
88 3 Absorption and Scattering of Solar Radiation in the Atmosphere

The applied field E0 generates oscillation of an electric dipole in a fixed direction.
The oscillating dipole, in turn, produces a plane-polarized electromagnetic wave, the
scattered wave. To evaluate the scattered electric field in regions that are far away from
the dipole, we let r denote the distance between the dipole and the observation point,
γ the angle between the scattered dipole moment p and the direction of observation,
and c the velocity of light. According to the classical electromagnetic solution given
by Hertz (1889), the scattered electric field is proportional to the acceleration of the
scattered dipole moment and sin γ , but is inversely proportional to the distance r .
Thus, we have

E = 1
c2

1
r

∂2p
∂t2

sin γ . (3.3.2)

In an oscillating periodic field, the scattered dipole moment may be written in terms
of the induced dipole moment as

p = p0e−ik(r−ct). (3.3.3)

Note that k is the wavenumber, and kc = ω is the circular frequency. By combining
Eqs. (3.3.1) and (3.3.3), Eq. (3.3.2) yields

E = −E0
e−ik(r−ct)

r
k2α sin γ . (3.3.4)

Now we consider the scattering of sunlight by air molecules. Let the plane defined
by the directions of incident and scattered waves be the reference plane (plane of
scattering). Since any electric vector may be arbitrarily decomposed into orthogonal
components, we may choose the two components perpendicular (Er ) and parallel (El)
to the plane of scattering. The sunlight is characterized by the same electric field in
the r and l directions and by a random phase relation between these two components,
and is referred to as natural or unpolarized light (see Section 6.6 for a more advanced
discussion of the representation of polarized light). In this case, we may consider sep-
arately the scattering of the two electric field components E0r and E0l by molecules
assumed to be homogeneous, isotropic, spherical particles. Based on Eq. (3.3.4),
we have

Er = −E0r
e−ik(r−ct)

r
k2α sin γ1, (3.3.5a)

El = −E0l
e−ik(r−ct)

r
k2α sin γ2. (3.3.5b)

Referring to Fig. 3.10, we see that γ1 = π/2 and γ2 = π/2 − &, where & is defined as
the scattering angle, which is the angle between the incident and scattered waves. Note
that γ1 is always equal to 90◦ because the scattered dipole moment (or the scattered
electric field) in the r direction is normal to the scattering plane defined previously.

In matrix form, we may write
[

Er

El

]

= −e−ik(r−ct)

r
k2α

[

1 0
0 cos &

] [

E0r

E0l

]

. (3.3.6)
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Figure 3.10 Scattering by a dipole. The incident electric field, a vector, can be arbitrarily decomposed
into a parallel (l) and a perpendicular (r ) component, where each undergoes the scattering by the dipole.
We may select the component that is always perpendicular to the scattering plane that is defined by the
incident and scattering beams (i.e., γ1 = 90◦). All the notations are defined in the text.

A complete description of the intensity of a light beam and its polarized state will
be given in Section 6.6 in which the Stokes parameters are introduced. For the sake
of the continuity of the present discussion, however, we may define the intensity
components (per solid angle) of the incident and scattered radiation in the forms
I0 = C |E0|2 and I = C |E |2, where C is a certain proportionality factor such that
C /r2 implies a solid angle. It follows that Eqs. (3.3.5) and (3.3.6) can be expressed
in the form of intensities as

Ir = I0r k4α2/r2, (3.3.7a)

Il = I0l k4α2 cos2 &/r2, (3.3.7b)

where Ir and Il are polarized intensity components perpendicular and parallel to
the plane containing the incident and scattered waves, i.e., the plane of scattering.
The total scattered intensity of the unpolarized sunlight incident on a molecule in the
direction of & is then

I = Ir + Il = (I0r + I0l cos2 &)k4α2/r2. (3.3.8)

But for unpolarized sunlight, I0r = I0l = I0/2, and by noting that k = 2π/λ, we
obtain

I = I0

r2
α2

(

2π

λ

)4 1 + cos2 &

2
. (3.3.9)

This is the original formula derived by Rayleigh, and we call the scattering of sun-
light by molecules Rayleigh scattering. By this formula, the intensity of unpolarized
sunlight scattered by a molecule is proportional to the incident intensity I0 and is
inversely proportional to the square of the distance between the molecule and the
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point of observation. In addition to these two factors, the scattered intensity also de-
pends on the polarizability, the wavelength of the incident wave, and the scattering
angle. The dependence of these three parameters on the scattering of sunlight by
molecules introduces a number of significant physical features.

3.3.1.2 PHASE FUNCTION, SCATTERING CROSS SECTION, AND POLARIZABILITY

On the basis of Eqs. (3.3.7) and (3.3.9), the intensity scattered by a molecule
depends on the polarization characteristics of the incident light. For vertically (r )
polarized incident light, the scattered intensity is independent of the direction of the
scattering plane. In this case then, the scattering is isotropic. On the other hand,
for horizontally (l) polarized incident light, the scattered intensity is a function of
cos2 &. When the incident light is unpolarized, such as sunlight, the scattered intensity
depends on (1 + cos2 &). The angular scattering patterns in space for the three types
of incident polarization are illustrated in Fig. 3.11. We see that the scattering of
unpolarized sunlight by molecules (Rayleigh scattering) has maxima in the forward
(0◦) and backward (180◦) directions, whereas it shows minima in the side directions
(90◦ and 270◦). Light scattered by particles or molecules is not confined only to
the plane of incidence, but is visible in all azimuthal directions. Because of the
spherical symmetry assumed for molecules, scattering patterns are symmetrical in
three-dimensional space, as demonstrated in Fig. 3.11.

To describe the angular distribution of scattered energy in conjunction with mul-
tiple scattering and radiative transfer analyses and applications for planetary atmo-
spheres, we find it necessary to define a nondimensional parameter called the phase
function, P(cos &), such that

∫ 2π

0

∫ π

0

P(cos &)
4π

sin & d& dφ = 1. (3.3.10)

By this definition, the phase function is said to be normalized to unity. Upon per-
forming simple integrations, the phase function of Rayleigh scattering for incident
unpolarized sunlight is given by

P(cos &) = 3
4

(1 + cos2 &). (3.3.11)

Employing the definition of the phase function, Eq. (3.3.9) may be rewritten in the
form

I (&) = I0

r2
α2 128π5

3λ4

P(&)
4π

. (3.3.12)

It follows that the angular distribution of the scattered intensity is directly proportional
to the phase function.

