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Computational Science:
Introduction to Finite-Difference Time-Domain

Implementation of
One-Dimensional FDTD

Lecture Outline

• Review of Lecture 5
• Sequence of Code Development
• FDTD Implementation

• Numerical boundary conditions
• Grid resolution
• Courant stability condition
• Perfect 1D boundary condition
• Sources
• Total number of iterations
• Revised FDTD Algorithm
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Review of 
Lecture #5

Representing Functions on a Grid
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A grid is 
constructed by 
dividing space 
into discrete 

cells

Example 
physical 

(continuous) 
2D function

Function is 
known only at 
discrete points

Representation 
of what is 

actually stored in 
memory
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3D Grids
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10, 10, 15x y zN N N  

A three-dimensional grid looks like this:

A unit cell from the grid looks like this:

x y

z

Yee Cell for 1D, 2D, and 3D Grids
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Benefits
• Implicitly satisfies divergence equations
• Naturally handles physical boundary 

conditions
• Elegant approximation of the curl equations 

using finite-differences

Consequences
• Field components are in physically different 

locations
• Field components may reside in different 

materials even if they are in the same unit 
cell

• Field components will be out of phase
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Formulation of Update Equations (1 of 4)
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Assume linear, isotropic, and non-dispersive materials and expand the curl equations.
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Formulation of Update Equations (2 of 4)
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Finite-Difference Equation for Hx Finite-Difference Equation for Hy Finite-Difference Equation for Hz

Finite-Difference Equation for Ex Finite-Difference Equation for Ey Finite-Difference Equation for Ez
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Formulation of Update Equations (3 of 4)
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Let the problem be uniform in the x and y directions.
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Maxwell’s equations separates into two sets of equations.
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Formulation of Update Equations (4 of 4)
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Derive update equations by solving the finite-difference equations for 
the future time value.
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Arrive at the following FDTD algorithm.
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Loop over z

Loop over z

Includes:
• Basic FDTD engine

Excludes:
• Dirichlet BC’s
• Calculate source parameters
• Simple soft source
• Perfectly absorbing BC’s
• TF/SF source
• Fourier transforms
• Reflectance/Transmittance
• Calculate grid parameters
• Incorporate device
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Sequence of Code 
Development

Step 1 – Basic FDTD Algorithm

Slide 12

• Basic update equations



1/21/2020

7

Step 2 – Add Simple Soft Source
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• Basic update equations
• Add a soft source

Step 3 – Add Absorbing Boundary

Slide 14

• Basic update equations
• Add a soft source
• Add perfect boundary 

condition
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Step 4 – Add TF/SF
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• Basic update equations
• Add a soft source
• Add perfect boundary 

condition
• Incorporate TF/SF “one-

way” source

Step 5 – Move Source & Add T/R
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• Basic update equations
• Add a soft source
• Add perfect boundary 

condition
• Incorporate TF/SF “one-

way” source
• Move position of source
• Calculate transmittance 

and reflectance
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Step 6 – Add Device (Complete Algorithm)
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• Basic update equations
• Add a soft source
• Add perfect boundary 

condition
• Incorporate TF/SF “one-

way” source
• Move position of source
• Calculate transmittance 

and reflectance
• Add a real device

Summary of Code Development Sequence
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Step 1 – Implement basic FDTD algorithm Step 2 – Add the source

Step 3 – Add absorbing boundary Step 4 – Add “one-way” source

Step 5 – Calculate transmittance and 
reflectance

Step 6 – Add a device



1/21/2020

10

Slide 19

Numerical
Boundary Conditions

A Problem at the Boundary of the Grid
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The update equation must be implemented for every point in the grid.
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Dirichlet Boundary Condition
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One easy thing to do is assume the fields outside the grid are zero.  This is called a Dirichlet
boundary condition.

To incorporate the Dirichlet boundary condition, modify the update equations as follows.

