
Chapter 1 Fundamentals of Radiation for
Atmospheric Applications

This text is intended for the study, understanding, and quantitative analysis of atmo-
spheric radiation, a field in which the interactions of solar and terrestrial radiation
with molecules, aerosols, and cloud particles in planetary atmospheres, as well as
with the surface, are studied through the theory of radiative transfer and radiometric
observations made from the ground, the air, and space. The field is closely associated
with the investigation of atmospheric greenhouse effects resulting from external ra-
diative perturbations in climate systems and the development of methodologies for
inferring atmospheric and surface parameters by means of remote sensing. In the
following, we begin with a discussion of various concepts, definitions, and units that
are pertinent to the field of atmospheric radiation.

1.1 Concepts, Definitions, and Units

1.1.1 Electromagnetic Spectrum

The most important process responsible for energy transfer in the atmosphere is
electromagnetic radiation. Electromagnetic radiation travels in wave form, and all
electromagnetic waves travel at the same speed, the speed of light. This is 2.99793 ±
1 × 108 m sec−1 in a vacuum and very nearly the same speed in air. Visible light,
gamma rays, x-rays, ultraviolet light, infrared radiation, microwaves, television sig-
nals, and radio waves constitute the electromagnetic spectrum.

The retina of the human eye is sensitive to electromagnetic waves with frequencies
between 4.3 × 1014 vibrations per second (usually written as cycles per second and
abbreviated cps) and 7.5 × 1014 cps. Hence, this band of frequencies is called the
visible region of the electromagnetic spectrum. The eye, however, does not respond
to frequencies of electromagnetic waves higher than 7.5 × 1014 cps. Such waves,
lying beyond the violet edge of the spectrum, are called ultraviolet light. The human
eye also does not respond to electromagnetic waves with frequencies lower than
4.3 × 1014 cps. These waves, having frequencies lower than the lowest frequency of
visible light at the red end of the spectrum and higher than about 3 × 1012 cps, are
called infrared light or infrared radiation. Just beyond the infrared portion of the
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2 1 Fundamentals of Radiation for Atmospheric Applications

spectrum are microwaves, which cover the frequencies from about 3 × 1010 cps to
3 × 1012 cps. The most significant spectral regions associated with radiative energy
transfer in planetary atmospheres lie between ultraviolet light and microwaves.

The x-ray region of the electromagnetic spectrum consists of waves with frequen-
cies ranging from about 3 × 1016 cps to 3 × 1018 cps, and is adjacent to the ultraviolet
region in the spectrum. The gamma-ray region of the spectrum has the highest fre-
quencies of all, ranging upward from about 3 × 1019 cps. Radio waves have the lowest
frequencies in the spectrum, extending downward from about 3 × 105 cps.

Electromagnetic waves are often described in terms of their wavelength rather
than their frequency. The following general formula connects frequency ν̃ and wave-
length λ:

λ = c/ν̃, (1.1.1)

where c represents the speed of light in a vacuum. It is conventional to use microm-
eters (µm; 1 µm = 10−4 cm) to denote the wavelengths of radiation from the sun.
Other units, known as nanometers (nm; 1 nm = 10−7 cm = 10−3 µm) and angstroms
(Å; 1 Å = 10−4 µm), have also been frequently used, particularly for ultraviolet
radiation. Equation (1.1.1) is valid for any type of wave and is not restricted to elec-
tromagnetic waves. It is customary to use wavenumber ν to describe the characteristics
of infrared radiation. It is defined by

ν = ν̃/c = 1/λ. (1.1.2)

Thus, a 10 micrometer (µm) wavelength is equal to a 1000 cm−1 wavenumber. In the
microwave region, however, a frequency unit called gigahertz (GHz) is commonly
used. One GHz is equal to 109 cycles per second. It follows that 1 cm is equivalent to
30 GHz. Figure 1.1 shows the complete electromagnetic spectrum along with each
region’s corresponding frequency, wavenumber, and wavelength.

1.1.2 Solid Angle

The analysis of a radiation field often requires the consideration of the amount of
radiant energy confined to an element of solid angle. A solid angle is defined as the
ratio of the area σ of a spherical surface intercepted at the core to the square of the
radius, r , as indicated in Fig. 1.2. It can be written as

$ = σ/r2. (1.1.3)

Units of solid angle are expressed in terms of the steradian (sr). For a sphere whose
surface area is 4πr2, its solid angle is 4π sr.

To obtain a differential elemental solid angle, we construct a sphere whose central
point is denoted as O . Assuming a line through point O moving in space and inter-
secting an arbitrary surface located at a distance r from point O , then as is evident
from Fig. 1.3, the differential area in polar coordinates is given by

dσ = (rdθ )(r sin θ dφ). (1.1.4)
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Name of
  region

Wavelength
      (µm)

Frequency
     (GHz)

Wavenumber
     (cm-1)

Gamma
   rays

X rays

Ultraviolet

10-5 3 x 1010 109

10-2 3 x107 106

3 x 10-1 106 0.33  x 105

Visible

Infrared

Microwaves

Spacecraft

Television & FM

Shortwave

       AM
Radio waves

1

103

3 x 102

104

104  (1cm) 3 x 101 1

10

106 3 x 10-1 10-2

107 3 x 10-2 10-3

108 3 x 10-3 10-4

109 3 x 10-4 10-5

Violet 0.4 µm

Purple
Blue
Green
Yellow
Orange
Red 0.7 µm

Figure 1.1 The electromagnetic spectrum in terms of wavelength in µm, frequency in GHz, and
wavenumber in cm−1.
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σ

r

Figure 1.2 Definition of a solid angle $, where σ denotes the area and r is the distance.
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Figure 1.3 Illustration of a differential solid angle and its representation in polar coordinates. Also
shown for demonstrative purposes is a pencil of radiation through an element of area d A in directions
confined to an element of solid angle d$. Other notations are defined in the text.

Hence, the differential solid angle is

d$ = dσ/r2 = sin θ dθ dφ, (1.1.5)

where θ and φ denote the zenith and azimuthal angles, respectively, in polar coordi-
nates.

