
1 Introduction to scattering theory

Each scattering problem depends on the detailed characteristics of the scattering particle: its

size, shape, and refractive index. The size is usually described by the size parameter

x =
2⇡a

�
, (1)

where a is a typical radial distance in the particle and and � is the wavelength of the original

electromagnetic field. In the size dependence of scattering, only the ratio a/� is meaningful.

Shape is described by suitable elongation, roughness, or angularity parameters. The consti-

tutive material is characterized by the complex-valued refractive index

m = n+ in0, (2)

where the real and imaginary parts n and n0
are responsible for refraction and absorption

of light, respectively. The time dependence of the fields has been chosen to be exp(�i!t)
so that, in physically relevant cases, the imaginary part of the refractive index needs to be

non-negative.

1.1 Electromagnetic formulation of the problem

Electromagnetic scattering and absorption is here being assessed from the view point of clas-

sical electromagnetics. The natural foundation is provided by the Maxwell equations

r ·D = ⇢,

r⇥E = �@B

@t
,

r ·B = 0,

r⇥H = j +
@D

@t
, (3)

whereE is the electric field,B is the magnetic flux density,D is the electric displacement, and

H is the magnetic field. ⇢ and j are, respectively, the densities of free charges and currents. In

order for the charge and current densities to determine the fields unambiguously, constitutive

relations describing the interaction of matter and fields are introduced,

j = �E,

D = ✏E,

B = µH , (4)

1



where � is the electric conductivity, ✏ is the electric permittivity, and µ is the magnetic

permeability. In what follows, it is assumed that there are no free charges or currents and that

the time dependence of the fields is of the harmonic type exp(�i!t). The Maxwell equations

then reduce to the form

r · ✏E = 0,

r⇥E = i!µB,

r ·H = 0,

r⇥H = �i!✏E, (5)

so that the fields E and H fulfil the vector wave equations

r2
E + k2

E = 0,

r2
H + k2

H = 0, (6)

where k2
= !2m2/c2 and m is the relative refractive index of the scatterer, m2

= ✏µ/✏0µ0.

Denote the internal field of the particle by (E1,H1). The external field (E2,H2) is the

superposition of the original field (Ei,H i) and the scattered field (Es,Hs),

E2 = Ei +Es,

H2 = H i +Hs. (7)

In what follows, let us assume that the original field is a plane wave,

Ei = E0 exp[i(k · x� !t)],

H i = H0 exp[i(k · x� !t)],H0 =
1

!µ0
k ⇥E0, (8)

where k is the wave vector of the medium surrounding the particle. Since there are no free

currents according to our hypothesis, the tangential components of the fields E and H are

continuous across the boundary between the particle and the surrounding medium:

(E2 �E1)⇥ n = 0,

(H2 �H1)⇥ n = 0, (9)

at the boundary with an outward normal vector n. It is our fundamental goal to solve the

Maxwell equations everywhere in space with the boundary conditions given.
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1.2 Amplitude scattering matrix

Let us place an arbitrary particle in a plane wave field according to the figure (cf. Bohren &

Hu↵man). The propagation directions of the original and scattered fields ez and er define a

scattering plane, and the original field is divided into components perpendicular and parallel

to that plane,

Ei = (E0?ei? + E0keik) exp[i(kz � !t)] = Ei?ei? + Eikeik. (10)

In the radiation zone, that is, far away from the scattering particle, the scattered field is a

transverse spherical wave (cf. Jackson),

Es =
exp(ikr)

�ikr
A, er ·A = 0, (11)

so that

Es = Es?es? + Eskesk, (12)

where

es? = �e�,

esk = e✓. (13)

Due to the linearity of the boundary conditions, the amplitude of the scattered field depends

linearly on the amplitude of the original field. In a matrix form,


Es?
Esk

�
=

exp[i(kr � kz)]

�ikr


S1 S4

S3 S2

� 
Ei?
Eik

�
, (14)

where the complex-valued amplitude-scattering-matrix elements Sj (j = 1, 2, 3, 4) generally

depend on the scattering angle ✓ and the azimuthal angle �. Since only the relative phases

are important, the amplitude scattering matrix has seven free parameters.