Equations MATLAB Code
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Update Equations
%
% MAIN FDTD LOOP
%
for T = 1 : STEPS

% Update H from E (Dirichlet Boundary Conditions)
for nz = 1 : Nz-1

Hx(nz) = Hx(nz) + mHx(nz)*(Ey(nz+1) - Ey(nz))/dz;
end
Hx(Nz) = Hx(Nz) + mHx(Nz)*(0 - Ey(Nz))/dz;

% Update E from H (Dirichlet Boundary Conditions)
Ey(1) = Ey(1) + mEy(1)*(Hx(1) – 0)/dz;
for nz = 2 : Nz

Ey(nz) = Ey(nz) + mEy(nz)*(Hx(nz) - Hx(nz-1))/dz;
end

end

DO NOT use ‘if’ statements to 
implement boundary conditions.
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Periodic Boundary Condition
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Some devices are periodic along a particular direction.  When this is the case, the field is also 
periodic.

To incorporate a periodic boundary condition, modify
the update equations as follows.

z periodic

periodic

Slide 24

Grid Resolution
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Consideration #1:  Wavelength
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The grid resolution must be sufficient to resolve the shortest 
wavelength.

Nl Comments

10 to 20 Low contrast dielectrics

20 to 30 High contrast dielectrics

40 to 60 Most metallic structures

100 to 200 Plasmonic devices

0
min

max max

c

f n
l  nmax is the largest refractive index found 

anywhere in the grid.  fmax is the 
maximum frequency in your simulation.

First, determine the smallest wavelength:

min           10N
Nl l

l

l
  

Second, resolve the shortest wavelength with at least 10 cells.

1 point

Consideration #2:  Mechanical Features
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The grid resolution must be sufficient to resolve the smallest 
mechanical features of the device.

mind

Unit cell of a diamond lattice

1dN  4dN 1dN 1dN 

mind

First, determine the smallest feature:

min           1d d
d

d
N

N
  

Second, resolve the smallest feature with at least 1 to 4 cells.
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Calculating the Initial Grid Resolution
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Must resolve the minimum wavelength

min           10N
Nl l

l

l
   x

Must resolve the minimum structural dimension

min           1d d
d

d
N

N
  

Set the initial grid resolution to the smallest 
number computed above

 min ,x y dl     

y

Resolving Critical Dimensions (1 of 3)
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We have not yet considered the actual dimensions of the device we wish to simulate.

This means we likely cannot resolve the exact dimensions of a device.

Not an exact fit.
Cannot fill a fraction of a cell.

x

y
d

Suppose we wish to place a device of length d onto a grid.
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Resolving Critical Dimensions (2 of 3)
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To fix this, first calculate how many cells N are needed to resolve the most important 
dimension.  In this case, let this be d.

x

y
d

x

d
N 


10.5 cellsN 

Second, we determine how many 
cells we wish to exactly resolve d.  
We do this by rounding N up to 
the nearest integer.

ceil
x

d
N

 
    

11 cellsN  

Resolving Critical Dimensions (3 of 3)
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Third, adjust the value of x to represent the dimension d exactly.

x


y
d

x

d

N
 



11 cellsN  

Call this step “snapping” the grid 
to a critical dimension.

Unfortunately, using a uniform 
grid, this can only be done for one 
critical dimension per axis.
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“Snap” Grid to Critical Dimensions
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Decide what dimensions along each axis are critical

Compute how many grid cells comprise dx and dy and round UP

 
 

ceil

ceil

x x x

y y y

M d

M d

 

 

 Typically this is a lattice constant or grating period along x
 Typically this is a layer thickness along y

   and   x yd d
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al
 g

rid

critical dim
ension

Adjust grid resolution to fit these dimensions in grid EXACTLY

x x x

y y y

d M

d M
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rid
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Slide 32

Courant Stability 
Condition
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Numerical Propagation Through Grid
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During a single iteration, a disturbance in the electric field at 
one point can only be felt by the immediately adjacent 
magnetic fields.  It takes at least two time steps before that 
disturbance is felt by an adjacent electric field.  This is simply 
due to how the update equations are implemented during a 
single iteration.