The scattered flux f (or power, in units of energy per time) can be evaluated by
integrating the scattered flux density (I)*) over the appropriate area a distance r
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Figure 3.11 Polar diagram of the scattered intensity for Rayleigh molecules: (1) polarized incident
light with the electric vector perpendicular to the scattering plane, (2) polarized incident light with the
electric vector on the scattering plane, and (3) unpolarized incident light.

away from the scatterer. Thus,

f =
∫

*

(I)*)r2 d*, (3.3.13a)

where r2d* represents the area according to the definition of the solid angle. Insert-
ing the expressions for scattered intensity and the differential solid angle defined in
Eqs. (3.3.12) and (1.1.5), respectively, into Eq. (3.3.13a) and carrying out integrations
over the solid angle of a sphere, we obtain the equivalent isotropically scattered flux
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in the form

f = F0α
2128π5/(3λ4), (3.3.13b)

where the incident flux density F0 is equal to I0)*. Moreover, we may define the
scattering cross section per one molecule as

σs = f/F0 = α2128π5/(3λ4). (3.3.14)

The scattering cross section (in units of area) represents the amount of incident energy
that is removed from the original direction because of a single scattering event such
that the energy is redistributed isotropically on the area of a sphere whose center is the
scatterer and whose radius is r . In terms of the scattering cross section, the scattered
intensity can be expressed by

I (&) = I0
σs

r2

P(&)
4π

. (3.3.15)

This is the general expression for scattered intensity, which is valid not only for
molecules but also for particles whose size is larger than the incident wavelength, as
will be discussed in Section 5.2.

The polarizability α, which was used in the preceding equations, can be derived
from the principle of the dispersion of electromagnetic waves and is given by

α = 3
4π Ns

(

m2 − 1
m2 + 2

)

, (3.3.16)

where Ns is the total number of molecules per unit volume and m is the nondimensional
refractive index of molecules. This equation is called the Lorentz–Lorenz formula,
and its derivation is given in Appendix D. The refractive index is an optical parameter
associated with the velocity change of electromagnetic waves in a medium with
respect to a vacuum. Its definition and physical meanings are also given in Appendix D.
Normally, the refractive indices of atmospheric particles and molecules are composed
of a real part mr and an imaginary part mi corresponding, respectively, to the scattering
and absorption properties of particles and molecules. In the solar visible spectrum,
the imaginary parts of the refractive indices of air molecules are so insignificantly
small that absorption of solar radiation by air molecules may be neglected in the
scattering discussion. The real parts of the refractive indices of air molecules in the
solar spectrum are very close to 1, but they depend on the wavelength (or frequency)
of the incident radiation as illustrated in Appendix D. Because of this dependence,
white light may be dispersed into component colors by molecules that function like
prisms. The real part of the refractive index derived in Appendix D [(Eq. D.17)] may
be approximately fitted by

(mr − 1) × 108 = 6432.8 + 2,949,810
146 − λ−2

+ 25,540
41 − λ−2

, (3.3.17)
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where λ is in units of micrometers. Since mr is close to 1, for all practical purposes,
Eq. (3.3.16) may be approximated by

α ≈ 1
4π Ns

(

m2
r − 1

)

. (3.3.18)

Thus, the scattering cross section defined in Eq. (3.3.14) becomes

σs =
8π3

(

m2
r − 1

)2

3λ4 N 2
s

f (δ). (3.3.19)

A correction factor f (δ) is added in Eq. (3.3.19) to take into consideration the
anisotropic property of molecules, where f (δ)= (6 + 3δ)/(6 − 7δ) with the anisotropic
factor δ of 0.035. Anisotropy implies that the refractive index of molecules varies along
the x, y, and z directions, and thus is a vector, not a scalar. Hence, the polarizability
α is a tensor, as noted previously.

The optical depth of the entire molecular atmosphere at a given wavelength may
be calculated from the scattering cross section in the form

τ (λ) = σs(λ)
∫ z∞

0
N (z) dz, (3.3.20)

where N (z) denotes the number density of molecules as a function of height, and
z∞ is the top of the atmosphere. The optical depth represents the attenuation power
of molecules with respect to a specific wavelength of the incident light. Exercises
3.7–3.11 require the calculation of a number of parameters based on Rayleigh scat-
tering results.

3.3.1.3 BLUE SKY AND SKY POLARIZATION

Returning to Eq. (3.3.12), we see that the scattered intensity depends on the wave-
length of incident light and the index of refraction of air molecules contained in the
polarizability term. According to the analyses given in Appendix D and Eq. (3.3.17),
the index of refraction also depends slightly on the wavelength. However, the depen-
dence of the refractive index on the wavelength is relatively insignificant in calculating
the scattered intensity as compared to the explicit wavelength term. Thus, the intensity
scattered by air molecules in a specific direction may be symbolically expressed in
the form

Iλ ∼ 1/λ4. (3.3.21)

The inverse dependence of the scattered intensity on the wavelength to the fourth
power is a direct consequence of the theory of Rayleigh scattering and is the foundation
for the explanation of blue sky.

In reference to the observed solar energy spectrum displayed in Fig. 3.9, a large
portion of solar energy is contained between the blue and red regions of the visible
spectrum. Blue light (λ ≈ 0.425 µm) has a shorter wavelength than red light (λ ≈
0.650 µm). Consequently, according to Eq. (3.3.21) blue light scatters about 5.5 times
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more intensity than red light. It is apparent that the λ−4 law causes more blue light to
be scattered than red, green, and yellow, and so the sky, when viewed away from the
sun’s disk, appears blue. Moreover, since molecular density decreases drastically with
height, it is anticipated that the sky should gradually darken to become completely
black in outer space in directions away from the sun. And the sun itself should
appear whiter and brighter with increasing height. As the sun approaches the horizon
(at sunset or sunrise), sunlight travels through more air molecules, and therefore more
and more blue light and light with shorter wavelengths are scattered out of the beam of
light, and the luminous sun shows a deeper red color than at its zenith. However, since
violet light (∼0.405 µm) has a shorter wavelength than blue, a reasonable question is,
why doesn’t the sky appear violet? This is because the energy contained in the violet
spectrum is much less than that contained in the blue spectrum, and also because the
human eye has a much lower response to the violet color.

Another important phenomenon explained by the Rayleigh scattering theory is sky
polarization. For many atmospheric remote sensing applications utilizing polariza-
tion, a parameter called the degree of linear polarization has been used (Subsection
7.3.5.2). In the case of Rayleigh scattering it is given by

L P(&) = − Il − Ir

Il + Ir
= −cos2 & − 1

cos2 & + 1
= sin2 &

cos2 & + 1
. (3.3.22)

In the forward and backward directions the scattered light remains completely un-
polarized, whereas at the 90◦ scattering angle, the scattered light becomes completely
polarized. In other directions, the scattered light is partially polarized with the per-
centage of polarization ranging from 0 to 100%. Interested readers may wish to refer
to Section 6.6 for further details on this subject.