1.1.3 Basic Radiometric Quantities

Consider the differential amount of radiant energy d Eλ in a time interval dt and
in a specified wavelength interval, λ to λ + dλ, which crosses an element of area
d A depicted in Fig. 1.3, in directions confined to a differential solid angle, which is
oriented at an angle θ to the normal of d A. This energy is expressed in terms of the
specific intensity Iλ by

d Eλ = Iλ cos θ d A d$ dλ dt, (1.1.6)

where cos θ d A denotes the effective area at which the energy is being intercepted.
Equation (1.1.6) defines the monochromatic intensity (or radiance) in a general way
as follows:

Iλ = d Eλ

cos θ d$ dλ dt d A
. (1.1.7)
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Thus, the intensity is in units of energy per area per time per wavelength and per
steradian. It is evident that the intensity implies a directionality in the radiation stream.
Commonly, the intensity is said to be confined in a pencil of radiation.

The monochromatic flux density or the monochromatic irradiance of radiant energy
is defined by the normal component of Iλ integrated over the entire hemispheric solid
angle and may be written as

Fλ =
∫

$

Iλ cos θ d$. (1.1.8)

In polar coordinates, we write

Fλ =
∫ 2π

0

∫ π/2

0
Iλ (θ, φ) cos θ sin θ dθ dφ. (1.1.9)

For isotropic radiation (i.e., if the intensity is independent of the direction), the
monochromatic flux density is then

Fλ = π Iλ. (1.1.10)

The total flux density of radiant energy, or irradiance, for all wavelengths (energy per
area per time), can be obtained by integrating the monochromatic flux density over
the entire electromagnetic spectrum:

F =
∫ ∞

0
Fλ dλ. (1.1.11)

Moreover, the total flux f , or radiant power W (energy per time), is defined by

f =
∫

A
F d A. (1.1.12)

The monochromatic flux density in the frequency domain may be written in the
form

Fν̃ = d F
d ν̃

. (1.1.13)

From the relationship between wavelength and frequency denoted in Eq. (1.1.1), we
have

Fν̃ = −(λ2/c)Fλ. (1.1.14)

Likewise, the intensity in wavelength and frequency domains is connected by

Iν̃ = −(λ2/c)Iλ. (1.1.15)

A similar relation between the monochromatic flux density, or intensity, in wavenum-
ber and wavelength (or frequency) domains may be expressed by means of Eq. (1.1.2).

When the flux density or the irradiance is from an emitting surface, the quantity is
called the emittance. When expressed in terms of wavelength, it is referred to as the
monochromatic emittance. The intensity or the radiance is also called the brightness
or luminance (photometric brightness). The total flux from an emitting surface is
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6 1 Fundamentals of Radiation for Atmospheric Applications

Table 1.1
Symbols, Dimensions, and Units of Various Radiometric Quantities

Symbol Quantity Dimensiona Unitb

E Energy M L2T −2 Joule (J)

f Flux (luminosity) M L2T −3 Joule per second (J sec−1, W)

F Flux density (irradiance)
Emittance

MT −3 Joule per second per square meter
(W m−2)

I Intensity (radiance)
Brightness (luminance)

MT −3 Joule per second per square meter
per steradian (W m−2 sr−1)

aM is mass, L is length, and T is time.
b1 watt (W) = 1 J sec−1.

often called luminosity. The basic radiometric quantities are summarized in Table 1.1,
along with their symbols, dimensions, and units.

1.1.4 Concepts of Scattering and Absorption

Most of the light that reaches our eyes comes not directly from its source but indirectly
through the process of scattering. We see diffusely scattered sunlight when we look
at clouds or at the sky. Land and water surfaces and the objects surrounding us are
visible through the light that they scatter. An electric lamp does not send us light
directly from the luminous filament but usually glows with the light that has been
scattered by the glass bulb. Unless we look directly at a light source, such as the sun,
a flame, or an incandescent filament with a clear bulb, we see light that has been
scattered. In the atmosphere, we see many colorful examples of scattering generated
by molecules, aerosols, and clouds containing water droplets and ice crystals. Blue
sky, white clouds, and magnificent rainbows and halos, to name a few, are all optical
phenomena produced by scattering. Scattering is a fundamental physical process
associated with light and its interaction with matter. It occurs at all wavelengths
throughout the entire electromagnetic spectrum.

Scattering is a physical process by which a particle in the path of an electromag-
netic wave continuously abstracts energy from the incident wave and reradiates that
energy in all directions. Therefore, the particle may be thought of as a point source
of the scattered energy. In the atmosphere, the particles responsible for scattering
range in size from gas molecules (∼10−4 µm) to aerosols (∼1 µm), water droplets
(∼10 µm), ice crystals (∼100 µm), and large raindrops and hail particles (∼1 cm).
The effect of particle size on scattering is inferred by a physical term called the size
parameter. For a spherical particle, it is defined as the ratio of the particle circumfer-
ence to the incident wavelength, λ; i.e., x = 2πa/λ, where a is the particle radius. If
x ≪ 1, the scattering is called Rayleigh scattering. An excellent example of this case
is the scattering of visible light (0.4–0.7 µm) by atmospheric molecules, leading to
the explanation of blue sky and sky polarization to be discussed in Chapter 3. For
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(c)

(b)

Forward

(a)
Incident Beam

Figure 1.4 Demonstrative angular patterns of the scattered intensity from spherical aerosols of three
sizes illuminated by the visible light of 0.5 µm: (a) 10−4 µm, (b) 0.1 µm, and (c) 1 µm. The forward
scattering pattern for the 1 µm aerosol is extremely large and is scaled for presentation purposes.

particles whose sizes are comparable to or larger than the wavelength, i.e., x ! 1,
the scattering is customarily referred to as Lorenz–Mie scattering. The mathematical
theory of Lorenz–Mie scattering for spherical particles will be presented in Chapter 5.
Figure 1.4 illustrates the scattering patterns of spherical aerosols of size 10−4, 0.1, and
1 µm illuminated by a visible light of 0.5 µm. A small particle tends to scatter light
equally in the forward and backward directions. When the particle becomes larger,
the scattered energy becomes increasingly concentrated in the forward direction with
increasingly complex scattering features. Because of the spherical symmetry with
respect to the incoming light beam, the scattering patterns for other planes are the
same as the ones presented in Fig. 1.4. The scattering of sunlight by spherical cloud
droplets and raindrops produces the magnificent rainbows and glory that we see in our
daily life.