z

Physical Propagation Through Space
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Electromagnetic waves in vacuum propagate at the speed of light.  
Inside a material, they propagate at a reduced speed.

z

0
0        299792458 m s         refractive index

c
v c n

n
  
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A Limit on t
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zNumerical distance covered in one time step:

Physical distance covered in one time step: 0c t n

Over a time duration of one time step t, an electromagnetic disturbance will travel:

Because of the numerical algorithm, it is not possible for a disturbance to travel farther than one unit 
cell in a single time step.

We need to make sure that a physical wave would not propagate farther than a single unit cell in one 
time step.

0c t
z

n


 

This places an upper limit on the time step. 

0

n z
t

c


  n should be set to the smallest refractive index found anywhere in the 

grid.  Usually this is just made to be 1.0 and dropped from the equation.

The Courant Stability Condition
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Refractive index is greater than or equal to one, so our condition on t can be written more simply as:

0

z
t

c


 

For 2D or 3D grids, the condition can be generalized as

     0 2 2 2

1

1 1 1
t

c
x y z

 
 

  

The Courant stability condition

Sort of a worst case.
n=1 produces the fastest possible physical wave.
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Practical Implementation of the Stability Condition
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The stability condition will be most restrictive along the shortest dimension of the grid unit cell.

 min min , ,x y z    

This can be generalized to account for special cases.

min min

02

n
t

c


 

1. Your grid is filled with dielectric and travels slower everywhere.
2. Your model includes dispersive materials with refractive index less than one.

A good equation to ensure stability and accuracy on any grid is then

min

02
t

c


  Note: A factor of 0.5 was included here as a safety margin.

Time Step for Our 1D Grid

Slide 38

bc

02

n z
t

c


 

nbc = refractive index at the grid boundaries.

This means a wave will travel the distance of one grid cell in exactly two time steps.

It is a necessary condition for the perfect boundary condition we will soon implement.  

This implies that we cannot have different materials at the two boundaries using this 
boundary condition.
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Slide 39

Perfect 1D Boundary 
Condition

z

The Problem

Slide 40

The finite-difference equation here 
requires knowledge of the electric 
field outside of the grid.

2 2

1z

t t

z

z

z k t t
Hxt

N N
x x

N
y y

t

NE E
H

z
H m

  

 
  
 
 

 
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Implementing the Perfect Boundary Condition

Slide 41

Then…

1

2

z z

t t t

N N
y yE E








2 time 
steps later

z

If and only if…

• the field is only travelling outward at the boundaries,
• the materials at the boundaries are linear, homogeneous, isotropic and 

non-dispersive,
• The refractive index at both boundaries is nbc,
• t = nbcz/(2c0) exactly.

Visualizing the Perfect Boundary Condition

Slide 42

8

n

xE
2

7

n

xE

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Summary of the 1D Perfect Boundary Condition
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Conditions
• Waves at the boundaries are only travelling outward,
• Materials at the boundaries are linear, homogeneous, isotropic and non-dispersive,
• The refractive index is the same at both boundaries and is nbc,
• Time step is chosen so physical waves travel 1 cell in exactly two time steps
t = nbcz/(2c0).

Implementation at z-Low Boundary
At the z-low boundary, we need only modify the E-field update equation.

2

1

1 1
2 1

1
2

1                     
 

ttk
Eyt t ty

x

x y

h
h

H
E Eh

z
Hh m





 
       
 




Implementation at z-High Boundary
At the z-high boundary, we need only modify the H-field update equation.

2 2

2

2 1 1                     z

z

z

t

z

t

N N t
x

k

N
yN

xty Ht x

e
e

E
E He e m

z
H

  

 
    
 
 

 
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Sources
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The Gaussian Pulse

Slide 45

Typically short pulses are used as sources in FDTD.  This approximates an impulse function so that a 
broad range of frequencies can be simulated at the same time in the same simulation.