The theory of Rayleigh scattering developed in Section 3.3.1 is based on the as-
sumption that molecules are homogeneous and isotropic spheres. However, molecules
are in general anisotropic, whereby their polarizability, as defined in Eq. (3.3.16),
varies along three axes and, hence, is a tensor instead of a scalar. The anisotropic
effect of molecules reduces the degree of linear polarization defined in Eq. (3.3.22)
by only a small percentage. At the 90◦ scattering angle, the degree of linear polar-
ization for dry air is about 0.94. Further, the theory of Rayleigh scattering developed
previously considers only single (or primary) scattering, i.e., where scattering occurs
only once. But in the earth’s atmosphere, which contains a large number of molecules
and aerosol particles, light may undergo an infinite number of scattering events. In
addition, the earth’s surface also reflects light that reaches it. Multiple scattering pro-
cesses involving the atmosphere and the surface become complicated and require
a more advanced treatment of radiative transfer theory, which will be discussed in
Chapter 6.

The theory of Rayleigh scattering predicts neutral points, i.e., points of zero po-
larization, only at the exact forward and backward directions. However, owing to
multiple scattering of molecules and particulates, and reflection of the surface, there
normally exist a number of neutral points in cloudless atmospheres. The first obser-
vations of neutral points and partially polarized sky light were made by Arago in
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1809. He discovered the existence of a neutral point at a position in the sky about
25◦ above the antisolar direction (the direction exactly opposite that of the sun). The
other two neutral points, which normally occur in the sunlit sky 25◦ above and 20◦

below the sun, were discovered by Babinet in 1840 and by Brewster in 1842, respec-
tively. These three neutral points were named to honor these three discoverers. The
neutral points in the sky vary and depend on the turbidity (an indication of the amount
of aerosol loadings in the atmosphere), the sun’s elevation angle, and the reflection
characteristics of the surface at which observations are made.

Figure 3.12 illustrates the distribution of the degree of polarization and neutral
points for a pristine, clear atmosphere (January 20, 1977) and for an atmospheric
condition under the El Chichon volcanic cloud (July 27, 1982) observed at the Mauna
Loa Observatory from a polarimeter developed by Coulson (1983). The observations
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Figure 3.12 Illustration of neutral points in the distribution of the degree of polarization through the
plane of the sun’s vertical at a wavelength of 0.7 µm observed at the Mauna Loa Observatory for a clear
atmospheric condition on January 20, 1977 (solid line), and for an atmosphere under the volcanic cloud
on July 27, 1982 (dashed line). The azimuthal angles φ = 0◦ and φ = 180◦ are on the sun’s vertical plane.
The sun’s elevation angles ε0 for these two cases are indicated in the graph, as are the positions of Arago
and Babinet (data taken from Coulson, 1983).



96 3 Absorption and Scattering of Solar Radiation in the Atmosphere

were made on the sun’s vertical plane, referred to as the principal plane in radiative
transfer, using a wavelength of 0.7 µm. The solar elevation angle, ε0 (90◦− solar zenith
angle θ0), differed slightly on these two dates, but the observed polarization patterns
suffice to demonstrate their substantial variabilities in clear and turbid atmospheres.
The clear Rayleigh atmosphere produced a maximum polarization of about 80%, 60%
more than that generated in the volcanic cloud condition. The neutral points in the
Rayleigh scattering atmosphere occurred at the positions close to the sun (forward
direction) and about 20◦ above the sun, the Babinet point, which was about 50◦

above the sun when a significant aerosol loading was present. In this case, the Arago
point was also shown at about 20◦ above the horizon at the opposite position of the
sun. Because of the sun’s position, the Brewster point was not observed. The neutral
points’ positions are dependent on the aerosol optical depth and composition. Thus,
a systematic observation of these points could be a valuable approach for inferring
aerosol optical properties and perhaps composition information.

3.3.2 Light Scattering by Particulates: Approximations

In Section 1.1.4, we defined the size parameter, x = 2πa/λ, where a is the particle
radius. Rayleigh scattering is concerned with scattering events when x ≪ 1. When
x ! 1, scattering events are often called Lorenz–Mie scattering. Lorenz (1890) and
Mie (1908) independently derived the solution for the interaction of a plane wave with
an isotropic homogenous sphere. The mathematical theory of Lorenz–Mie scattering
begins with Maxwell’s equations and will be detailed in Chapter 5, along with some
new developments in research on light scattering by nonspherical ice crystals and
aerosols. In this section, however, we shall present a brief discussion of Lorenz–
Mie scattering and two elementary approximations: geometric optics and anomalous
diffraction.

3.3.2.1 LORENZ–MIE SCATTERING

The intensity scattered by a particle as a function of direction, as presented in
Eq. (3.3.15), is given by

I (&) = I0*eff
P(&)
4π

= I0

(σs

r2

) P(&)
4π

, (3.3.23)

where I0 is the incident intensity, P is the phase function normalized according to
Eq. (3.3.10), *eff is the effective solid angle upon which scattering occurs, r is the
distance between the particle and the observer, σs is the scattering cross section, and
4π is the solid angle for the entire spherical space. The scattering cross section can
be derived from the Lorenz–Mie theory of light scattering by spheres and is given by
the following expansion:

σs/πa2 = Qs = c1x4(1 + c2x2 + c3x4 + · · ·
)

, (3.3.24)
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where a is the radius, x = 2πa/λ, Qs is referred to as the scattering efficiency, and
the coefficients in the case of nonabsorbing particles are given by

c1 = 8
3

(

m2 − 1
m2 + 2

)2

, c2 = 6
5

(

m2 − 1
m2 + 2

)

,

c3 = 3
175

m6 + 41m4 − 28m2 + 284
(m2 + 2)2

+ 1
900

(

m2 + 2
2m2 + 2

)2
[

15 + (2m2 + 3)2] .

The leading term is the dipole mode contribution associated with Rayleigh scattering.
Note that for light scattering by spheres, we may replace the total number of molecules
per volume Ns by 1/V where V = 4πa3/3. For molecules, a ∼ 10−4 µm, so that
x ∼ 10−3 in the visible. Thus, the higher order terms can be neglected and the scattered
intensity is proportional to λ−4. For aerosols and cloud particles, a !10−1 µm, and
x !1 in the visible. In this case, the scattered intensity is less wavelength dependent
and is primarily dependent on particle size. As a result, clouds and nonabsorbing
aerosols in the atmosphere generally appear white. In a cloudy atmosphere, the sky
appears blue diluted with white scattered light, resulting in a less pure blue sky than
would have been expected from pure Rayleigh scattering.