1.3 Stokes parameters and scattering matrix

In the medium surrounding the particle, the time-averaged Poynting vector S can be divided

into the Poynting vectors of the original field, scattered field, and that showing the interaction

of the original and scattered fields,

S =
1

2
Re(E2 ⇥H

⇤
2) = Si + Ss + Se, (15)
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where

Si =
1

2
Re(Ei ⇥H

⇤
i ),

Ss =
1

2
Re(Es ⇥H

⇤
s),

Se =
1

2
Re(Ei ⇥H

⇤
s +Es ⇥H

⇤
i ). (16)

In the radiation zone, the power incident on a surface element �A perpendicular to the radial

direction is

Ss · er =
k

2!µ

|A|2

k2
�⌦,�⌦ =

�A

r2
(17)

and |A|2 can be measures as a function of angles. By placing polarizers in between the

scattering particle and the detector, we can measure the Stokes parameters of the scattered

field (Bohren & Hu↵man),

Is = h|Es?|2 + |Esk|2i,
Qs = h�|Es?|2 + |Esk|2i,
Us = 2ReE⇤

s?Esk,

Vs = �2ImE⇤
s?Esk. (18)

Thus, Is gives the scattered intensity, Qs gives the di↵erence between the intensities in the

scattering plane and perpendicular to the scattering plane, Us gives the di↵erence between

+⇡/4 and �⇡/4 -polarized intensities and, lastly, Vs gives the di↵erence between right-handed

and left-handed circularly polarized intensities. The factor k/2!µ0 has been omitted from the

intensities; it is not needed since, in practice, relative intensities are measured instead of ab-

solute ones. The Stokes parameters fully describe the polarization state of an electromagnetic

field.

The scattering matrix S interrelates the Stokes parameters of the original field and the

scattered field, and can be derived from the amplitude scattering matrix:

Is =
1

k2r2
SI i, (19)

where the Stokes vectors

Is = (Is, Qs, Us, Vs)
T ,

I i = (Ii, Qi, Ui, Vi)
T . (20)
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The information about the angular dependence of scattering is fully contained in the 16 ele-

ments of the scattering matrix. For a single scattering particle, it has seven free parameters

whereas, for an ensemble of particles, all 16 elements can be free. Symmetries reduce the num-

ber of free parameters: for example, for a spherical particle, there are three free parameters.

For an unpolarized incident field, the Stokes parameters of the scattered field are

Is =
1

k2r2
S11Ii,

Qs =
1

k2r2
S21Ii,

Us =
1

k2r2
S31Ii,

Vs =
1

k2r2
S41Ii. (21)

Thus, S11 gives the angular distribution of scattered intensity and the total degree of pola-

rization is

Ptot =

p
S2
21 + S2

31 + S2
41

S11
. (22)

Scattering polarizes light.

5



1 Introduction to scattering theory

1.1 Electromagnetic formulation of the problem

1.2 Amplitude scattering matrix

1.3 Stokes parameters and scattering matrix

1.4 Extinction, scattering and absorption

Let us assume that medium surrounding the scattering particle is non-absorbing. The total

or extinction cross section is then the sum of the absorption and scattering cross sections:

�e = �s + �a, (1)

where

�e = � 1

Ii

Z

A

dASe · er,

�s =
1

Ii

Z

A

dASs · er, (2)

when A is a spherical envelope of radius r containing the scattering particle.

Let the original field be of ex-polarized form E0 = Eex. In the radiation zone,

Es / exp[ik(r � z)]

�ikr
XE, er ·X = 0,

Hs / k

!µ
er ⇥Es, (3)

where the vector scattering amplitude X is related to the amplitude scattering matrix as

follows:

X = (S4 cos�+ S1 sin�)es? + (S2 cos�+ S3 sin�)esk. (4)

By making use of the asymptotic forms of the scattered field shown above and ex-polarized

original field, the so-called optical theorem can be derived: extinction depends only on scat-

tering in the exact forward direction,

�e =
4⇡

k2
Re[(X · ex)✓=0]. (5)
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In addition,

�s =

Z

4⇡

d⌦
d�s

d⌦
, (6)

where the di↵erential scattering cross section is

d�s

d⌦
=

|X|2

k2
. (7)

The extinction, scattering, and absorption e�ciencies are defined as the ratios of the

corresponding cross sections to the geometric cross section of the particle A? as projected in

the propagation direction of the original field:

qe =
�e

A?
,

qs =
�s

A?
,

qa =
�a

A?
. (8)

For an unpolarized original field, the cross sections are

�e =
1

2
(�(1)

e + �(2)
e ),

�s =
1

2
(�(1)

s + �(2)
s ), (9)

where the indices 1 and 2 refer to two polarization states of the original field perpendicular

to one another.

