}\right] .
\end{aligned}
$$

The scattered field takes the form

$$
\begin{gathered}
\mathbf{E}_{s}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\alpha_{ \pm}(l) h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1} \pm \frac{\beta_{ \pm}(l)}{k} \nabla \times h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1}\right], \\
\mathbf{H}_{s}(\mathbf{x})=\frac{1}{2 \mu_{0} c} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\frac{-i \alpha_{ \pm}(l)}{k} \nabla \times h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1} \mp i \beta_{ \pm}(l) h_{l}^{(1)}(k r) \mathbf{X}_{l, \pm 1}\right] .
\end{gathered}
$$

The internal field is

$$
\begin{gathered}
\mathbf{E}_{t}(\mathbf{x})=\frac{1}{2} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\eta_{ \pm}(l) j_{l}\left(k_{t} r\right) \mathbf{X}_{l, \pm 1} \pm \frac{\zeta_{ \pm}(l)}{k_{t}} \nabla \times j_{l}\left(k_{t} r\right) \mathbf{X}_{l, \pm 1}\right], \\
\mathbf{H}_{t}(\mathbf{x})=\frac{1}{2 \mu c} \sum_{l=1}^{\infty} i^{l} \sqrt{4 \pi(2 l+1)}\left[\frac{-i \eta_{ \pm}(l)}{k_{t}} \nabla \times j_{l}\left(k_{t} r\right) \mathbf{X}_{l, \pm 1} \mp i \zeta_{ \pm}(l) j_{l}\left(k_{t} r\right) \mathbf{X}_{l, \pm 1}\right] .
\end{gathered}
$$

The boundary conditions on the surface of the spherical particle (radius a) are

$$
\begin{aligned}
\hat{e}_{r} \times\left.\left[\mathbf{E}_{i}+\mathbf{E}_{s}-\mathbf{E}_{t}\right]\right|_{r=a} & =0, \\
\hat{e}_{r} \times\left.\left[\mathbf{H}_{i}+\mathbf{H}_{s}-\mathbf{H}_{t}\right]\right|_{r=a} & =0
\end{aligned}
$$

As found earlier,

$$
\hat{e}_{r} \times\left[\frac{1}{k} \nabla \times Z_{l}(k r) \mathbf{X}_{l m}(\theta, \varphi)\right]=-\frac{1}{k r}\left[k r Z_{l}(k r)\right]^{\prime} \mathbf{X}_{l m}(\theta, \varphi),
$$

so that, due to the orthogonality of the functions $\mathbf{X}_{l m}$ and $\hat{e}_{r} \times \mathbf{X}_{l m}$, the boundary conditions simplify into the form,

$$
\begin{gathered}
j_{l}(k a)+\frac{1}{2} \alpha_{ \pm}(l) h_{l}^{(1)}(k a)-\frac{1}{2} \eta_{ \pm}(l) j_{l}\left(k_{t} a\right)=0, \\
\pm \frac{1}{k a}\left[k a j_{l}(k a)\right]^{\prime} \mp \frac{1}{2} \beta_{ \pm}(l) \cdot \frac{1}{k a}\left[k a h_{l}^{(1)}(k a)\right]^{\prime} \mp \zeta_{ \pm}(l) \frac{1}{k_{t} a}\left[k_{t} a j_{l}\left(k_{t} a\right)\right]^{\prime}=0, \\
\frac{1}{k a}\left[k a j_{l}(k a)\right]^{\prime}+\frac{1}{2} \alpha_{ \pm}(l) \frac{1}{k a}\left[k a h_{l}^{(1)}(k a)\right]^{\prime}-\frac{\mu_{0}}{2 \mu} \cdot \eta_{ \pm}(l) \frac{1}{k_{t} a}\left[k_{t} a j_{l}\left(k_{t} a\right)\right]^{\prime}=0, \\
\mp j_{l}(k a) \mp \frac{1}{2} \beta_{ \pm}(l) h_{l}^{(1)}(k a) \pm \frac{1}{2} \frac{\mu_{0}}{\mu} \zeta_{ \pm}(l) j_{l}\left(k_{t} a\right)=0 .
\end{gathered}
$$