On the basis of Eq. (3.3.23), the scattered intensity is dependent on the phase func-
tion, which can be computed from the Lorenz–Mie theory for spheres. Figure 3.13
shows typical examples of the phase function for polydispersed cloud droplets
(∼10 µm) and aerosols (∼1 µm) illuminated by a visible light. Also shown is the
phase function for Rayleigh scattering. The mean size parameters in these cases are
about 100, 10, and 10−3, respectively. The scattering by cloud droplets is characterized
by a strong forward diffraction; a minimum at ∼100◦ scattering angle; a peak at ∼138◦

scattering angle, the well-known rainbow feature; and a peak in the backscattering
direction associated with the glory pattern. The diffraction pattern and the rainbow
feature will be discussed further later; the explanation of the glory pattern requires
more advanced discussion and will be presented in Chapter 5. The scattering of typi-
cal aerosols also displays a forward diffraction maximum and a maximum pattern in
the 150◦–170◦ scattering region (see also Fig. 1.4).

3.3.2.2 GEOMETRIC OPTICS

The principles of geometric optics are the asymptotic approximations of the fun-
damental electromagnetic theory and are valid for light-scattering computations in-
volving a particle whose dimension is much larger than the wavelength, i.e., x ≫ 1.
In this case, a light beam can be thought of as consisting of a bundle of separate par-
allel rays that hit the particles, which is referred to as the localization principle. Each
ray will then undergo reflection and refraction and will pursue its own path along a
straight line outside and inside the scatterer with propagation directions determined
by the Snell law, as shown in Fig. 3.14a. In the context of geometric optics, the total
electric field is assumed to consist of the diffracted rays and the reflected and refracted
rays, as illustrated in Fig. 3.14b, using a sphere as an example. The diffracted rays



98 3 Absorption and Scattering of Solar Radiation in the Atmosphere

10-2

10-1

100

101

102

103

104

0 30 60 90 120 150 180

Cloud Droplet

Aerosol

Molecule

Scattering Angle (deg)

P
ha

se
 F

un
ct

io
n

Figure 3.13 Normalized phase functions for cloud droplets (∼10 µm), aerosols (∼1 µm), and
molecules (∼10−4 µm) illuminated by a visible wavelength of 0.5 µm, computed from the Lorenz–Mie
theory.

pass around the scatterer. The rays impinging on the scatterer undergo local reflection
and refraction, referred to as Fresnelian interaction. The energy that is carried by the
diffracted and the Fresnelian rays is assumed to be the same as the energy that is
intercepted by the particle cross section projected along the incident direction.

In reference to Fig. 3.14a, let v1 and v2 be the velocities of propagation of plane
waves in the two media such that v1 > v2. Also, let θi and θt be the angles corre-
sponding to the incident and refracted waves. Thus, we have

sin θi/ sin θt = v1/v2 = m, (3.3.25)

where m is the index of refraction for the second medium with respect to the first.



3.3 Atmospheric Scattering 99

θi θr

θt

(a)

Incident Wave

Normal of Incidence

Reflected Wave

Air

Water/Ice

Refracted Wave

(b)

Light rays
1 4

2

0

3

Figure 3.14 (a) Reflection and refraction of a plane wave from air to water/ice surface. (b) Represen-
tation of light rays scattered by a sphere based on the geometric optics principle: 0, exterior diffraction; 1,
external reflection; 2, two refractions; 3, one internal reflection; and 4, two internal reflections.

For the purpose of this discussion, we shall assume that there is no absorption in the
medium. This is the Snell law relating the incident and refracted angles through the
index of refraction. Exercises 3.12 and 3.13 require the derivation of the minimum
deviations of light rays that produce rainbows from spherical water droplets and
halos from hexagonal ice crystals. Moreover, white sunlight is decomposed into
component colors after the rays undergo geometric reflection and refraction through
water droplets and ice crystals.

The diffraction component in geometric optics can be determined from Babinet’s
principle. This principle states that the diffraction pattern in the far field, referred to
as Fraunhofer diffraction, from a circular aperture is the same as that from an opaque
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disk or sphere of the same radius. Based on this principle and geometric consideration,
the scattered intensity is proportional to

Ip = x4

4

[

2J1(x sin &)
x sin &

]2

, (3.3.26)

where J1 is the first-order Bessel function and & is the scattering angle. Exercise 3.14
requires the calculation of maxima and minima of the diffraction pattern that can be
used to explain an optical phenomenon known as the corona.

One final note is in order here. If a particle of any shape is much larger than the
incident wavelength, the total energy removed is based on geometric reflection and
refraction, giving an effective cross-section area equal to the geometric area A. In
addition, according to Babinet’s principle, diffraction takes place through a hole in
this area, giving a cross-section area also equal to A. The total removal of incident
energy is therefore twice the geometric area. Thus, the extinction cross section is
given by

σe = 2A, or Qe = σe/A = 2, (3.3.27)

where Qe is called the extinction efficiency. This is referred to as the optical theorem of
extinction. If a particle is nonabsorbing, then we have Qe = Qs , where the extinction
and scattering efficiencies are the same.

3.3.2.3 ANOMALOUS DIFFRACTION THEORY

Consider large optically soft particles such that x ≫ 1 and |m − 1| ≪ 1. The
second condition implies that rays are negligibly deviated as they cross the soft particle
boundary and are negligibly reflected because the refractive indices inside and outside
the particle are similar. In this case, the extinction is largely caused by absorption of
the light beam passing through the particle, as well as by the interference of light
passing through the particle and passing around the particle. This is the physical
foundation for the anomalous diffraction theory originally developed by van de Hulst
(1957). In reference to Fig. 3.15, let the plane wave be incident on a spherical particle
with a radius a and a refractive index m → 1. The wave front on the forward side
of the particle can be divided into two types: one within the geometric shadow area
denoted by A = πa2, and one outside this area denoted by B. The incident rays can
undergo diffraction and pass around the particle. The rays can also hit the particle
and undergo reflection and refraction. Since m → 1, we may assume that the rays
enter into the particle and pass through it, as illustrated in Fig. 3.15. However, these
rays will have phase lags due to the presence of the particle. The phase lag for the
ray indicated in the figure is 2a sin α(m − 1) · 2π/λ. If we define the phase shift
parameter

ρ = 2x(m − 1), (3.3.28)

the phase lag can then be expressed by ρ sin α.
Consider a screen that collects the field. The resultant wave on the screen is the

sum of the incident and scattered fields. If the incident field is assumed to be unity,
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Figure 3.15 Geometry of anomalous diffraction through a sphere with a radius a and an index of
refraction m → 1.πa2 denotes the geometric cross-section area of the sphere and dA denotes the differential
cross-section area.

then in the forward direction (& = 0), the change in the electric field is proportional to

A =
∫ ∫

(

1 − e−iρ sin α
)

dx dy. (3.3.29a)

The differential area can be replaced by an area in the polar coordinate such that
dx dy = a cos α d(a cos α) dφ. Thus, we have

A =
∫ 2π

0

∫ π/2

0

(

1 − e−iρ sin α
)

a2 sin α d sin α dφ = 2πa2 K (iρ), (3.3.29b)

where

K (iρ) = 1
2

+ e−iρ

iρ
+ e−iρ − 1

(iρ)2
. (3.3.30)

The extinction cross section σe is proportional to the differential change in the scat-
tered intensity I . Since I ∼ |E |2, as shown in Eq. (3.3.6), d I ∼ 2d|E |. Thus, we have
σe = 2Re(A). It follows that the extinction efficiency is given by

Qe = σe/πa2 = 4Re[K (iρ)] = 2 − 4
ρ

sin ρ + 4
ρ2

(1 − cos ρ), (3.3.31)

where Re denotes the real part of the function. Exercise 3.15 requires calculations
of Qe.

