
1 Mie scattering, or scattering by a spherical particle

An exact solution for scattering by electromagnetic waves by a spherical particle was presented

by Mie and this kind of scattering is commonly called Mie scattering. Lately, the contribution

by Lorenz has also been recognized, but his solution was not based on Maxwell’s equations.

The solution of the scattering problem is composed of several fundamental stages. To

start with, the scalar Helmholtz equation is solved in spherical coordinates, introducing the

spherical harmonics and Bessel, Neumann, and Hankel special functions of fractional order

(the so-called spherical Bessel functions, etc.).

In solving the vector Helmholtz wave equation, a general expansion in electric and magnetic

multipoles is introduced and, in particular, the vector spherical harmonics. The energy and

angular distributions of multipole fields are illustrated with examples, underscoring the power

of the multipole analysis. To cope with the boundary conditions in the spherical geometry,

the original incident plane wave field must be presented as a multipole expansion.

The actual scattering problem for a spherical particle can then be solved in a straight-

forward way. With the help of the multipole exansion, we can have a look at the boundary

conditions for a nonspherical particle. In this case, the coe�cients of the vector spherical

harmonics can no longer be obtained analytically.

2 Scalar wave equation in spherical geometry

In order to prepare for the treatment of the vector wave equation, we consider the scalar wave

equation for scalar field  (x, t),
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We can Fourier-transform the wave equation with respect to time,
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in which case each Fourier-component fulfils the wave equation
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In the case of a single small particle, it is advantageous to search for the solution of the

wave equation in the spherical coordinate system. Scattering extends to the full solid angle

4⇡ and the small particle is located in a constrained region near the origin. In the spherical

coordinates r, ✓,', the wave equation is of the form (see Arfken, Jackson)
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The scalar wave equation can be solved by separating the variables so that the part including

the angular coordinates is represented by the scalar spherical harmonics functions and the

part including the radial dependence is represented by the spherical Bessel, Neumann, and

Hankel functions,

 (x,!) =
X

l,m

flm(r)Ylm(✓,') (5)

The radial part (flm(r)) fulfils its di↵erential equation independently of the index m,
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By writing
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which is the Bessel equation with order l + 1
2 . Then, in the most general way,

flm(r) = Almjl(kr) + Blmnl(kr)

= Ãlmh
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l (kr),
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where jl, nl, h
(1)
l and h(2)

l are the spherical Bessel, Neumann, and Hankel functions. For

example,
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The functions jl and nl can be analytically generated using the so-called Rodriques’ formulae
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In the limit x << 1, l, the functions can be calculated using the leading terms of their series

expansions,
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⌘
,
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Correspondingly, in the limit x >> l, we obtain

jl(x) ⇡ 1

x
sin(x� l⇡

2
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2
),

h(1)
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x
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The functions obey the recursive relations

2l + 1

x
zl(x) = zl�1(x) + zl+1(x),

z0l(x) =
1

2l + 1
[lzl�1(x)� (l + 1)zl+1(x)],

d
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[xzl(x)] = xzl�1(x)� lzl(x), (15)

where zl(x) can be any of the functions jl, nl, h
(1)
l or h(2)

l . In practical numerical computa-

tions, special attention needs to paid to numerical stability, for example, to the direction the

recursive relations are utilized. The Wronskian determinants are, pair-wise,
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Thus, the general solution of the scalar wave equation in spherical coordinates can be presented

in the form

 (x) =
X

l,m

h
A(1)

lmh(1)
l (kr) + A(2)

lmh(2)
l (kr)

i
Ylm(✓,') (17)

that is, as a sum of outgoing and incoming waves.

Consider next the properties of the spherical-harmonics functions Ylm(✓,'). According to

the definition,

Ylm(✓,') =
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Pm
l (cos ✓)eim',

l = 0, 1, 2, . . . ,

m = �l,�l + 1, . . . , 0, . . . , l � 1, l. (18)

The functions Pm
l (x) are associated Legendre functions that can be derived from the Legendre

polynomials Pl(x) by the Rodriques’ formula,
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Pl(x)
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)
m/2 dl+m

dxl+m
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For Pm
l (x), it is generally true that
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l (x) = (�1)

m (l �m)!