2 Plane waves

The electromagnetic plane wave

E = E0e
ik·x�i!t

H = H0e
ik·x�i!t

(10)

can, under certain conditions, fulfil Maxwell’s equations. The physical fields correspond to the

real parts of the complex-valued fields. The vectors E0 and H0 above are constant vectors

and can be complex-valued. Similarly, the wave vector k can be complex-valued:

k = k
0
+ ik00, k

0,k00 2 Rn
(11)
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Inserting (11) into equation (10), we obtain

E = E0e
�k

00
·xeik

0
·x�i!t

H = H0e
�k

00
·xeik

0
·x�i!t

(12)

In Eq. (12), E0e�k
00
·x

and H0e�k
00
·x

are amplitudes and k
0 · x� !t = � is the phase of the

wave.

An equation of the form k ·x =constant defines, in the case of a real-valued vector k, a planar

surface, whose normal is just the vector k. Thus, k
0
is perpendicular to the planes of cons-

tant phase and k
00
is perpendicular to the planes of constant amplitude. If k

0 k k
00
, the planes

coincide and the wave is homogeneous. If k0 , k
00
, the wave is inhomogeneous. A plane wave

propagating in vacuum is homogeneous.

In the case of plane waves, Maxwell’s equaitons can be written as

k ·E0 = 0

k ·H0 = 0

k ⇥E0 = !µH0

k ⇥H0 = �!✏E0 (13)

The two upmost equations are conditions for the transverse nature of the waves: k is

perpendicular to both E0 and H0. The two lowermost equations show that E0 and H0

are perpendicular to each other. Since k, E0, and H0 are complex-valued, the geometric

interpretation is not simple unless the waves are homogeneous.

It follows from Maxwell’s equations (13) that, on one hand,

k ⇥ (k ⇥E0) = !µk ⇥H0 = �!2✏µE0 (14)

and, on the other hand,

k ⇥ (k ⇥E0) = k(k ·E0)�E0(k · k) = �E0(k · k), (15)

so that

k · k = !2✏µ. (16)

Plane waves solutions are in agreement with Maxwell’s equations if

k ·E0 = k ·H0 = E0 ·H0 = 0 (17)
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and if

k02 � k002
+ 2ik0 · k00

= !2✏µ. (18)

Note that ✏ and µ are properties of the medium, whereas k
0
and k

00
are properties of the

wave. Thus, ✏ and µ do not unambiguously determine the details of wave propagation.

In the case of a homogeneous plane wave (k
0kk00

),

k = (k0
+ ik00

)ê, (19)

where k0
and k00

are non-negative and ê is an arbitrary real-valued unit vector.

According to Eq. (16),

(k0
+ ik00

)
2
= !2✏µ =

!2m2

c2
, (20)

where c = 1/
p
✏0µ0 is the speed of light in vacuum and m is the complex-valued refractive

index

m =

r
✏µ

✏0µ0
= mr + imi, mr,mi � 0. (21)

In vacuum, the wave number is !/c = 2⇡/�, where � is the wavelength. The general homo-

geneous plane wave takes the form

E = E0e
� 2⇡mis

� ei
2⇡mrs

� �i!t
(22)

where s = e · x. The imaginary and real parts of the refractive index determine the attenua-

tion and phase velocity v = c/mr of the wave, respectively.

3 Poynting vector

Let us study the electromagnetic field E, H that is time harmonic. For the physical fields

(the real parts of the complex-valued fields), the Poynting vector

S = E ⇥H (23)

describes the direction and amount of energy transfer everywhere in the space.
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Let n be the unit normal vector of the planar surface element A. Electromagnetic energy

is transferred through the planar surface with power S · n A, where S is assumed constant

on the surface. For an arbitrary surface and S depending on location, the power is

W = �
Z

A

S · ndA, (24)

where n is the outward unit normal vector and the sign has been chosen so that positive W
corresponds to absorption in the case of a closed surface.

The time-averaged Poynting vector

hSi = 1

⌧

Z t+⌧

t

S(t0)dt0 ⌧ >> 1/! (25)

is more important than the momentary Poynting vector (cf. measurements).

The time-averaged Poynting vector for time-harmonic fields is

hSi = 1

2
Re{E ⇥H

⇤} (26)

and, in what follows, this is the Poynting vector meant even though the averaging is not

always shown explicitly.