We may also determine the absorption efficiency by the following procedure. The
ray path as shown in Fig. 3.15 is l = 2a sin α. The absorption coefficient ki = mi 2π/λ,
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where mi is the imaginary part of the refractive index. Thus, the absorption path length
associated with the electric field is lki . The attenuation of the intensity of the ray is
then exp(−2lki ) and the absorption cross section for all possible rays is

σa =
∫ ∫

(

1 − e−2lki
)

dx dy. (3.3.32)

Following the procedure just illustrated, the absorption efficiency is given by

Qa = σa/πa2 = 1 + 2
b

e−b + 2
b2

(e−b − 1), (3.3.33)

where b = 4xmi and x = 2πa/λ. The approximation based on the anomalous diffrac-
tion theory (ADT) is useful for the calculation of the extinction and absorption coeffi-
cients when m → 1. It can also be applied to nonspherical particles such as spheroids
and hexagons. Since refractions and reflections of rays are neglected in this approxi-
mation, its accuracy must be examined carefully when applied to the scattering of ice
crystals (m ∼ 1.31) and aerosols (m ∼ 1.5). Finally, it should be noted that the ADT
approximation cannot produce the phase function pattern.

3.4 Multiple Scattering and Absorption in Planetary Atmospheres

3.4.1 Fundamentals of Radiative Transfer

In Section 1.1.4, we pointed out that scattering is often coupled with absorption. In the
following we formulate the fundamental equation governing the transfer of diffuse
solar radiation in plane-parallel atmospheres. The term diffuse is associated with mul-
tiple scattering processes and is differentiated from direct solar radiation. In reference
to Fig. 3.16 and considering a differential thickness )z, the differential change of
diffuse intensity emergent from below the layer is due to the following processes: (1)
reduction from the extinction attenuation; (2) increase from the single scattering of
the unscattered direct solar flux from the direction (−µ0, φ0) to (µ, φ); (3) increase
from multiple scattering of the diffuse intensity from directions (µ′, φ′) to (µ, φ);
and (4) increase from emission within the layer in the direction (µ, φ). Consider a
small volume containing a spectrum of molecules and/or particulates and denote the
extinction, scattering, and absorption coefficients (in units of per length) as βe, βs,
and βa , respectively, defined by

βe,s,a =
∫

)z
σe,s,a(z)n(z) dz/)z, (3.4.1)

where the symbol σ denotes the cross section and n is the number density. More-
over, let the phase function corresponding to a volume of particulates be P . Thus,
P(µ, φ; µ′, φ′) denotes the redirection of the incoming intensity defined by (µ′, φ′)
to the outgoing intensity defined by (µ, φ). Also note that the differential length
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Figure 3.16 Transfer of diffuse solar intensity from below in plane-parallel layers: (1) attenuation by
extinction; (2) single scattering of the unscattered solar flux; (3) multiple scattering; and (4) emission from
the layer. All the radiative parameters are defined with reference to a small volume containing a spectrum
of molecules and/or particulates. The notations are defined in the text.

)s = )z/µ. Based on the preceding definitions, we may write (neglecting the wave-
length index)

)I (z; µ, φ)
)z/µ

= −βe I (z; µ, φ) + βs F⊙e−τ/µ · P(µ, φ; −µ0, φ0)/4π

+βs

∫ 2π

0

∫ 1

−1
I (z, µ′, φ′) · P(µ, φ; µ′, φ′)/4πdµ′dφ′ + βa B[T (z)].

(3.4.2)

All the terms are self-explanatory. However, it is noted that integration of the multiple
scattering term is performed for diffuse intensity over the 4π solid angle and that
radiative equilibrium is assumed such that emission is equal to absorption based on
Kirchhoff’s and Planck’s laws (Section 1.2).

Further, we may define the single-scattering albedo as the ratio of the scattering
coefficient to the extinction coefficient in the form

ω̃ = βs

βe
or 1 − ω̃ = βa

βe
. (3.4.3)

The optical depth is defined by

τ =
∫ ∞

z
βe dz′. (3.4.4)
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Using the optical depth, Eq. (3.4.2) can be rewritten as follows:

µ
d I (τ ; µ, φ)

dτ
= I (τ ; µ, φ) − J (τ ; µ, φ), (3.4.5)

where the source function is given by [see also Eq. (1.4.22)]

J (τ ; µ, φ) = ω̃

4π

∫ 2π

0

∫ 1

−1
I (τ ; µ′, φ′)P(µ, φ; µ′, φ′)dµ′dφ′

+ ω̃

4π
F⊙ P(µ, φ; −µ0, φ0)e−τ/µ0 + (1 − ω̃)B[T (τ )]. (3.4.6)

The fundamental parameters that drive the transfer of diffuse intensity are the ex-
tinction coefficient (or the optical depth), the single-scattering albedo, and the phase
function. It suffices to assume that these parameters are independent of τ (or z) in
the present discussion. Interested readers should refer to Chapter 6 for an in-depth
explanation of radiative transfer processes. For discussion of solar radiative transfer,
the flux emitted from the earth and the atmosphere with an equilibrium temperature
of ∼255 K is negligible in comparison to that emitted from the sun for λ ≤ 3.5 µm.
For some solar radiative transfer problems, we may then omit the last term in the
source function.