(l +m)!
Pm
l (x) (20)

so that

Yl,�m(✓,') = (�1)
mY ⇤

l,m(✓,') (21)

The spherical-hamonics functions constitute a complete orthonormal set of functions,

Z
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d⌦Y ⇤
l0,m0(✓,')Yl,m(✓,') = �ll0�mm0 , (22)

with the closure relation
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For example,
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4⇡

,
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For example, the following recursive relations can be derived for the associated Legendre

functions:
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1� x2Pm

l = Pm+1
l+1 � Pm+1

l�1
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p
1� x2Pm
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1

2
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2
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Let us study the spherical wave expansion of the Green’s function corresponding to an

outgoing wave. The Green’s function fulfils the inhomogeneous wave equation

(r2
+ k2

)G(x,x0
) = ��(x� x0

) (26)

and is of the form

G(x,x0
) =

eik|x�x0|

4⇡|x� x0| (27)

Let us write

G(x,x0
) =

X

lm

gl(r, r
0
)Y ⇤

lm(✓
0,'0

)Ylm(✓,') (28)

and insert this expression into the partial di↵erential equation above. Then, we obtain
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dr2
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2

r

d
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i
gl = � 1

r2
�(r � r0) (29)

with the following wave solution that is finite at the origin and and outgoing wave at infinity,

gl(r, r
0
) = Ajl(kr<)h

(1)
l (kr>) (30)

where r> = max(r, r0) and r< = min(r, r0) and A = ik, so that the discontinuity of the

derivatiuve is correct at r = r0. The spherical wave expansion of the Green’s function is thus

eik|x�x0|

4⇡|x� x0| = ik
1X

l=0

jl(kr<)h
(1)
l (kr>)
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0,'0
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In order to solve the vector wave equation, we return one more time to the angular part
of the scalar wave equation and introduce useful auxiliary tools. The spherical harmonics are
solutions of the following equation:

�
h 1

sin ✓

@

@✓
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@

@✓
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sin2
✓

@
2

@'2

i
Ylm = l(l + 1)Ylm,

which can be written in the form (cf. quantum mechanics)

L
2
Ylm = l(l + 1)Ylm

where
L
2 = L

2
x + L

2
y + L

2
z

L =
1

i
(r⇥r)

so that L is ~�1 times the orbital impulse momentum operator in wave mechanics. L can be
presented conveniently using the operators L+, L�, and Lz,

L+ = Lx + iLy = e
i'
⇣
@

@✓
+ i cot ✓

@

@'

⌘

L� = Lx � iLy = e
�i'

⇣
� @

@✓
+ i cot ✓

@

@'

⌘
(1)

Lz = �i
@

@'
(2)

L only operates on the angular variables and r ·L = 0. For what follows, it is useful to notice
that, based on the recursive relations of the spherical harmonics,

L+Ylm =
p

(l �m)(l +m+ 1)Yl,m+1

L�Ylm =
p

(l +m)(l �m+ 1)Yl,m�1 (3)

LzYlm = mYlm (4)

In addition, L, L2 and r2 fulfil the following commutation rules:

L
2
L = LL

2

L⇥ L = iL (5)

Ljr2 = r2
Lj (6)

where

r2 =
1

r

@
2

@r2
(r)� L

2

r2
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1 Multipole expansions of electromagnetic fields

In free space, Maxwell’s equations take the form (time dependence e
�i!t)

r⇥ E = ik⇣0H, r⇥H = �ikE/⇣0 (7)

r · E = 0, r ·H = 0 (8)

where k = !/c. If the E-field is eliminated, one obtains

(r2 + k
2)H = 0, r ·H = 0

H = � i

k⇣0
r⇥ E

Alternatively, eliminating the H-field yields

(r2 + k
2)E = 0, r · E = 0

E =
i⇣0

k
r⇥H.