In situ observations and electronic microscopic photography have shown that
aerosols in the atmosphere, such as minerals, soot, and even oceanic particles, exhibit
a wide variety of shapes ranging from quasi-spherical to highly irregular geometric
figures with internal structure. The shape and size of ice crystals are governed by
temperature and supersaturation, but they generally have a basic hexagonal structure.
In the atmosphere, if ice crystal growth involves collision and coalescence, the crys-
tal’s shape can be extremely complex. Recent observations based on aircraft optical
probes and replicator techniques for widespread midlatitude, tropical, arctic, and con-
trail cirrus show that these clouds are largely composed of ice crystals in the shape
of bullet rosettes, solid and hollow columns, plates, and aggregates, and ice crystals
with irregular surfaces with sizes ranging from a few micrometers to thousands of
micrometers. The scattering of sunlight by some of the defined ice crystals produces
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Figure 1.5 Multiple scattering process involving first (P), second (Q), and third (R) order scattering
in the direction denoted by d.

fascinating optical phenomena including 22◦ and 46◦ halos, sundogs, and numerous
arcs and bright spots. Light scattering by nonspherical and inhomogeneous particles,
a contemporary research subject, will be covered in Chapter 5, which presents a
combination of geometric ray-tracing and numerical solution approaches.

In atmospheric scattering, it is generally assumed that the light scattered by
molecules and particulates has the same frequency (or wavelength) as the incident
light. It is noted, however, that high-energy laser light can produce phenomena such as
Raman scattering in shift frequencies, which can be employed for the remote sensing
of water vapor. Atmospheric molecules and particulates are separated widely enough
so that each particle scatters light in exactly the same way as if all other particles did
not exist. This is referred to as independent scattering. The assumption of indepen-
dent scattering greatly simplifies the problem of light scattering by a collection of
particles, because it allows the use of energy quantity instead of electric field in the
analysis of the propagation of electromagnetic waves in planetary atmospheres.

In a scattering volume, which contains many particles, each particle is exposed
to, and also scatters, the light that has already been scattered by other particles.
To demonstrate this concept we refer to Fig. 1.5. A particle at position P removes
the incident light by scattering just once, i.e., single scattering, in all directions.
Meanwhile, a portion of this scattered light reaches the particle at position Q, where
it is scattered again in all directions. This is called secondary scattering. Likewise,
a subsequent third-order scattering involving the particle at position R takes place.
Scattering more than once is called multiple scattering. It is apparent from Fig. 1.5
that some of the incident light that has been first scattered away from direction d
may reappear in this direction by means of multiple scattering. Multiple scattering is
an important process for the transfer of radiant energy in the atmosphere, especially
when aerosols and clouds are involved. Chapter 6 deals with the theory of multiple
scattering in planetary atmospheres.
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1.2 Blackbody Radiation Laws 9

Scattering is often accompanied by absorption. Grass looks green because it scat-
ters green light while it absorbs red and blue light. The absorbed energy is converted
into some other form, and it is no longer present as red or blue light. In molecular
atmospheres, there is very little absorption of energy in the visible spectrum. Clouds
also absorb very little visible light. Both scattering and absorption remove energy from
a beam of light traversing the medium. The beam of light is attenuated, and we call
this attenuation extinction. Thus, extinction is a result of scattering plus absorption.
In a nonabsorbing medium, scattering is the sole process of extinction.

In the field of light scattering and radiative transfer, it is customary to use a term
called cross section, analogous to the geometrical area of a particle, to denote the
amount of energy removed from the original beam by the particle. When the cross
section is associated with a particle dimension, its units are denoted in terms of
area (cm2). Thus, the extinction cross section, in units of area, is the sum of the
scattering and absorption cross sections. However, when the cross section is in ref-
erence to unit mass, its units are given in area per mass (cm2 g−1). In this case, the
term mass extinction cross section is used in radiative transfer. The mass extinction
cross section is, therefore, the sum of the mass absorption and mass scattering cross
sections. Furthermore, when the extinction cross section is multiplied by the particle
number density (cm−3), or when the mass extinction cross section is multiplied by
the density (g cm−3), the quantity is referred to as the extinction coefficient, whose
units are given in terms of length (cm−1). In the field of infrared radiative transfer,
the mass absorption cross section is simply referred to as the absorption coefficient.

The absorption of energy by particles and molecules leads to emission. The con-
cept of emission is associated with blackbody radiation and will be discussed in the
following section. In addition, a number of minor atmospheric constituents exhibit
complicated absorption line structures in the infrared region. Section 1.3 and Chapter 4
will provide discussions of the fundamentals of line formation and the transfer of in-
frared radiation in the atmosphere. A fundamental understanding of the scattering
and absorption processes in the atmosphere is imperative for the study of the radia-
tion budget and climate of planetary atmospheres and for the exploration of remote
sounding techniques to infer atmospheric composition and structure.