For a plane wave field, the Poynting vector is

S =
1

2
Re{E ⇥ H

⇤} = Re
n
E ⇥ (k⇤ ⇥ E

⇤)

2!µ⇤

o
, (27)

where

E ⇥ (k
⇤ ⇥E

⇤
) = k

⇤
(E ·E⇤

)�E
⇤
(k

⇤ ·E). (28)

For a homogeneous plane wave,

k ·E = k
⇤ ·E = 0 (29)

and

S =
1

2
Re

np
✏µ

µ⇤

o
|E0|2e�

4⇡Im(m)z
� êz. (30)
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4 Stokes parameters

Consider the following experiment for an arbitrary monochromatic light source (see Bohren

& Hu↵man p. 46). In the experiment, we make use of a measuring apparatus and polarizers

with ideal performance: the measuring apparatus detects energy flux density independently

of the state of polarization and the polarizers do not change the amplitude of the transmitted

wave.

Denote

E = E0e
ikz�i!t, E0 = E?ê? + Ekêk

E? = a?e
�i�?

Ek = ake
�i�k a?, ak � 0, �?, �k 2 R (31)

Experiment I

No polarizer: the flux density is proportional to

|E0|2 = EkE
⇤
k + E?E

⇤
? (32)

Experiment II

Linear polarizers k and ?:

1) k: the amplitude of the transmitted wave is Ek and the flux density is EkE⇤
k

2) ?: the amplitude of the transmitted wave is E? and the flux density is E?E⇤
?

The di↵erence of the two measurements is Ik � I? = EkE⇤
k � E?E⇤

?.

Experiment III

Linear polarizers +45
�
ja �45

�
: The new basis vectors are

⇢
ê+ =

1p
2
(êk + ê?)

ê� =
1p
2
(êk � ê?)

and

E0 = E+ê+ + E�ê�

E+ =
1p
2
(Ek + E?)

E� =
1p
2
(Ek � E?).
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1) +45
�
: the amplitude of the transmitted wave is E+ and the flux density is

E+E⇤
+ =

1
2(EkE⇤

k + EkE⇤
? + E?E⇤

k + E?E⇤
?)

2) �45
�
: the amplitude of the transmitted wave is E� and the flux density is

E�E⇤
� =

1
2(EkE⇤

k � EkE⇤
? � E?E⇤

k + E?E⇤
?)

The di↵erence os the measurements is I+ � I� = EkE⇤
? + E?E⇤

k .

Experiment IV

Circular polarizers R and L:

êR =
1p
2
(êk + iê?) êR · ê⇤R = 1

êL =
1p
2
(êk � iê?) êL · ê⇤L = 1 êR · ê⇤L = 0

and

E0 = ERêR + ELêL

ER =
1p
2
(Ek � iE?)

EL =
1p
2
(Ek + iE?).

1) R: the amplitude of the transmitted wave is ER and the flux density is ERE⇤
R =

1
2(EkE⇤

k � iE⇤
kE? + iE⇤

?Ek + E?E⇤
?)

2) L: the amplitude of the transmitted wave is EL and the flux density is ELE⇤
L =

1
2(EkE⇤

k + iE⇤
kE? � iE⇤

?Ek + E?E⇤
?)

The di↵erence of the measurements is IR � IL = i(E⇤
?Ek � E⇤

kE?).

With the help of Experiments I-IV, we have determined the Stokes parameters I, Q, U ,

and V :

I = EkE
⇤
k + E?E

⇤
? = a2k + a2?

Q = EkE
⇤
k � E?E

⇤
? = a2k � a2?

U = EkE
⇤
? + E?E

⇤
k = 2aka? cos �

V = i(EkE
⇤
? � E?E

⇤
k) = 2aka? sin � � = �k � �? (33)

7



1 Scattering at the plane interface between two media

Two kinds of features can be distinguished in the reflection and refraction of waves at the
plane interface between two media:
i) Kinematical properties:
a) the angle of reflection coincides with the angle of incidence
b) the angle of refraction relates to the angle of incidence and the refractive indices of the
media via Snel’s law
ii) Dynamical properties:
a) the intensitities of reflected and refracted radiation
b) phase shifts and polarization

The kinematical properties follow from the wave nature of the phenomena and the exis-
tence of the boundary conditions. The dynamical properties depend fully on the characteris-
tics of the waves and their boundary conditions.
The coordinate systems and symbols are defined in Fig. 1. The original plane wave (wave vec-
tor k, angular frequency !) is incident on the interface from the medium µ, ✏ (refractive index
m =

p
✏µ/✏0µ0). The refracted plane wave propagates in the medium µ0, ✏0 (m0 =

p
✏0µ0/✏0µ0)

with wave vector kt and the reflected plane wave in the medium µ, ✏ with wave vector kr.
The kinematics are described by the angles of incidence ✓i, reflection ✓r, and refraction ✓t.