Both groups of three equations are equivalent to the original Maxwell’s equations. We
attempt to find multipole solutions for the vector fields E andH. It is clear that each Cartesian
component of E and H fulfil the scalar wave equation so that each component could be
developed into series in multipoles of the scalar wave equation. However, the conditions about
the sourceless nature of both E andH would be di�cult to account for and it would be di�cult
to construct pure multipoles for the vector wave equation.

Instead, we start from the scalar quantity r · A, where A is a regularly behaving vector
field. First,

r2(r ·A) = r · (r2
A) + 2r ·A

so that
r2(r · E) = r · (�k

2
E) , (r2 + k

2)(r · E) = 0

and, in a corresponding way,
(r2 + k

2)(r ·H) = 0

Therefor, the general solution for r ·E and r ·H:n can be presented as series of basis functions
of the scalar wave equation.

We define the magnetic multipole of order (l,m) by the conditions

r ·H(M)
lm =

l(l + 1)

k
gl(kr)Ylm(✓,')

r · E(M)
lm = 0 (9)

where gl(kr) = A
(1)
l h

(1)
l (kr) + A

(2)
l h

(2)
l (kr) (the coe�cient l(l + 1)/k has been introduced for

convenience).
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Now

⇣0kr ·H =
1

i
r · (r⇥ E) =

1

i
(r⇥r) · E = L · E

where L is the operator showin g up when solving the scalar wave equation. When r · H =
r ·H(M)

lm , it must be true that

L · E(M)
lm (r, ✓,') = l(l + 1)⇣0gl(kr)Ylm(✓,')

and
r · E(M)

lm = 0

Since L only operates on the angular variables (✓,'), the r-dependence of E(M)
lm is gl(kr). In

order for L ·E(M)
lm to produce a pure Ylm(✓,') angular dependence, E

(M)
lm need to be prepared

using the Lz, L+, and L�-operators so that, ultimately,

E
(M)
lm = ⇣0gl(kr)LYlm(✓,')

H
(M)
lm = � 1

k⇣0
r⇥ E

(M)
lm (10)

This is the definition for the electromagnetic fields of the magnetic multipole of order (l,m).
Occasionally, this is also called the transverse electric multipole (TE).

The electromagnetic fields of an electric or transverse magnetic (TM) multipole of order
(l,m) follow from the conditions

r · E(E)
lm = �⇣0

l(l + 1)

k
fl(kr)Ylm(✓,')

r ·H(E)
lm = 0

and are of the form

H
(E)
lm = fl(kr)LYlm(✓,')

E
(E)
lm =

i⇣0

k
r⇥H

(E)
lm (11)

where the r-dependent part fl(kr) is again a combination of the spherical Hankel or Bessel
and Neumann functions.

It can be shown that the electric and magnetic multipole fields constitute a complete
vectorial set of solutions for Maxwell’s equations in source-free space. In what follows, the
terminology of electric and magnetic multipoles is being used as, physically, the sources are
the electric charge density and the magnetic moment density, respectively.

In the consideration of vector spherical harmonics, the vector spherical harmonics functions
LYlm assume a central role. For convenience, the vector functions are normalized so that the
final vector spherical harmonics are

Xlm(✓,') ⌘
1p

l(l + 1)
LYlm(✓,')
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We define X00 ⌘ 0, since spherically symmetric solutions to Maxwell’s equations only exist
in source-free space at the static limit k ! 0. For Xlm, the following orthogonality relations
can be ascertained, Z