1.2 Blackbody Radiation Laws

The laws of blackbody radiation are basic to an understanding of the absorption and
emission processes. A blackbody is a basic concept in physics and can be visualized
by considering a cavity with a small entrance hole, as shown in Fig. 1.6. Most of
the radiant flux entering this hole from the outside will be trapped within the cavity,
regardless of the material and surface characteristics of the wall. Repeated internal
reflections occur until all the fluxes are absorbed by the wall. The probability that
any of the entering flux will escape back through the hole is so small that the interior
appears dark. The term blackbody is used for a configuration of material where ab-
sorption is complete. Emission by a blackbody is the converse of absorption. The flux

Xu, Guanglang


Xu, Guanglang


Xu, Guanglang




10 1 Fundamentals of Radiation for Atmospheric Applications

Figure 1.6 A blackbody radiation cavity to illustrate that absorption is complete.

emitted by any small area of the wall is repeatedly reflected and at each encounter
with the wall, the flux is weakened by absorption and strengthened by new emission.
After numerous encounters, emission and absorption reach an equilibrium condition
with respect to the wall temperature. In the following, we present four fundamental
laws that govern blackbody radiation, beginning with Planck’s law.

1.2.1 Planck’s Law

In his pursuit of a theoretical explanation for cavity radiation, Planck (1901) assumed
that the atoms that make up the wall behave like tiny electromagnetic oscillators,
each with a characteristic frequency of oscillation. The oscillators emit energy into
the cavity and absorb energy from it. In his analysis, Planck was led to make two
assumptions about the atomic oscillators. First, Planck postulated that an oscillator
can only have energy given by

E = nhν̃, (1.2.1)

where ν̃ is the oscillator frequency, h is Planck’s constant, and n is called the quantum
number and can take on only integral values. Equation (1.2.1) asserts that the oscillator
energy is quantized. Although later developments revealed that the correct formula
for a harmonic oscillator is E = (n + 1/2)hν̃ [see Eq. (1.3.7)], the change introduces
no difference to Planck’s conclusions. Secondly, Planck postulated that the oscillators



1.2 Blackbody Radiation Laws 11

do not radiate energy continuously, but only in jumps, or in quanta. These quanta of
energy are emitted when an oscillator changes from one to another of its quantized
energy states. Hence, if the quantum number changes by one unit, the amount of
radiated energy is given by

(E = (nhν̃ = hν̃. (1.2.2)

Determination of the emitted energy requires knowing the total number of oscil-
lators with frequency ν̃ for all possible states in accord with Boltzmann statistics,
as presented in Appendix A. Following the two preceding postulations and normal-
ization of the average emitted energy per oscillator, the Planck function in units of
energy/area/time/sr/frequency is given by

Bν̃(T ) = 2hν̃3

c2(ehν̃/K T − 1)
, (1.2.3)

where K is Boltzmann’s constant, c is the velocity of light, and T is the absolute
temperature. The Planck and Boltzmann constants have been determined through
experimentation and are h = 6.626 × 10−34 J sec and K = 1.3806 × 10−23 J deg−1.

The Planck function relates the emitted monochromatic intensity to the frequency
and the temperature of the emitting substance. By utilizing the relation between
frequency and wavelength shown in Eq. (1.1.15), Eq. (1.2.3) can be rewritten as
follows:

Bλ(T ) = 2hc2

λ5(ehc/KλT − 1)
= C1λ

−5

π (eC2/λT − 1)
, (1.2.4)

where C1 = 2πhc2 and C2 = hc/K are known as the first and second radiation con-
stants, respectively. Figure 1.7 shows curves of Bλ(T ) versus wavelength for a number
of emitting temperatures. It is evident that the blackbody radiant intensity increases
with temperature and that the wavelength of the maximum intensity decreases with
increasing temperature. The Planck function behaves very differently when λ → ∞,
referred to as the Rayleigh–Jeans distribution, and when λ → 0, referred to as the
Wien distribution.

1.2.2 Stefan–Boltzmann Law

The total radiant intensity of a blackbody can be derived by integrating the Planck
function over the entire wavelength domain from 0 to ∞. Hence,

B(T ) =
∫ ∞

0
Bλ(T ) dλ =

∫ ∞

0

2hc2λ−5

(ehc/KλT − 1)
dλ. (1.2.5)

On introducing a new variable x = hc/kλT , Eq. (1.2.5) becomes

B(T ) = 2k4T 4

h3c2

∫ ∞

0

x3dx
(ex − 1)

. (1.2.6)
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Figure 1.7 Blackbody intensity (Planck function) as a function of wavelength for a number of emitting
temperatures.

The integral term in Eq. (1.2.6) is equal to π4/15. Thus, defining

b = 2π4 K 4/(15c2h3), (1.2.7)

we then have

B(T ) = bT 4. (1.2.8)

Since blackbody radiation is isotropic, the flux density emitted by a blackbody is
therefore [see Eq. (1.1.10)]

F = π B(T ) = σ T 4, (1.2.9)

where σ is the Stefan–Boltzmann constant and is equal to 5.67 × 10−8 J m−2

sec−1 deg−4. Equation (1.2.9) states that the flux density emitted by a blackbody
is proportional to the fourth power of the absolute temperature. This is the Stefan–
Boltzmann law, fundamental to the analysis of broadband infrared radiative transfer.

1.2.3 Wien’s Displacement Law

Wien’s displacement law states that the wavelength of the maximum intensity of
blackbody radiation is inversely proportional to the temperature. By differentiating
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the Planck function with respect to wavelength, and by setting the result equal to
zero, i.e.,

∂ Bλ(T )
∂λ

= 0, (1.2.10)

we obtain the wavelength of the maximum (Exercise 1.4)

λm = a/T, (1.2.11)

where a = 2.897 × 10−3 m deg. From this relationship, we can determine the tem-
perature of a blackbody from the measurement of the maximum monochromatic
intensity. The dependence of the position of the maximum intensity on temperature
is evident from the blackbody curves displayed in Fig. 1.7.

1.2.4 Kirchhoff’s Law

The preceding three fundamental laws are concerned with the radiant intensity emitted
by a blackbody, which is dependent on the emitting wavelength and the temperature
of the medium. A medium may absorb radiation of a particular wavelength, and at the
same time also emit radiation of the same wavelength. The rate at which emission takes
place is a function of temperature and wavelength. This is the fundamental property of
a medium under the condition of thermodynamic equilibrium. The physical statement
regarding absorption and emission was first proposed by Kirchhoff (1860).