Assume first that µ, ✏, µ0, ✏0 and therefor also m and m0 are real-valued.
Based on what has already been described before, we can write the incident, reflected, and

refracted fields as follows:

Ei = E0ie
iki·x�i!t

Bi =
p
✏µ

ki ⇥ Ei

ki
(1)

Er = E0re
ikr·x�i!t

Br =
p
✏µ

kr ⇥ Er

kr
(2)

Et = E0te
ikt·x�i!t

Bt =
p

✏0µ0kt ⇥ Et

kt
(3)

The lengths of the wave vectors are
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|ki| = |kr| = ki = kr = !
p
✏µ

|kt| = kt = !
p

✏0µ0 (4)

The boundary conditions are to be valid at the interface z = 0 at all times. Therefore,
the spatial dependences of the fields need to coincide at the interface and, in particular, the
arguments of the phase factors

(ki · x)z=0 = (kr · x)z=0 = (kt · x)z=0 (5)

independently of the detailed properties of the boundary conditions. It follows, first, that the
wave vectors must be confined to a single plane. Second, it follows that ✓i = ✓r and, third, we
obtain Snel’s law

ki sin ✓i = kt sin ✓t
, m sin ✓i = m0 sin ✓t. (6)

According to the boundary conditions of electromagnetic fields, the normal components of
D and B and the tangential components of E and H must be continuous across the boundary.
Then, at the interface z = 0, we have

n̂ · [✏(E0i + E0r)� ✏0E0t] = 0

n̂ · [ki ⇥ E0i + kr ⇥ E0r � kt ⇥ E0t] = 0

n̂ ⇥ [E0i + E0r � E0t] = 0

n̂ ⇥ [
1

µ
(ki ⇥ E0i + kr ⇥ E0r)�

1

µ0 (kt ⇥ E0t)] = 0 (7)

Let us divide the scattering problem into two cases: first, the incident field is linearly
polarized so that the electric field is perpendicular to the plane defined by ki and n̂; second,
the electric field is within that plane. An arbitrary elliptic polarization can be treated as a
linear sum of the results following for the two cases defined above.
First, let the electric field be perpendicular to the plane of incidence (see Fig. 2). The choice
of B-vectors guarantees a positive flow of energy in the direction of the wave vectors. With
the help of the third and fourth boundary conditions above, we obtain
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E0i + E0r � E0t = 0
r

✏

µ
(E0i � E0r) cos ✓i �

s
✏0

µ0E0t cos ✓t = 0 (8)

Denote the Fresnel coe�cients by

r? =
E0r

E0i
, t? =

E0t

E0i
.

Then,

1 + r? � t? = 0
r

✏

µ
(1� r?) cos ✓i �

s
✏0

µ0 t? cos ✓t = 0 (9)

and it follows that

t? = 1 + r?
r

✏

µ
cos ✓i �

s
✏0

µ0 cos ✓t = (

r
✏

µ
cos ✓i +

s
✏0

µ0 cos ✓t)r? (10)

and, furthermore, we obtain, for the Fresnel coe�cients,

r? =

q
✏
µ cos ✓i �

q
✏0

µ0 cos ✓t
q

✏
µ cos ✓i +

q
✏0

µ0 cos ✓t

t? =
2
q

✏
µ cos ✓i

q
✏
µ cos ✓i +

q
✏0

µ0 cos ✓t
(11)

Second, let the electric field be within the plane of incidence (see Fig. 3). Again, based on
the third and fourth boundary conditions above, we have

(E0i � E0r) cos ✓i � E0t cos ✓t = 0
r

✏

µ
(E0i + E0r)�

s
✏0

µ0E0t = 0 (12)
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Denote the Fresnel coe�cients by

rk =
E0r

E0i
, tk =

E0t

E0i
.

Then,

(1� rk) cos ✓i � tk cos ✓t = 0
r

✏

µ
(1 + rk)�

s
✏0

µ0 tk = 0 (13)

and we obtain the following pair of equations,

tk =
cos ✓i
cos ✓t

(1� rk)

r
✏

µ
�

s
✏0

µ0
cos ✓i
cos ✓t

= �
⇣r ✏

µ
+

s
✏0

µ0
cos ✓i
cos ✓t

⌘
rk (14)

allowing for the Fresnel coe�cients to be explicitly solved for:

rk =

q
✏0

µ0 cos ✓i �
q

✏
µ cos ✓t

q
✏0

µ0 cos ✓i +
q

✏
µ cos ✓t

tk =
2
q

✏
µ cos ✓i

q
✏0

µ0 cos ✓i +
q

✏
µ cos ✓t

(15)