The phase function represents the angular distribution of the scattered energy as a
function of the scattering angle and has been presented for molecules, aerosols, and
cloud particles in Fig. 3.13. From spherical geometry, the scattering angle is related
to the incoming and outgoing directions in the form

cos & = µµ′ + (1 − µ2)1/2(1 − µ′2)1/2 cos (φ′ − φ). (3.4.7)

We may express the phase function in terms of a known mathematical function for
the purpose of solving Eq. (3.4.5), the first-order differential integral equation. The
Legendre polynomials (Appendix E), by virtue of their unique mathematical prop-
erties, have been used extensively in the analysis of radiative transfer problems. In
terms of Legendre polynomials Pℓ, the phase function may be written in the form

P(cos &) =
N

∑

ℓ=0

ω̃ℓ Pℓ(cos &), (3.4.8)

where the expansion coefficient, based on the orthogonal property, is given by

ω̃ℓ = 2ℓ + 1
2

∫ 1

−1
P(cos &)Pℓ(cos &) d cos &, ℓ = 0, 1 . . . ., N . (3.4.9a)

When ℓ = 0, ω̃0 = 1, representing the normalization of the phase function denoted
in Eq. (3.3.10). When ℓ = 1, we have

g = ω̃1

3
= 1

2

∫ 1

−1
P(cos &) cos & d cos &. (3.4.9b)

This term is referred to as the asymmetry factor, which is the first moment of the phase
function and an important parameter in radiative transfer. For isotropic scattering, g is
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zero, as it is for Rayleigh scattering (Exercise 3.16). The asymmetry factor increases
as the diffraction peak of the phase function sharpens and can be negative if the phase
function peaks in backward directions (90–180◦). For Lorenz–Mie type particles,
whose phase function has a generally sharp peak at the 0◦ scattering angle (Fig. 3.13),
the asymmetry factor denotes the relative strength of forward scattering.

3.4.2 Approximations of Radiative Transfer

We shall present two useful approximations: one for remote sensing applications, and
the other for radiation parameterization for use in climate studies.

3.4.2.1 SINGLE-SCATTERING APPROXIMATION

In a domain where the optical depth is small (e.g., τ < 0.1), a large portion of
scattering events is dominated by single scattering of the direct solar beam. This occurs
in optically thin cirrus and aerosol atmospheres. In this case, the most important term
in the source function is

J (τ ; µ, φ) ∼=
ω̃

4π
F⊙ P(µ, φ; −µ0, φ0)e−τ/µ0 . (3.4.10)

Consider a black surface such that the reflected upward intensity I (τ∗; µ, φ) = 0,
where τ∗ is the total atmospheric optical depth. From Eq. (1.4.23), the upward intensity
at the top of the atmosphere is

I (0; µ, φ) =
∫ τ∗

0
J (τ ′; µ, φ)e−τ ′/µ dτ ′

µ

= µ0 F⊙

π

ω̃

4(µ + µ0)
P(µ, φ; −µ0, φ0)

{

1 − exp
[

−τ∗

(

1
µ

+ 1
µ0

)]}

.

(3.4.11a)

Moreover, for a small τ∗, we have

R(µ, φ; µ0, φ0) = π I (0; µ, φ)
µ0 F⊙

= τ∗
ω̃

4µµ0
P(µ, φ; −µ0, φ0). (3.4.11b)

The term R is a nondimensional quantity, referred to as the bidirectional reflectance.
This equation establishes the foundation for the retrieval of the optical depth of
aerosols from satellites. It is clear that under the condition of optically thin atmosphere,
the optical depth is directly proportional to the bidirectional reflectance that can be
determined from satellite radiometric measurements, but is inversely proportional to
the phase function. The latter dependence becomes an important issue in satellite
remote sensing using reflected sunlight, a subject that will be discussed further in
Section 7.3.1.

Xu, Guanglang
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3.4.2.2 DIFFUSION APPROXIMATION

Consider a diffusion domain where the directional dependence of multiple scat-
tering events is largely lost. In this case, it is appropriate to consider the transfer of
hemispheric upward and downward flux densities defined by [see also Eq. (1.1.9)]

F↑↓(τ ) =
∫ 2π

0

∫ ±1

0
I (τ ; µ, φ)µ dµ dφ, (3.4.12)

where the notations ↑ and ↓ correspond to + and −, respectively. We may formulate
the transfer problem based on the physical reasoning that the differential changes
of the upward and downward flux densities must be related to these fluxes as well as
to the direct downward flux from the sun. Thus, we write,

d F↑

dτ
= γ1 F↑ − γ2 F↓ − γ3 ω̃F⊙e−τ/µ0 , (3.4.13a)

d F↓

dτ
= γ2 F↑ − γ1 F↓ + (1 − γ3) ω̃F⊙e−τ/µ0 , (3.4.13b)

where γ1, γ2, and γ3 are appropriate weighting coefficients related to multiple scatter-
ing events. The two flux equations were first formulated by Schuster (1905), although
in a slightly different format. These equations can be derived from the well-known
two-stream and Eddington approximations in which the three coefficients can be
determined (see Chapter 6). Solutions for the upward and downward fluxes can be
derived by setting Fdif = F↓ − F↑, and Fsum = F↓ + F↑. In this manner we can
show that (Exercises 3.17 and 3.18)

d2 Fdif

dτ 2
= k2 Fdif + χe−τ/µ0 , (3.4.14)

where k2 = γ 2
1 − γ 2

2 are the eigenvalues and χ is a certain coefficient. Equation
(3.4.14) is referred to as the diffusion equation for radiative transfer. The general
solution for this second-order nonhomogeneous differential equation is given by

Fdif = c1e−kτ + c2e+kτ + χ (1/µ2
0 − k2)e−τ/µ0 , (3.4.15)

where c1,2 are certain coefficients. Likewise, we can also derive a solution for Fsum

which, together with Fdif, can be used to determine the analytic solutions for upward
and downward flux densities. Interested readers should consult Section 6.5.2 for an
advanced discussion of this topic.

Many general circulation and climate models utilize the two-stream or Eddington’s
approximation in the parameterization of radiative transfer because analytic solutions
can be derived to achieve efficient computation that is critical for model simula-
tions. In the following, the subject of atmospheric absorption in multiple scattering
atmospheres that leads to the production of solar heating rates is further discussed.

Xu, Guanglang
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3.5 Atmospheric Solar Heating Rates

The absorption of solar radiation by various gases is important because of its gen-
eration of heating in the atmosphere, which is also affected by multiple scattering
processes. Consider a plane-parallel absorbing and scattering atmosphere illuminated
by the solar spectral irradiance F⊙ so that the downward flux density normal to the
top of the atmosphere is given by µ0 F⊙. Let the differential thickness within the
atmosphere be )z, and let the spectral downward and upward flux densities centered
at wavelength λ be denoted by F↓ and F↑, respectively. We have omitted the wave-
length dependence for simplicity of presentation. The net flux density (downward) at
a given height z is then defined by

F(z) = F↓(z) − F↑(z). (3.5.1a)

In reference to Fig. 3.17, because of absorption, the net flux density decreases from
the upper levels to the progressively lower levels. The loss of net flux density, i.e., the
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Figure 3.17 Divergence of the net flux density in z, p, and u coordinates. All the notations are defined
in the text.
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net flux density divergence for the differential layer is, therefore,

)F(z) = F(z) − F(z + )z). (3.5.1b)