To understand the physical meaning of Kirchhoff’s law, we consider a perfectly
insulated enclosure having black walls. Assume that this system has reached the state
of thermodynamic equilibrium characterized by uniform temperature and isotropic
radiation. Because the walls are black, radiation emitted by the system to the walls is
absorbed. Moreover, because there is an equilibrium, the same amount of radiation
absorbed by the walls is also emitted. Since the blackbody absorbs the maximum
possible radiation, it has to emit that same amount of radiation. If it emitted more,
equilibrium would not be possible, and this would violate the second law of ther-
modynamics. Radiation within the system is referred to as blackbody radiation as
noted earlier, and the amount of radiant intensity is a function of temperature and
wavelength.

On the basis of the preceding discussion, the emissivity of a given wavelength, ελ

(defined as the ratio of the emitting intensity to the Planck function), of a medium is
equal to the absorptivity, Aλ (defined as the ratio of the absorbed intensity to the Planck
function), of that medium under thermodynamic equilibrium. Hence, we may write

ελ = Aλ. (1.2.12)

A medium with an absorptivity Aλ absorbs only Aλ times the blackbody radiant
intensity Bλ(T ) and therefore emits ελ times the blackbody radiant intensity. For a
blackbody, absorption is a maximum and so is emission. Thus, we have

Aλ = ελ = 1 (1.2.13)
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for all wavelengths. A gray body is characterized by incomplete absorption and emis-
sion and may be described by

Aλ = ελ < 1. (1.2.14)

Kirchhoff’s law requires the condition of thermodynamic equilibrium, such that
uniform temperature and isotropic radiation are achieved. Obviously, the radiation
field of the earth’s atmosphere as a whole is not isotropic and its temperatures are
not uniform. However, in a localized volume below about 60–70 km, to a good
approximation, it may be considered to be isotropic with a uniform temperature in
which energy transitions are governed by molecular collisions. It is in the context of
this local thermodynamic equilibrium (LTE) that Kirchhoff’s law is applicable to the
atmosphere. Departure from the LTE conditions will be discussed in Section 1.3.3.

1.3 Absorption Line Formation and Line Shape

1.3.1 Line Formation

Inspection of high-resolution spectroscopy reveals that the emission spectra of certain
gases are composed of a large number of individual and characteristic spectral lines.
In the previous section, we indicated that Planck successfully explained the nature of
radiation from heated solid objects of which the cavity radiator formed the prototype.
Such radiation generates continuous spectra, as opposed to line spectra. Planck’s
quantization ideas, properly extended, however, lead to an understanding of line
spectra as well. In the following, we use the simplest hydrogen model to discuss
emission and absorption line formation.

1.3.1.1 BOHR’S MODEL

Investigation of the hydrogen spectrum led Bohr (1913) to postulate that the circular
orbits of the electrons were quantized; that is, their angular momentum could have
only integral multiples of a basic value. Bohr assumed that the hydrogen atom exists,
like Planck’s oscillators, in certain stationary states in which it does not radiate.
Radiation occurs only when the atom makes a transition from one state with energy
Ek to a state with lower energy E j . Thus, we write

Ek − E j = hν̃, (1.3.1)

where hν̃ represents the quantum of energy carried away by the photon, which is
emitted from the atom during the transition. The lowest energy state is called the
ground state of the atom. When an electron of an atom absorbs energy due to a
collision and jumps into a larger orbit, the atom is said to be in an excited state. Then,
according to Eq. (1.3.1), a sudden transition will take place, and the atom emits a
photon of energy and collapses to a lower energy state. This is illustrated in Fig. 1.8
for a hydrogen atom. Also shown in this figure is the absorption of a photon by a
stationary hydrogen atom.
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Figure 1.8 Illustration of emission and absorption for a hydrogen atom that is composed of one
proton and one electron. The radius of the circular orbit r is given by n2 × 0.53 Å, where n is the quantum
number, and 1 Å = 10−8 cm.

Bohr further postulated that the angular momentum L can take on only discrete
values by

L = n(h/2π ), n = 1, 2, 3 . . . . (1.3.2)

With this selection rule, Bohr showed from the equation of motion for an electron
that the total energy state of the system is given by

En = − me4

8ε2
0h2

1
n2

= − RH hc
n2

, n = 1, 2, 3 . . . , (1.3.3)

where m is the mass of the electron, e is the charge carried by the electron, ε0 is the
permittivity constant given by 8.85 × 10−12 coul/volt/m, with 1 volt = 1 joule/coul,
and RH is the Rydberg constant for hydrogen with a value of 1.097 × 105 cm−1. It
follows from Eq. (1.3.1) that the wavenumber of emission or absorption lines in the
hydrogen spectrum is

ν = RH

(

1
j2

− 1
k2

)

, (1.3.4)
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Figure 1.9 Energy level diagram for a hydrogen atom showing the quantum number n for each level
and some of the transitions that appear in the spectrum. An infinite number of levels is crowded in between
the levels marked n = 6 and n = ∞.

where j and k are integers defining, respectively, the lower and higher energy states.
Figure 1.9 shows the energy diagram for hydrogen. In the field of spectroscopy, energy
is usually given in units of electron volts (eV) or in units of wavenumber (cm−1). An
electron volt is the energy acquired by an electron accelerated through a potential
difference of one volt, and is equivalent to 1.602 × 10−19 J. Exercise 1.11 requires
the derivation of Eq. (1.3.3) based on the definitions of kinetic and potential energies
of the system.

Each quantum jump between fixed energy levels results in the emission or absorp-
tion of a characteristic frequency or wavelength. These quanta appear in the spectrum
as emission or absorption lines. For the simple hydrogen atom described previously
the line spectrum is relatively simple, whereas the spectra of water vapor, carbon
dioxide, and ozone molecules are considerably more complex.