In the case of a plane wave normally incident on the interface (✓i = 0), we obtain

rk = �r? =

q
✏0

µ0 �
q

✏
µ

q
✏0

µ0 +
q

✏
µ

! m0 �m

m0 +m
,µ = µ0

tk = t? =
2
q

✏
µ

q
✏0

µ0 +
q

✏
µ

! 2m

m0 +m
,µ = µ0 (16)
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The Fresnel coe�cients derived above are also valid for complex-valued ✏, µ, ✏0, and µ0.
Usually, for visible light, µ = µ0 = µ0. The generalization of Snel’s law for complex m0 is
left for an exercise. In addition, the derivation of the 4⇥ 4 reflection and refraction matrices
relating the Stokes parameters of incident, reflected, and refracted light is left for an exercise.
In the case of incident electric field polarized in the plane of incidence, we can find the so-called
Brewster angle, at which there is no reflected wave. Let µ = µ0. At the Brewster angle,

m0 cos ✓iB = m

r
1� m2

m02 sin
2 ✓iB

(
m0

m
)2 cos2 ✓iB = 1� (

m

m0 )
2 sin2 ✓iB

(
m0

m
)2 = 1 + tan2 ✓iB � (

m

m0 )
2 tan2 ✓iB

tan2 ✓iB =
(m

0

m )2 � 1

1� ( m
m0 )2

= (
m0

m
)2

The physical solution is

✓iB = arctan(
m0

m
) (17)

As a rule for other angles of incidence, too, the reflected light tends to be polarized
perpendicular to the plane of incidence.

Total internal reflection can occur when m > m0 (the incident wave is ”internal”). If
m > m0, ✓t > ✓i0 according to Snel’s law and

✓i0 = arcsin
m0

m
(18)

When the angle of incidence is ✓i0, the refracted wave is propagating parallel to the interface
and there is no energy flow across the interface. Thus, all the incident energy is reflected back.
When ✓i > ✓i0, sin ✓t > 1 and ✓t must be a complex-valued angle that has a purely imaginary
cosine,

cos ✓t = i

r
(
sin ✓i
sin ✓i0

)2 � 1 (19)

The refracted wave is of the form

5



eikt·x = eikt(x sin ✓t�z cos ✓t)

= e
�kt

r
(

sin ✓i
sin ✓i0

)2�1|z|
eikt(

sin ✓i
sin ✓i0

)x (20)

and, thus, attenuates exponentially in the medium m0 and propagates only in the direction
of the interface.
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1 Electromagnetic field by a localized source

Consider the electromagnetic fields caused by time-dependent charge and current densities

localized in a constrained region of space. Here we will mainly study the fields by an electric

dipole. Later, the analysis is extended to the full multipole expansion.

Assume harmonic time dependence e�i!t
—arbitrary time dependences can be dealt with using

Fourier analysis of their components. The charge density ⇢ and current density j are

⇢(x, t) = ⇢(x)e�i!t

j(x, t) = j(x)e�i!t

and the physical quantities correspond to the real parts of the complex quantities. The elect-

romagnetic potentials and fields are also time-harmonic and the sources are assumed to be

located in an otherwise empty space.

Let us start from the vector potential A in Lorentz gauge,

A(x, t) =
µ0

4⇡

Z
d3x0

Z
dt0

j(x
0, t0)

|x� x0|�(t
0
+

|x� x
0|

c
� t) (1)

and, by writing A(x, t) = A(x)e�i!t
, we obtain

A(x) =
µ0

4⇡

Z
d3x0

j(x
0
)
eik|x�x0|

|x� x0| , k =
!

c
(2)

The magnetic field is, according to definitions, H =
1
µ0
r⇥A and, outside the source region,

the electric field equals E =
i⇣0
k r⇥H, where ⇣0 =

p
µ0/✏0 is the impedance of free space.

When the current density j(x
0
) is given, the electromagnetic field can be calculated from the

integral above, at least in principle. Let us study the case where the source region (size d)
is much smaller than the wavelength: d ⌧ � = 2⇡c/!. We can distinguish three regimes of

interest:

(i) Near zone (static regime): d ⌧ r ⌧ �
(ii) Intermediate zone (induction regime): d ⌧ r ⇠ �
(iii) Far zone (radiation regime): d ⌧ � ⌧ r

In the near zone (i) kr ⌧ 1 and the exponential part of the integrand for the vector

potential can be set to unity, and the inverse distance can be presented using series of spherical

harmonics Ylm:

lim
kr!0

A(x) =
µ0

4⇡

X

l,m

4⇡

2l + 1

Ylm(✓,')

rl+1

Z
d3x0

j(x
0
)(r0)lY⇤

lm(✓
0,'0

) (3)