1 e

0t 0t 0t 

 
2

0exp
t t

g t


     
   

Frequency Content of Gaussian Pulse

Slide 46

The Fourier transform of a Gaussian pulse is another Gaussian function.

   
2 2

2 2
maxmax

1
exp             G exp

t f
g t f

ff 
  

       
   

max

1
f




The frequency content of the Gaussian 
pulse extends from DC up to above fmax.  
The frequency fmax is actually the 1/e
point of the frequency spectrum.

maxf

max

1 1

e f

max

1

f

Frequency

 G f

0
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Designing the Pulse Source (1 of 2)
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Step 1: Determine the maximum frequency of interest in your simulation.

maxf

Step 2: Compute the pulse duration to have sufficient energy at fmax.

max
max

1 1
          f

f


 
  

max

0.5

f
 

Step 3: You may need to reduce your time step.  Your Gaussian pulse should be resolved by at least 10 
to 20 time steps.

t

t
N


  Typically, you determine a first t based on the Courant stability 

condition, then determine a second t based on resolving the maximum 
frequency, and finally go with the smallest value of the two t’s.

All of this should be satisfied automatically if t = nz/(2c0).10tN 

Designing the Pulse Source (2 of 2)

Slide 48

Step 4: Compute the delay time t0

0 3t The pulse source must start at zero and gradually increase.  NO STEP FUNCTIONS!!

WRONG!!
The step function at the beginning will induce very large field gradients.0 0t 

t

STILL WRONG!!
While better, this source still starts with a step function that will produce 
large field gradients.

0t 

t

CORRECT!!
This source “eases” into the Gaussian source.

0 6t 

t
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Visualizing the Arrays

49

z Usually several 
hundred points.

Ey, Hx, ER, UR, mEy, and mHx are 
stored in arrays of length Nz.

t
Usually several 

thousand time steps.

gE is stored in an array of length STEPS.

Two Ways to Incorporate a Simple Source

Slide 50

Source #1: Simple Hard Source
The simple hard source is the easiest to implement.  After updating the field across the entire grid, one field component at 
one point on the grid is overwritten with the source.  This approach injects power into the model, but the source point 
behaves like a perfect electric conductor or perfect magnetic conductor and will scatter waves.

2

     and/or     
t H Ek kt tt yx

kk g EH g
 
  OVERWRITE

Not usually a practical source.
We won’t use it in this course.

Source #2: Simple Soft Source
The simple soft source is better than the hard source because it is transparent to scattered 
waves passing through it.  After updating the field across the entire grid, the source function 
is added to one field component at one point on the grid.  This approach injects power into 
the model in both directions.  It is great for testing boundary conditions.

2 2

     and/or     
t t

k k
x x H Ek kt t

k
y t tt

k
yt

H H E gEg
    
    

ADD TO
Rarely used.
Use this until we learn TF/SF.
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Movie of Source #1 – Simple Hard Source

51

Movie of Source #2 – Simple Soft Source

52



1/21/2020

27

Movie of Source #3 – TF/SF Soft Source

53

Slide 54

Total Number of 
Iterations
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Considerations for Estimating the Total Number of 
Iterations

55

The total number of iterations depends heavily on the device being modeled and what 
properties of it are being calculated.

Device Considerations
1. Highly resonant devices typically require more iterations.
2. Purely scattering devices typically require very few iterations.
3. More iterations are needed the more times the waves bounce around in the grid.

Information Considerations
1. Calculating abrupt spectral shapes requires many iterations.
2. Calculating fine frequency resolution requires many iterations.
3. Calculating only the approximate position of resonances often requires fewer iterations.  

Great for hunting resonances!

A Rule of Thumb
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How long does it take a wave to propagate across the grid (worst case)?

max
prop

0

distance
time       

velocity
zn N z

t
c


  

Simulation time T must include the entire pulse of duration .
12T 

Simulation time should allow for 5 bounces.

prop5T t

A rule-of-thumb for total simulation time is then

prop12 5T t  Note: For highly resonant devices, this will NOT be enough time!