1.3.1.2 VIBRATIONAL AND ROTATIONAL TRANSITIONS

In the preceding discussion, we used the electronic transitions of the hydrogen
atom to illustrate emission and absorption. It is now helpful to introduce the ways
in which a molecule can store various energies. Any moving particle has kinetic
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energy as a result of its motion in space. This is known as translational energy. The
average translational kinetic energy of a single molecule in the x , y, and z directions is
found to be equal to K T/2, where K is the Boltzmann constant and T is the absolute
temperature. A molecule, composed of atoms, can rotate, or revolve, about an axis
through its center of gravity and, therefore, has rotational energy. The atoms of the
molecule are bounded by certain forces like springs such that the individual atoms
can vibrate about their equilibrium positions relative to one another. The molecule,
therefore, will also have vibrational energy. These three molecular energy types
are based on a rather mechanical model of the molecule that ignores the detailed
structure of the molecule in terms of nuclei and electrons. It is possible, however,
for the energy of a molecule to change as a result of a change in the energy state of
the electrons of which it is composed, as demonstrated by Bohr’s model. Thus, the
molecule has electronic energy. The last three energy types are quantized and take
only discrete values. The absorption and emission of radiation takes place when the
atoms or molecules undergo transitions from one energy state to another. In general,
these transitions are governed by selection rules.

In radiative transitions, the molecule must couple with an electromagnetic field
so that energy exchanges can take place. This coupling is generally provided by the
electric dipole moment of the molecule. If the effective centers of the positive and
negative charges of the molecule have nonzero separation, then the dipole moment
exists. Radiatively active gases in the infrared, such as H2O and O3, have perma-
nent electric dipole moments due to their asymmetrical charge distributions. Linear
molecules such as N2 and O2, however, are inactive in the infrared because of their
symmetrical charge distributions. However, they have weak magnetic dipole moments
that allow radiative activities to take place in the ultraviolet and, to a lesser extent, in
the visible region.

Rotational energy changes are relatively small, with a minimum on the order of
1 cm−1 (see the conversion to energy in Exercise 1.12). For this reason, pure rotational
lines occur in the microwave and far-infrared spectra. Many of the rotational energy
levels above the lowest level are populated at terrestrial temperatures. Changes in
vibrational energy are generally greater than 600 cm−1, which is much larger than
the minimum changes in rotational energy. Thus, vibrational transitions never occur
alone but are coupled with simultaneous rotational transitions. This coupling gives
rise to a group of lines known as the vibrational–rotational band in the intermediate
infrared spectrum. An electronic transition typically involves a few electron volts
(∼104 cm−1) of energy. Because a high-energy photon is required for the transition,
absorption and emission usually occur in the ultraviolet or visible spectrum. Atoms
can produce line spectra associated with electronic energy. Molecules, however, can
have two additional types of energy, leading to complex band systems.

In Subsection 1.3.1.1, we discussed the physical meaning of stationary states for
a hydrogen atom. Schrödinger (1926) first introduced the idea of stationary states
corresponding to standing matter waves and used this idea as the foundation of wave
mechanics. In quantum mechanics, to determine the energy states produced by vibra-
tional and rotational transitions, a term referred to as the Hamiltonian operator, H,
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was introduced as a convenient operator by replacing variables in the classical ex-
pression for the energy, E, of a system composed of the atomic nuclei and electrons
that form a molecule. Schrödinger’s equation can be written in terms of the first-
order differential equation involving the wave function and the Hamiltonian operator,
as shown in Appendix B. The Hamiltonian may be linearly separated into a time-
dependent term and a time-independent term. The stationary states of the molecules
can be deduced from the time-independent term, giving discrete eigenvalues (energy
levels), En , and eigenfunctions, ϕn . Transitions between energy levels result in the
absorption and emission of photons with frequency ν̃ following Planck’s relation. The
time-dependent term may be treated as a perturbation from which the rate of change
of the probability that a stationary state is occupied can be evaluated.

The Hamiltonian operator for the harmonic-oscillator rigid rotator is separable for
vibrational and rotational motions so that energies may be added for a combined state.
For the rotational states, the kinetic energy of a rigid rotating dipole is equal to one-
half the product of angular momentum, L , and angular velocity, ω, i.e., Lω/2, where
L = Iω and I is the moment of inertia. From the solution of the time-independent
Schrödinger equation, the quantum restrictions on angular momentum are given by

L = h
2π

[J (J + 1)]1/2, (1.3.5)

where J is the rotational quantum number (an integer). Thus, the quantized rotational
energy can be written as

EJ = BhcJ (J + 1), (1.3.6)

where B = h/8π2 I c is the rotational constant. This expression is valid for a rigid
rotating dipole assuming spherical tops or linear molecules. For asymmetric tops,
an additional term is required. The selection rule for radiation transition is gov-
erned by (J = ±1, applicable to the harmonic-oscillator rigid-rotator model. From
Planck’s relation in Eq. (1.3.1), the spectral line location can be derived and is given by
ν = 2B J ′ (cm−1), where J ′ can be any quantum number. Because of the selection
rule, the separation in wavenumber of adjacent lines is simply 2B (cm−1), as shown
in Fig. 1.10a. As noted above, because of the small energy of a rotational transition,
pure rotational spectra occur only in the far infrared and microwave regions.

For vibrational states, the quantized energy levels for a harmonic vibration are
given by

Eυ = hν̃k(υk + 1/2), (1.3.7)

where υk is the vibrational quantum number (an integer) and subscript k denotes the
normal modes. For triatomic molecules such as H2O and O3, there are three normal
modes, referred to as fundamentals. For linear molecules such as CO2 and NO2, there
are four fundamentals, but two orthogonal bending modes are degenerate and so only
three fundamentals exist (see Fig. 3.3). The term degenerate is used to denote states
with the same energy but with different sets of quantum numbers.
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Figure 1.10 (a) Rotational transition following the selection rule (J = +1 and equally spaced
spectral lines in wavenumber. (b) Simultaneous vibrational and rotational transitions where (J = −1
produces the P-branch and (J = +1 generates the R-branch. (J = 0 shows the Q-branch that overlaps
with the vibrational wavenumber, but see text for discussion.
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Molecular vibration produces an oscillating electric dipole moment that is suf-
ficient for both vibrational and rotational transitions. Thus, both transitions occur
simultaneously and the resulting energy level is the sum of the separate transition en-
ergies. Because the energy of the vibrational transition is much larger than that of the
rotational transition as noted earlier, and since many rotational levels are active, the
spectrum of the combined transitions is an array of rotational lines grouped around
the vibrational wavenumber, as illustrated in Fig. 1.10b. From Eqs. (1.3.6) and (1.3.7),
the sum of the rotational and vibrational energies is