1



We can see that the near fields vary harmonically in time but are static in their character: no

wave solution follows for the spatial dependence. Above, we have made use of the relation

1

|x� x0| = 4⇡
X

l,m

1

2l + 1

rl<
rl+1
>

Y
⇤
lm(✓

0,'0
)Ylm(✓,') (4)

In the far zone (iii), kr � 1 and the exponential part of the vector potential varies strongly

and dictates the character of the vector potential. We can approximate

|x� x
0| ⇡ r � n̂ · x0, n̂ =

x

|x| =
x

r
(5)

When the leading term is desired in kr, the inverse distance can be replaced by r. The vector
potential is of the form

lim
kr!1

A(x) =
µ0

4⇡

eikr

r

Z
d3x0

j(x
0
)e�ikn̂·x0

(6)

Therefore, the vector potential behaves like an outgoing spherical wave (eikr/r) with angular

dependence. It can be shown that the electromagnetic field is also of the form of a spherical

wave and thus is a radiation field. (Note that this part of the analysis is valid for localized

source regions of arbitrary size.)

Now that kd ⌧ 1 the integral can further be developed into series:

lim
kr!1

A(x) =
µ0

4⇡

eikr

r

X

n

(�ik)n

n!

Z
d3x0

j(x
0
)(n̂ · x0

)
n

(7)

where the magnitude for the nth term is (1/n!)
R
d3x0

j(x
0
)(kn̂ ·x0

)
n
and thus becomes rapidly

smaller with increasing n. In this case, the main contribution to radiation comes from the

first non-vanishing term in the sum.

In the intermediate zone (ii), all powers of kr need to be accounted for, and no simple

limits can be taken. The vector potential is then written with the help of the expansion for

the exact Green’s function in the form

A(x) = µ0ik
X

l,m

h(1)
l (kr)Ylm(✓,')

Z
d3x0

j(x
0
)jl(kr

0
)Y

⇤
lm(✓

0,'0
) (8)

where we have made use of the expansion

eik|x�x0|

4⇡|x� x0| = ik
1X

l=0

jl(kr<)h
(1)
l (kr>)

lX

m=�l

Y
⇤
lm(✓

0,'0
)Ylm(✓,') (9)
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where r< = min(r, r0), r> = max(r, r0), and jl and h(1)
l are the spherical Bessel and Hankel

functions.

Again when kd ⌧ 1, the jl-functions can be approximated and the result is of the same

form as the near zone result, when the following replacement is carried out:

1

rl+1
! eikr

rl+1
[1 + a1(ikr) + a2(ikr)

2
+ . . .+ al(ikr)

l
] (10)

The coe�cients ai derive from the explicit expansions of the Hankel functions. This end result

allows us to see the transition from the near-zone kr ⌧ 1 static field to the far-zone kr � 1

radiation field.

2 Electromagnetic field of an electric dipole

If only the first term in kd is kept in the expansion of the vector potential, one obtains

A(x) =
µ0

4⇡

eikr

r

Z
d3x0

j(x
0
) (11)

which holds everywhere outside the source region (this follows from the intermediate-zone

results above). With the help of partial integration,

Z
d3x0

j = �
Z

d3x0
x
0
(r · j) = �i!

Z
d3x0

x
0⇢(x0

) (12)

where the substitution term disappears (the source region is constrained) and, according to

the continuity equation, i!⇢(x0
) = r · j(x0

). The vector potential is thus

A(x) = � iµ0!

4⇡
p
eikr

r
, (13)

where p is the electric dipole moment p =
R
d3x0

x
0⇢(x0

).

The electromagnetic fields are

H =
ck2

4⇡
(n̂⇥ p)

eikr

r
(1� 1

ikr
)

E =
1

4⇡✏0

⇣
k2
(n̂⇥ p)⇥ n̂

eikr

r
+ (3n̂(n̂ · p)� p)(

1

r2
� ik

r
)
eikr

r

⌘

We note that the magnetic field is always transverse but that the electric field has both

longitudinal and transverse components.
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In the far zone,

H =
ck2

4⇡
(n̂⇥ p)

eikr

r
E = ⇣0H⇥ n̂

which shows the typical form of a spherical wave.

In the near zone,

H =
i!

4⇡
(n̂⇥ p)

1

r2

E =
1

4⇡✏0
(3n̂(n̂ · p)� p)

1

r3

The electric field is, except for the harmonic time dependence, that of a static electric dipole.