(4⇡)

d⌦X⇤
l0,m0 ·Xlm = �ll0�mm0

Z

(4⇡)

d⌦X⇤
l0,m0 · (r⇥Xlm) = 0

The proof is left for an exercise.
The general solution for Maxwell’s equations can now be written as an expansion of electric

and magnetic multipoles,

H =
X

l,m

h
aE(l,m)fl(kr)Xlm � i

k
aM(l,m)r⇥ gl(kr)Xlm

i

E = ⇣0

X

l,m

h
i

k
aE(l,m)r⇥ fl(kr)Xlm + aM(l,m)gl(kr)Xlm

i

where the coe�cients aE(l,m) and aM(l,m) give the amount of electric and magnetic multi-

poles of order (l,m). The functions fl(kr) and gl(kr) are linear combinations of h(1,2)
l or jl and

nl. The coe�cients aE(l,m) and aM(l,m) are determined by the sources and the boundary
conditions. Explicitly, this is seen by the scalar quantitites r ·H and r · E being su�cient to
determine the unknown coe�cients:

aM(l,m)gl(kr) =
kp

l(l + 1)

Z

(4⇡)

d⌦Y ⇤
lmr ·H

⇣0aE(l,m)fl(kr) = � kp
l(l + 1)

Z

(4⇡)

d⌦Y ⇤
lmr · E

When r ·H and r ·E are known at two distances di↵ering from one another in the source-free
region, the fields can be unambiguously determined, all the way to the mutual proportions of
the two parts in the radial dependences fl and gl.

2 Energy in multipole fields

Consider multipole fields in the near zone kr << 1. Then, the leading contribution derives
from the Neumann function so that fl _ nl; assume that the coe�cient of the multipole in
question di↵ers from zero. We obtain

H
(E)
lm ! �k

l
L
Ylm

rl+1
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where the factor �k/l is introduced for convenience. In order to calculate the electric field,
we must compute the curl of the right-hand side of the equation; in doing this, we make use
of the result

ir⇥ L = rr2 �r(1 + r
@

@r
)

The electric field is

E
(E)
lm ! � i

l
⇣0r⇥ L

⇣
Ylm

rl+1

⌘

and, since Ylm/r
l+1 obeys the Laplace equation,

r2 Ylm

rl+1
= 0

and, for the electric field, we obtain

E
(E)
lm ! �⇣0r

Ylm

rl+1

which is the multipole field of electrostatics. The magnetic field H
(E)
lm is smaller than E

(E)
lm /⇣0

by a factor of kr so that, in the near zone, the magnetic field of the electric multipole is
considerably smaller than the electric field (cf. earlier treatment for an electric dipole moment).

By exchanging E and H in the previous analysis, we can obtain the case of the magnetic
multipole,

E
(E) ! �⇣0H

(M)
, H

(E) ! E
(M)

/⇣0

Let us study the multipole fields in the far zone kr >> 1. The fields depend on the
boundary conditions set and, as an example, we study outgoing waves that are applicable to
the case of radiation by a localized source, too. Now fl(kr) _ h

(1)
l (kr) and

H
(E)
lm ! (�i)l+1 e

ikr

kr
LYlm

and the electric field is of the form

E
(E)
lm = ⇣0

(�i)l

k2

h
r
⇣
e
ikr

r

⌘
⇥ LYlm +

e
ikr

r
r⇥ LYlm

i

The asymptotic form of h(1)
l is already used in the expression of the electric field so only factors

proportional to r
�1 can be conserved in the expressions. By using, again, the aforedescribed

result for r⇥ L, we obtain

E
(E)
lm = �⇣0(�i)l+1 e

ikr

kr

h
n⇥ LYlm � 1

k
(rr2 �r)Ylm

i
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where n = r/r. The second term on the right is of the order of 1/kr and can be omitted from
the expression in parentheses in the limit kr >> 1. We obtain

E
(E)
lm = ⇣0H

(E)
lm ⇥ n

where H
(E)
lm is asymptotic form given above.