Eυ,J = BhcJ (J + 1) + hν̃k(υk + 1/2). (1.3.8)

In simple cases, the selection rule is (υk = ±1, except that (υk = −1 cannot be
applied to υk = 0. Consider the transitions (υ ′

k, J ′) ← (υ ′′
k, J ′′), and let υ ′′

k = 0, the
ground state, and υ ′

k = 1, the first excited state. J ′ and J ′′ denote the higher and lower
rotational states, respectively, as shown in Fig. 1.10b. The selection rules in this case
are (υk = 1 (fundamental) and (J = ±1. Most of the molecules are in the ground
state but are distributed over numerous levels of J ′′. Thus, any molecules advancing
to the level υ ′ can go either to the next higher rotational level, for (J = +1, or to the
next lower level, for (J = −1, with about equal probability. Using Planck’s relation,
we find that the spectral wavenumber of the line is given by

ν = νk

{

+2B J ′, J ′ = 1, 2 . . . , (J = +1,

−2B(J ′ + 1), J ′ = 0, 1, . . . , (J = −1,
(1.3.9)

where J ′ is the rotational quantum number in the excited vibrational state υ ′. Because
many closely spaced rotational energy levels are involved, numerous transitions gen-
erate a band of rotational lines grouped on each side of the vibrational wavenumber,
νk , with spacing of 2B cm−1, as for a pure rotational spectrum. Several of the simulta-
neous transitions available to diatomic molecules and linear triatomic molecules (e.g.,
CO2) in normal modes k = 1(υ1) and k = 3(υ3) fundamentals are shown schemat-
ically in Fig. 1.10b. The group with lower energy ((J = −1) and hence the lower
wavenumber portion of the band, is called the P-branch. The higher wavenumber
part is referred to as the R-branch, corresponding to (J = +1. The rotational level
spacings in the υ ′ level are somewhat smaller than those in the υ ′′ level because of the
increased moment of inertia in higher vibrational levels. The lengths of the arrows
do not increase by a constant amount from the left to the right and the wavenumber
spacing of the lines decreases slightly. The branches P and R are called parallel
branches because the dipole moment oscillates parallel to the internuclear axis (see
Fig. 3.3). For such vibrational modes the transition (J = 0 is forbidden. In quan-
tum mechanics, it is customary to refer to transitions as forbidden (or unfavorable)
and allowed. For the vibrational mode k = 2(υ2) of linear triatomic and the three
modes of bent triatomic molecules (see Fig. 3.3), the change of dipole moment has
a component perpendicular to an internuclear axis. The rotational selection rule is
now (J = 0, ±1, which produces a Q-branch that corresponds to (J = 0, known
as the perpendicular branch. This branch occurs at the vibrational frequency itself. In
simple cases, it appears as a broad unresolved line. But if the moment of inertia differs
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in the υ ′ and υ ′′ levels, the Q-branch may be seen as a group of very closely spaced
lines.

The vibrational and rotational transitions discussed above are for the harmonic-
oscillator rigid rotator in which the selection rules are given by (J = ±1 and
(v = ±1. Because of the anharmonicity of the oscillator, the transition υ = 1 ← 0
differs from the transition υ = 2 ← 1. The upper-state band 2 ← 1 does not have
the same frequency as the ground-state band 1 ← 0. Moreover, anharmonicity also
changes the selection rules from those for a harmonic oscillator in which all integral
changes of the quantum numbers are allowed. For example, (υ = 2 gives the first
overtone band with twice the frequency of the normal (fundamental) mode. Simultane-
ous changes in two different vibrational quantum numbers give rise to combination and
difference bands with frequencies that are the sum or difference of the normal-mode
frequencies. They normally have smaller transition probabilities than fundamentals.

1.3.2 Line Broadening

Monochromatic emission is practically never observed. Energy levels during energy
transitions are normally changed slightly due to both external influences on atoms and
molecules, and the loss of energy in emission. As a consequence, radiation emitted
during repeated energy transitions is nonmonochromatic, and spectral lines of finite
widths are observed. The broadening of spectral lines is caused by: (1) the damping
of oscillator vibrations resulting from the loss of energy in emission (the broadening
of lines in this case is considered to be normal); (2) the perturbations due to reciprocal
collisions between the absorbing molecules and between the absorbing and nonab-
sorbing molecules; and (3) the Doppler effect resulting from the difference in thermal
velocities of atoms and molecules. The broadening of lines due to the loss of energy
in emission (natural broadening) is practically negligible as compared to that caused
by collisions and the Doppler effect. In the upper atmosphere, we find a combination
of collision and Doppler broadenings, whereas in the lower atmosphere, below about
20 km, collision broadening prevails because of the pressure effect.

1.3.2.1 PRESSURE BROADENING

The shape of spectral lines due to collisions, referred to as pressure broadening,
is given by the Lorentz profile (Lorentz, 1906). It is expressed by the formula

kν = S
π

α

(ν − ν0)2 + α2
= S f (ν − ν0), (1.3.10)

where kν denotes the absorption coefficient, ν0 is the wavenumber of an ideal,
monochromatic line, α is the half-width of the line at the half-maximum and is a
function of pressure and to a lesser degree of the temperature, f (ν − ν0) represents
the shape factor of a spectral line, and the line strength or line intensity S is defined by

∫ ∞

−∞
kνdν = S. (1.3.11)

In this case, we say the absorption coefficient is normalized. Figure 1.11 illustrates
the Lorentz profile.
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Figure 1.11 Demonstrative Lorentz and Doppler line shapes for the same intensities and line widths.