On the basis of the energy conservation principle, the absorbed radiant energy must
be used to heat the layer. Thus, the heating experienced by a layer of air due to
radiation transfer may be expressed in terms of the rate of temperature change. It is
conventionally given by

)F(z) = −ρC p)z
∂T
∂t

, (3.5.2)

where ρ is the air density in the layer, C p is the specific heat at constant pressure, and
t is the time. The heating rate for a differential layer )z is, therefore,

∂T
∂t

= − 1
ρC p

)F(z)
)z

= g
C p

)F(p)
)p

= − q
C p

)F(u)
)u

, (3.5.3)

where we have also expressed the heating rate in terms of pressure and path-length
coordinates using the hydrostatic equation dp = −ρg dz, and the definition of path
length for a specific gas where q is the mixing ratio, g is the gravitational acceleration,
and g/C p is the well-known dry adiabatic lapse rate. If we divide the solar spectrum
into N intervals and carry out the heating rate calculations for each spectral interval
i, then the total heating rate due to solar radiation may be written in the form

(

∂T
∂t

)

s
=

N
∑

i=1

(

∂T
∂t

)

i
. (3.5.4)

Computation of the solar flux and heating rate in the atmosphere covering the
entire solar spectrum is quite involved. In a clear atmosphere, we must include both
absorption by various absorbing gases, chiefly H2O, O3, O2, and CO2, and scattering
by molecules and aerosols, as well as reflection from the surface. The solar spectrum
must be divided into a number of suitably grouped subspectral intervals in which a
monochromatic radiative transfer program, such as the adding or discrete-ordinates
method for inhomogeneous atmospheres discussed in Chapter 6, can be employed
for the calculation of spectral fluxes and heating rates. The single-scattering prop-
erties of each subdivided interval for input into the radiative transfer model must
include simultaneous contributions from the scattering and absorption of aerosols
(and cloud particles), Rayleigh scattering, and gaseous absorption. For efficient spec-
tral integration, we may employ the correlated k-distribution method introduced in
Section 4.3.

In Fig. 3.18, we show typical solar heating rates and net flux profiles as functions
of the cosine of the solar zenith angle µ0 using the standard atmospheric profiles for
H2O, O3, and other trace gases (see Fig. 3.2), along with a surface albedo of 0.1, as
inputs of a radiative transfer model. The instantaneous solar heating rate profile is
divided into two different levels to highlight the contributions from H2O and O3. The
solar heating rate decreases as µ0 decreases because the incoming solar irradiance
available to the atmosphere is directly proportional to µ0. Below about 10 km, the
solar heating rate is primarily produced by water vapor with the heating rate ranging



3.5 Atmospheric Solar Heating Rates 109

1.00.5= 0.2

20

30

40

50

60
0 10 20 30 40

0

10

0 1 2 3
 Solar Heating Rate ( K day−1)

(a)

0

10

20

30

40

50

60

0 500 1000 1500

Net Flux ( W m−2

= 0.5 1.0 0.2

(b)

Without Aerosols

With Aerosols

Clear

0.50.2 µ0 = 1.0

H
ei

gh
t (

km
)

µ0 µ0 

)

Figure 3.18 Solar heating rates and net fluxes as functions of height with and without the contribution
of aerosols for a number of the cosines of solar zenith angles. The solar heating rates are instantaneous
values and are separated in two regions to highlight the contributions from water vapor and ozone in
the troposphere and stratosphere, respectively. A typical background aerosol profile with a visible optical
depth of 0.15 is used to illustrate the effect of aerosols on the solar flux and heating rate. These results
and those presented in Fig. 3.19 are computed from a line-by-line equivalent radiative transfer model that
includes the contributions of gaseous absorption, multiple scattering, and the absorption of aerosol and
cloud particles (Liou et al., 1998).

from 0.5 to 2 K day−1 near the surface when the contribution from aerosols is not
accounted for. The solar heating rate decreases rapidly with increasing altitude in
phase with the exponential decrease of water vapor and reaches a minimum at about
15 km. Above 20 km, increased solar heating is produced primarily by the absorption
of ozone. Solar net flux decreases significantly below about 10 km. When a standard
aerosol profile with an optical depth of 0.15 at the 0.5 µm wavelength is added, the
solar heating rate increases in the lower atmosphere because of the absorption of
aerosols in the visible and near infrared. The effect of aerosols on the absorption of
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Figure 3.19 Comparison of (a) solar heating rates and (b) net fluxes in clear, cirrus (Cs), and stratus
(St) cloudy conditions for a µ0 of 0.5. The positions of these clouds are indicated in the diagram. The
optical depths for Cs and St are 0.7 and 10, respectively, while the mean particle sizes are 42 and 8 µm,
respectively.

solar fluxes depends on their chemical composition, particle size distribution, and
vertical profile and is a subject of ongoing research.

The effects of clouds on solar heating and net flux profiles are investigated using
typical single-layer cirrostratus (Cs) and stratus (St) clouds whose locations are shown
in Fig. 3.19. We use a cosine of the solar zenith angle of 0.5 in this demonstration. The
visible optical depths for Cs and St are 0.7 and 10, respectively, while the mean ice
crystal maximum dimension and water droplet radius are 42 and 8 µm, respectively.
In the case of low stratus, substantial instantaneous heating occurs at the cloud top
with a value of about 22 K day−1. Because of the reflection from clouds, ozone
heating also increases. This increase appears to depend on the factors associated with
cloud position and optical depth. In the overcast low stratus condition, net solar flux
available at the surface is only about 187 W m−2, in comparison to about 435 and
376 W m−2 in clear and cirrus cloud conditions, respectively.
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Exercises

3.1 The scale height H is defined by dp/p = −dz/H . From the hydrostatic equation
and the equation of state, show that H = K T/Mg, where K is the Boltzmann
constant, M is the molecular weight of air, and g is gravity. Since the molecular
translational energy is 1/2 K T , the scale height is then twice the distance through
which atoms/molecules that have the equipartition of translational energy can
rise in the vertical direction against the force of gravity.

3.2 Compute and display graphically r (z1) as a function of z1, as defined in
Eq. (3.2.6) for µ0 = 1, 0.5, and 0.2. Compare your results with those presented
in Fig. 3.6 and explain the meaning of the Chapman layer.

3.3 In reference to the spherical atmosphere depicted in Fig. 3.20, derive the
Chapman function Ch(x, θ0). Compare this function with 1/µ0 and determine
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Figure 3.20 Spherical geometry for the evaluation of the Chapman function: θ0 = solar zenith angle,
re = earth’s radius, rA = AE, h = P O, h′ = P ′O ′, s(p′) = the path length from point p′ to A. The
objective is to compute the absorption at point P, which is at a height h above the earth’s surface, based on
the actual path length s(p′).
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the limit of the solar zenith angle under which 1/µ0 is a good approximation of
the exponential attenuation calculation.