The field ⇣0H is smaller, by a factor of kr, than the field E so, in the near zone, the field is

electric in its nature. In the static limit k ! 0, the magnetic field disappears and the near

zone extends to infinity.

The power radiated by the vibrating dipole moment p as per solid angle is

dP

d⌦
=

1

2
Re(r2n̂ · E⇥H

⇤
)

=
c2⇣0
32⇡2

k4|(n̂⇥ p)⇥ n̂|2,

where n̂⇥ p)⇥ n̂ gives the polarization state. If all components of p are in the same phase,

dP

d⌦
=

c2⇣0
32⇡2

k4|p|2 sin2 ✓ (14)

which is the typical radiation pattern of an electric dipole (✓ is here measured from the

direction of p). Independently of the phases of the components for p:n, the total radiated

power is

P =
c2⇣0k4

12⇡
|p|2 (15)

3 Scattering by small spherical particles in the electric

dipole approximation

Light scattering by particles clearly smaller than the wavelength can be studied in the ap-

proximation, where the incident field induces an electric dipole moment to the particle. The
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dipole fluctuates in a certain phase with the incident field and thus scatters radiation in di-

rections di↵ering from the propagation direction of the incident field. In this case, the dipole

moments can be computed using electrostatic methods.

Assume that a monochromatic plane wave is incident on a small scatterer located in free

space. Let the propagation direction and polarization vector of the incident field be n̂0 and

✏̂0:

Ei = ✏̂0E0e
ikn̂0·x

Hi = n̂0 ⇥ Ei/⇣0

where k = !/c and the time dependence has been assumed harmonic (e�i!t
). These fields

induce a dipole momentn p in the small particle and the particle radiates energy in (almost)

all directions. In the far zone, the scattered fields are of the form

Es =
1

4⇡✏0
k2 e

ikr

r
((n̂⇥ p)⇥ n̂)

Hs = n̂⇥ Es/⇣0

where n̂ is the dirction of the observer and r the distance from the scatterer. The power

scattered in direction n̂ with polarization ✏̂ per unit solid angle divided by the incident flux

density is the so-called di↵erential cross section

d�

d⌦
(n̂, ✏̂, n̂0, ✏̂0) =

r2 1
2⇣0

|✏̂⇤ · Es|2
1
2⇣0

|✏̂⇤0 · Ei|2
(16)

where the complex conjugation of the polarization vectors is important for proper treatment

of circular polarization. Furthermore,

d�

d⌦
(n̂, ✏̂, n̂0, ✏̂0) =

k4

(4⇡✏0E0)
2
|✏̂⇤ · p|2, (17)

where the n̂0, ✏̂0 -dependence is implicit in p. We can see that the di↵erential and total cross

sections of the dipole scatterer are both proportional to k4
and ��4

(Rayleigh’s law).

Assume that the scatterer is a small sphere (radius a) with the relative permittivity ✏r = ✏/✏0.
According to electrostatics, the dipole moment of the sphere is

p = 4⇡✏0
⇣✏r � 1

✏r + 2

⌘
a3Ei (18)

so that
d�

d⌦
= k4a6|✏r � 1

✏r + 2
|2|✏̂⇤ · ✏̂0|2 (19)
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The polarization dependence is purely that of electric dipole scattering. The scattered radia-

tion is polarized in the plane defined by the dipole moment ✏̂0 and the vector n̂.

For unpolarized incident radiation, the di↵erential cross sections in di↵erent polarization

states of the scattered field are

d�k

d⌦
=

k4a6

2
|✏r � 1

✏r + 2
|2 cos2 ✓

d�?

d⌦
=

k4a6

2
|✏r � 1

✏r + 2
|2

where ✓ is now the scattering angle.

The degree of polarization is

P (✓) =
d�?
d⌦ � d�k

d⌦

d�?
d⌦ +

d�k
d⌦

=
sin

2 ✓

1 + cos2 ✓
= �S21(✓)

S11(✓)
(20)

and the di↵erential cross section summed over the polarization states of the scattered field is

d�

d⌦
= k4a6|✏r � 1

✏r + 2
|21
2
(1 + cos

2 ✓) / S11(✓) (21)

where S11(✓) and S21(✓) are elements of the scattering matrix. The total scattering cross

section is

� =

Z

(4⇡)

d�

d⌦
d⌦ =

8⇡

3
k4a6|✏r � 1

✏r + 2
|2 (22)

The scattered radiation is 100% positively polarized at the scattering angle ✓ = 90
�
. It was

the polarization characteristics of the blue sky that got Rayleigh interested in scattering by

small particles.
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