With the help of the Riccati-Bessel functions and by writing $x=k a, k_{t} a=m x$, we obtain

$$
\begin{gathered}
\psi_{l}(x)+\frac{1}{2} \alpha_{ \pm}(l) \xi_{l}(x)-\frac{1}{2} \eta_{ \pm}(l) \frac{1}{m} \psi_{l}(m x)=0 \\
\mp \psi_{l}^{\prime}(x) \mp \frac{1}{2} \beta_{ \pm}(l) \xi_{l}^{\prime}(x) \mp \frac{1}{2} \zeta_{ \pm}(l) \frac{1}{m} \psi_{l}^{\prime}(m x)=0, \\
\psi_{l}^{\prime}(x)+\frac{1}{2} \alpha_{ \pm}(l) \xi_{l}^{\prime}(x)-\frac{\mu_{0}}{2 \mu} \eta_{ \pm}(l) \frac{1}{m} \psi_{l}^{\prime}(m x)=0, \\
\mp \psi_{l}(x) \mp \frac{1}{2} \beta_{ \pm}(l) \xi_{l}(x) \pm \frac{\mu_{0}}{2 \mu} \zeta_{ \pm}(l) \frac{1}{m} \psi_{l}(m x)=0,
\end{gathered}
$$

that leads to

$$
\begin{aligned}
& \alpha_{ \pm}(l)=-2 \frac{\frac{\mu_{0}}{\mu} \psi_{l}(x) \psi_{l}^{\prime}(m x)-\psi_{l}^{\prime}(x) \psi_{l}(m x)}{\frac{\mu_{0}}{\mu} \xi_{l}(x) \psi_{l}^{\prime}(m x)-\xi_{l}^{\prime}(x) \psi_{l}(m x)} \\
& \beta_{ \pm}(l)=-2 \frac{\frac{\mu}{0}^{\mu} \psi_{l}^{\prime}(x) \psi_{l}(m x) \mp \psi_{l}(x) \psi_{l}^{\prime}(m x)}{\mp \frac{\mu_{0}}{\mu} \xi_{l}^{\prime}(x) \psi_{l}(m x) \mp \xi_{l}(x) \psi_{l}^{\prime}(m x)} \\
& \eta_{ \pm}(l)=2 \frac{\psi_{l}(x) \xi_{l}^{\prime}(x)-\psi_{l}^{\prime}(x) \xi_{l}(x)}{\frac{1}{m} \psi_{l}(m x) \xi_{l}^{\prime}(x)+\frac{1}{m} \frac{\mu_{0}}{\mu} \psi_{l}^{\prime}(m x) \xi_{l}(x)} \\
& \zeta_{ \pm}(l)=2 \frac{\mp \psi_{l}^{\prime}(x) \xi_{l}(x) p m \psi_{l}(x) \xi_{l}^{\prime}(x)}{\frac{1}{m} \psi_{l}^{\prime}(m x) \xi_{l}(x) \mp \frac{1}{m} \frac{\mu_{0}}{\mu} \psi_{l}(m x) \xi_{l}^{\prime}(x)}
\end{aligned}
$$

We have solved for the scattered field completely for two circular polarization states of the original field $\epsilon_{1} \pm i \epsilon_{2}$. We thus know the elements $S_{j}^{(c)}(\mathrm{j}=1,2,3,4)$ of the amplitude scattering matrix that relates the original field to the scattered field in the circular-polarization representation.

$$
\binom{E_{s-}}{E_{s+}}=\frac{e^{i k(r-z)}}{-i k r}\left(\begin{array}{cc}
S_{2}^{(c)} & S_{3}^{(c)} \tag{3}\\
S_{4}^{(c)} & S_{1}^{(c)}
\end{array}\right)\binom{E_{i-}}{E_{i+}}
$$

The amplitude scattering matrix elements of the circular-polarization representation relate linearly to the commonly used ones of the linear-polarization representation.

$$
\left(\begin{array}{c}
S_{1}^{(c)} \tag{4}\\
S_{2}^{(c)} \\
S_{3}^{(c)} \\
S_{4}^{(c)}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & i & -i \\
1 & 1 & -i & i \\
-1 & 1 & i & i \\
-1 & 1 & -i & -i
\end{array}\right)\left(\begin{array}{c}
S_{1} \\
S_{2} \\
S_{3} \\
S_{4}
\end{array}\right),
$$

where, in the case of Lorenz-Mie scattering ($S_{3}=S_{4}=0$),

$$
\begin{align*}
& \left.\begin{array}{c}
S_{1}^{(c)}=\left(S_{1}+S_{2}\right) / 2 \\
S_{2}^{(c)}=\left(S_{1}+S_{2}\right) / 2=S_{1}^{(c)} \\
S_{3}^{(c)}=\left(-S_{1}+S_{2}\right) / 2
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
S_{1}=S_{1}^{(c)}-S_{3}^{(c)} \\
S_{2}=S_{1}^{(c)}+S_{3}^{(c)} \\
S_{4}^{(c)}=S_{3}^{(c)}
\end{array}\right.
\end{align*}
$$

The complete scattering matrix follows now from the elements S_{1}, S_{2} in a standard manner. The elements $S_{1}^{(c)}, S_{2}^{(c)}, S_{3}^{(c)}, S_{4}^{(c)}$ follow from the far-zone expressions for the scattered fields, for which the vector spherical harmonics expansions reduce to the form utlized earlier in the expression for the differential scattering cross section. A more detailed assessment is left for an exercise.