The multipole fields can be utilized in the computation of the energy transported by the
radiation. As an example, consider the linear superposition of electric multipoles of order
(l,m) with di↵erent values of m, when l is kept constant. The fields are of the form

Hl =
X

m

aE(l,m)Xlmh
(1)
l (kr)e�i!t

El =
i

k
⇣0r⇥Hl

The time-averaged energy density of time-harmonic fields is

u =
✏0

4
(E · E⇤ + ⇣

2
0H ·H⇤)

In the far zone, the two terms of the energy density are equal and, in a spherical shell r, r+dr,
there is the following amount of energy:

dU =
µ0dr

2k2

X

m,m0

a
⇤
E(l,m

0)aE(l,m)

Z

(4⇡)

d⌦X⇤
lm0 ·Xlm

and, due to the orthogonality,

dU

dr
=

µ0

2k2

X

m

|aE(l,m)|2

which is independent of r. In the general case of electric and magnetic multipoles, the summa-
tion goes over both l and m and |aE|2 ! |aE|2 + |aM |2. In the spherical shell in the radiation
zone, the total energy is thus the incoherent sum over all multipoles.

3 Angular dependence of multipole radiation

For an arbitrary localized source distribution, the fields in the radiation zone are obtained as
a superposition

H ! e
ikr�i!t

kr

X

lm

(�i)l+1
h
aE(l,m)Xlm + aM(l,m)n⇥Xlm

i
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E ! ⇣0H⇥ n, n =
r

r

where the coe�cients aE(l,m) and aM(l,m) are connected to the properties of the source.
The time-averaged power as per solid angle is

dP

d⌦
=

⇣0

2k2
|
X

l,m

(�i)l+1
h
aE(l,m)Xlm ⇥ n+ aM(l,m)Xlm

i
|2

The dimension of the expression inside the || marks is the dimension of the magnetic field.
The directions of the vectors determine the polarization of the radiation. The angular depen-
dence of the electric and magnetic multipoles of order (l,m) coincide but the polarizations
are perpendicular to one another. It then follows that the order of the multipoles can be de-
termined from the angualr dependence but the electric or magnetic nature can be determined
only after a polarization measurement.

The angular dependence of a pure multipole of order (l,m) is

dP (l,m)

d⌦
=

⇣0

2k2
|a(l,m)|2|Xlm|2

Based on the definition of Xlm and the rules of calculus for L+ and L�,

dP (l,m)

d⌦
=

⇣0|a(l,m)|2

2k2l(l + 1)

h1
2
(l�m)(l+m+1)|Yl,m+1|2+

1

2
(l+m)(l�m+1)|Yl,m�1|2+m

2|Ylm|2
i

Examples of angular dependences |Xlm(✓,')|2 follow:
Dipole: (dipole vibrating in the direction of the z-axis)

l = 1,m = 0
3

8⇡
sin2

✓

(dipoles vibrating along the x- and y-axes with a phase di↵erence ⇡
2 )

l = 1,m = ±1
3

16⇡
(1 + cos2 ✓)

Quadrupole:

l = 2,m = 0
15

8⇡
sin2

✓ cos2 ✓

l = 2,m = ±1
5

16⇡
(1� 3 cos2 ✓ + 4 cos4 ✓)

l = 2,m = ±2
5

16⇡
(1� cos4 ✓)

With the help of the addition rule for spherical harmonics, one can show that

lX

m=�l

|Xlm(✓,')|2 =
2l + 1

4⇡
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so that the vector spherical harmonics have their own addition rule. This implies that the
angular dependence of radiation is isotropic when the source is composed of incoherently
radiating multipoles of order l with coe�cients a(l,m) independent of m.

The total power radiated by a pure multipole can be obtained via integration and, due to
the orthonormality,

P (l,m) =
⇣0

2k2
|a(l,m)|2

For a general source, the angular dependence follows from the coherent that has been shown
above. When computing the total power, due to the orthgonality, the interference terms do not
contribute, and the total power is the incoherent sum of the contributions from the di↵erent
multipoles:

P =
⇣0

2k2

X

l,m

h
|aE(l,m)|2 + |aM(l,m)|2

i
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