Given the time step t, the total number of iterations is then

STEPS round
T

t
     

This must be an integer quantity.
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Revised FDTD 
Algorithm

Revised FDTD Algorithm

Slide 58

Finished!

Compute Grid Resolution

 
 

2 2

2 2

1

2

t t

z z z z

t t

k k k k k
x x Hx y y zt tt t

N N N N
x x Hx y ztt t

H H m E E z k N

H H m E z k Ne

 

 



 

 

    

    

 

 

 

min minmin ,

round

d

c

c

d
z

N N

N d z

z d N

l

l 
   

 
  

 

Update H from E

no

Compute Time Step
 bc 02t n z c  

Compute Source

 

max 0

2

0

0.5           5

exp

f t

t t
g t

 



 

     
   

Compute Update Coeff’s
0 0          k k

Ey Hxk k
yy xx

c t c t
m m

 
 

 

Initialize Fields
0k k

y xE H 

1 1 1 1

2

2 2

2

1

1

1

ty y Ey xt t t t

k k k k k
t ty y E y x xt t t t t

E E m H z k

E E m H H z k

h  


   

 
     

 
 

     
 



 

Update E from H

src srck k
y y tt t t

E E g


 
Inject Source

Visualize fields

Done?
yes

2

1
2 1 1,   

tx t
h h h H


  

Record H-Field Boundary Term

2 1 1,   Nz
y t

e e e E 
Record E-Field Boundary Term

z

z

Lo
op

 o
ve

r t
im

e

t

Build Device
ERyy and URxx

Initialize Boundary Terms
2 1 2 1 0h h e e   

Includes:
• Basic FDTD engine
• Dirichlet BC’s
• Calculate source parameters
• Simple soft source
• Perfectly absorbing BC’s

Excludes:
• TF/SF source
• Fourier transforms
• Reflectance/transmittance
• Calculate grid parameters
• Incorporate device
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Equations MATLAB Code
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 

min minmin ,

round

d

c

c

d
z

N N

N d z

z d N

l

l 
   

 

  

 

Grid Resolution
% COMPUTE DEFAULT GRID RESOLUTION
dz1 = min(LAMBDA)/nmax/NRES;
dz2 = dmin/NDRES;
dz = min(dz1,dz2);

% SNAP GRID TO CRITIAL DIMENSIONS
N  = ceil(dc/dz);
dz = dc/N;

 
 

2 2

2 2
2

1               

      

t t

z z z z

t t

z

k k k k k
x x Hx y y zt tt t

N N N N
x x H

N
yx yt ztt t t

H H m E E k N

H H m E kE N

 

 



 

   

   

   

 

 

1

2 2

1 1 1 1

2
2

1

2

       1

     1t

k k k k k
t ty y Ey x xt t t t t

ty y Ey xt t x tt tt

E E m H H k

E H kHE m 



   

 
  

 
    

 
 

    
 

 

 

Update Equations

%
% MAIN FDTD LOOP
%
for T = 1 : STEPS

% Update H from E (Perfect Boundary Conditions)
H2=H1; H1=Hx(1);
for nz = 1 : Nz-1

Hx(nz) = Hx(nz) + mHx(nz)*(Ey(nz+1) - Ey(nz))/dz;
end  
Hx(Nz) = Hx(Nz) + mHx(Nz)*(E2 - Ey(Nz))/dz;

% Update E from H (Perfect Boundary Conditions)
E2=E1; E1=Ey(Nz);
Ey(1) = Ey(1) + mEy(1)*(Hx(1) – H2)/dz;
for nz = 2 : Nz

Ey(nz) = Ey(nz) + mEy(nz)*(Hx(nz) - Hx(nz-1))/dz;
end

% Inject Soft Source
Ey(nzsrc) = Ey(nzsrc) + g(T);

end

src srck k
y y tt t t

E E g


 