3.4 Given the values of K12 = 5.6 × 10−46(300/T )2.36m6 sec−1 and K13 = 2.0 ×
10−17exp(−2280/T ) m3 sec−1, and the J2 and J3 values in the following ta-
ble, compute the equilibrium ozone concentration as a function of height and
compare your results with those presented in Fig. 3.8. Use the standard atmo-
spheric temperature and molecular number density profiles (Appendix G) in
your calculations.

Height (km) 30 35 40 45 50

J2(sec−1) × 10−10 0.61 2.13 4.56 7.93 11.30
J3(sec−1) × 10−3 0.62 1.09 2.03 4.31 6.29

3.5 The principal photochemical reactions involving oxygen in the thermosphere
are found to be

O2 + hν̃(λ < 1751 Å)
J2−→ O + O,

O + O + M
K11−→ O2 + M,

O + O
K ′

11−→ O2 + hν̃.

Express these photochemical processes in terms of the rate of change of the
number density of O and O2. Derive the number density of O under the photo-
chemical equilibrium condition.

3.6 For very strong Lorentz lines (see Section 1.3.2), the half-width is much smaller
than the spread of the line such that α ≪ (ν − ν0). Under this condition and
using a single line, show that the spectral absorptivity is proportional to the
square root of the path length. In your analysis, define the relevant parameters
in the wavenumber domain and use the following integration:

∫ ∞

0

(

e−a2/x2 − e−b2/x2)

dx =
√

π (b − a).

3.7 The number of molecules per cubic centimeter of air at sea level in standard
atmospheric conditions is about 2.55 × 1019 cm−3. Calculate the scattering cross
section of molecules at the 0.3, 0.5, and 0.7 µm wavelengths.

3.8 The number density profile as a function of height is given by the following table:

Height (km) 0 2 4 6 8 10 12 14 16

N (×1018 cm−3) 25.5 20.9 17.0 13.7 10.9 8.60 6.49 4.74 3.46

Calculate the optical depth of a clear atmosphere at the wavelengths shown in
Exercise 3.7.
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3.9 For all practical purposes, we find that the refractive index mr and the molecular
density ρ are related by

(mr − 1)gas = const × ρ .

At sea level, the refractive index of air is about 1.000292 for a wavelength
of 0.3 µm. Find the refractive indices at the heights given in Exercise 3.8.
Note that the density (g cm−3) is related to the number density N (cm−3) by
ρ = (M/N0)N , where M is the molecular weight of air (28.97 g mol−1),
and N0 is Avogadro’s number (6.02295 ×1023 mol−1). Because the refractive
index varies with the density of the atmosphere, light rays bend according to
the atmospheric density profile and produce a number of atmospheric optical
phenomena known as looming, sinking, and superior and inferior mirages.

3.10 An unpolarized ruby laser operated at 0.7 µm is projected vertically into a clear
sky to investigate the density of the atmosphere. A detector located 10 km from
the base of the laser is used to receive the flux density scattered from the laser
beam by air molecules. Assuming that the laser output has a uniform distribution
of flux density F0 across the beam (i.e., I0 = F0/π sr), and neglecting the effects
of multiple scattering, find the scattered flux density at 6 and 10 km received
by a detector whose field of view in a plane is 0.05 rad. Use the scattering cross
section and molecular density profile obtained from Exercises 3.7 and 3.8.

3.11 (a) The radar backscattering coefficient (in units of per length) for a volume of
identical cloud droplets is defined as

βπ = Ncσπ = Ncσs P(π ),

where Nc is the droplet number density, σπ the backscattering cross section,
and P(π) the phase function at backscatter. Employing the Rayleigh scattering
cross section and phase function, and noting that Nc = 1/V , where the volume
of a spherical drop with a radius a is V = 4πa3/3, show that

βπ = 64π5

λ4
Nca6

∣

∣

∣

∣

m2 − 1
m2 + 2

∣

∣

∣

∣

2

.

(b) Assuming that the number density and the radius of cloud droplets are
100 cm−3 and 20 µm, respectively, calculate βπ for the following two radar
wavelengths with the corresponding refractive indices for water:

λ(cm) 10 3.21
m 3.99–1.47i 7.14–2.89i

where i =
√

−1. Compute βπ again using only the real part of the refractive
indices, and show the differences between the two computations.

3.12 From the geometry of a sphere with respect to the incident ray, show that the
incident angle θi at which the minimum deviation occurs is given by

cos2 θi = (m2 − 1)/(p2 − 1), p ≥ 2,
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where (p − 1) denotes the number of reflection. The refractive index m for
water is 1.33 in the visible. Compute the positions defined as the scattering
angles for the first and second rainbows.

3.13 From the geometry of a hexagonal plate with respect to the incident ray, show
that the angle of refraction at minimum deviation can be determined from

sin
[

1
2

(θ ′ + A)
]

= m sin
A
2

,

where A denotes the prism angle and the refractive index of ice in the visible
is 1.31. For A = 60◦, 90◦, and 120◦, compute the positions of halos.

3.14 From Eq. (3.3.26), compute and plot the diffraction pattern as a function of
y = x sin θ . What would be the position of the strongest corona produced by
uniform-sized aerosols with a radius of 1 µm? Use a wavelength of 0.5 µm in
your calculation.

3.15 (a) Compute the extinction coefficient as a function of the phase shift parameter,
defined in Eqs. (3.3.31) and (3.3.28). (b) Estimate the aerosol particle size under
which more blue light is available to an observer than red light based on the first
maximum and minimum in the extinction curve assuming a refractive index of
1.5 for aerosols. This is related to an optical phenomenon referred to as once in a
blue moon. Why is it so rare? Interested readers may also wish to refer to Figs. 5.1
and 5.7 for additional information on aerosol size distribution and extinction.

3.16 Show that for isotropic and Rayleigh scattering cases, the asymmetry factor is
zero.

3.17 Consider the cases of pure scattering, referred to as conservative scattering,
such that ω̃ = 1. Define the net flux associated with the diffuse beam as follows:

F(τ ) =
∫ 2π

0

∫ 1

−1
I (τ, µ, φ)µ dµ dφ.

Show from Eq. (3.4.13) that

d F(τ )
dτ

= F⊙e−τ/µ0 ,

and that

F(τ ) + µ0 F⊙e−τ/µ0 = constant.

This is the so-called flux integral. In a pure scattering atmosphere, the total flux
(direct plus diffuse solar beam) is conserved.

3.18 From the flux equations given in Eqs. (3.4.13a) and (3.4.13b), derive Eq. (3.4.14).
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ed. D. Reidel, Dordrecht. Chapter 4 presents a comprehensive discussion of the