The Lorentz shape of absorption lines is fundamental to the theory of infrared
radiative transfer in the atmosphere and thus, we should give a brief explanation of
how the formula denoted in Eq. (1.3.10) is derived. An isolated molecule emits or
absorbs an almost purely harmonic wave given by

f (t) = A cos 2πν0ct, (1.3.12a)

where c is the velocity of light and A is an arbitrary amplitude. During the period
−t/2 to t/2, the distribution of amplitude g(ν) of the wave in the discrete wavenumber
domain may be obtained from the Fourier cosine transform as follows:

g(ν) =
√

2
π

∫ t

0
(A cos 2πν0ct ′) cos 2πνct ′dt ′

= A
(2π )3/2c

[

sin π(ν0 + ν)ct
ν0 + ν

+ sin π(ν0 − ν)ct
ν0 − ν

]

. (1.3.12b)

Generally, the widths of absorption lines are much smaller than ν0, so that the first
term in Eq. (1.3.12b) may be neglected when it is compared to the second.

The only deviation from purely harmonic behavior would be produced by the
damping due to the loss of energy in emission. In the infrared, the spectroscopic effect
of this damping is extremely small. However, if a radiating molecule collides with
another molecule, it alters the radiating harmonic wave train due to the intermolecular
forces, and the frequency of the emitting molecules would be temporarily shifted by
an appreciable amount. Since the collision may be considered to be instantaneous, we
may assume that the principal effect of the collision is to destroy the phase coherence
of the emitted wave train. That is to say, after the collision the molecule starts emitting
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at another phase and these new phases are now randomly distributed. From general
statistical principles, the time between collisions is distributed according to Poisson’s
law that the probability a collision occurs between t and t + dt is e−t/t0 , where t0 is
the mean time between collisions. All the initial phases of the wave trains must be
averaged. Thus, the absorption coefficient will be given by

kν = A′
∫ ∞

0
[g(ν)]2e−t/t0 dt, (1.3.13)

where [g(ν)]2 is the distribution of intensity, and A′ is a certain constant. Further, by
letting 1/t0 = 2παc(α in cm−1) and using Eq. (1.3.11), we find that Eq. (1.3.13) be-
comes equivalent to Eq. (1.3.10). Here, 2παc is the number of collisions per molecule
per unit time. [Exercise 1.14 requires the derivation of Eq. (1.3.10) from Eq. (1.3.13).]
The Lorentz line shape also can be derived from the classical theory of absorption
and dispersion as shown in Appendix D.

From the kinetic theory of gases, the dependence of the half-width α on pressure
and temperature is given by

α = α0(p/p0)(T0/T )n, (1.3.14)

whereα0 is the width at the standard pressure, p0(1013mb), and temperature,T0(273K).
The index n ranges from 1/2 to 1, depending on the type of molecule. When n = 1/2,
it is known as the classical value. Under the reference condition, α0 ranges from
about 0.01 to 0.1 cm−1 for most radiatively active gases in the earth’s atmosphere and
depends on the spectral line. For the CO2 molecule, it is fairly constant with a value
of about 0.07 cm−1 (see Section 4.2.1 for further discussion).

1.3.2.2 DOPPLER BROADENING

Assuming that there is no collision broadening in a highly rarefied gas, a molecule
in a given quantum state radiates at wavenumber ν0. If this molecule has a velocity
component in the line of sight (the line joining the molecule and the observer), and if
v ≪ c, the velocity of light, the wavenumber

ν = ν0(1 ± v/c). (1.3.15)

Note that because of the conventional use of notation the wavenumber ν and the
velocity v appear indistinguishable. Let the probability that the velocity component
lies between v and v + dv be p(v) dv. From the kinetic theory, if the translational
states are in thermodynamic equilibrium, p(v) is given by the Maxwell–Boltzmann
distribution so that

p(v) dv = (m/2π K T )1/2 exp(−mv2/2K T ) dv, (1.3.16)

where m is the mass of the molecule, K is the Boltzmann constant, and T is the
absolute temperature.

To obtain the Doppler distribution, we insert the expression of ν in Eq. (1.3.15)
into Eq. (1.3.16), and perform normalization to an integrated line intensity S defined
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in Eq. (1.3.11). After these operations, we find the absorption coefficient in the
form

kν = S
αD

√
π

exp

[

−
(

ν − ν0

αD

)2
]

, (1.3.17)

where

αD = ν0(2K T/mc2)1/2, (1.3.18)

is a measure of the Doppler width of the line. The half-width at the half-maximum is
αD

√
ln2. The Doppler half-width is proportional to the square root of the temperature.

A graphical representation of the Doppler line shape is also shown in Fig. 1.11.
Since the absorption coefficient of a Doppler line is dependent on exp[−(ν − ν0)2],
it is more intense at the line center and much weaker in the wings than the Lorentz
shape. This implies that when a line is fully absorbed at the center, any addition of
absorption will occur in the wings and will be caused by collision effects rather than
Doppler effects.

1.3.2.3 VOIGT PROFILE

In the altitude region extending from about 20 to 50 km, effective line shapes are
determined by both collision- and Doppler-broadening processes. We must add the
Doppler shift component to the pressure-broadened lines at wavenumbers ν ′ − ν0

in order to combine the two effects. The Doppler line redistributes the Lorentz line
at wavenumber ν ′ to ν. The line shapes for pressure and Doppler broadening may
then be expressed by f (ν ′ − ν0) and fD(ν − ν ′), respectively. To account for all
possible thermal velocities, a convolution of the Lorentz and Doppler line shapes can
be performed to obtain

fυ(ν − ν0) =
∫ ∞

−∞
f (ν ′ − ν0) fD(ν − ν ′) dν ′

= 1
π3/2

α

αD

∫ ∞

−∞

1
(ν ′ − ν0)2 + α2

exp
[−(ν − ν ′)2

α2
D

]

dν ′. (1.3.19a)

This line shape is referred to as the Voigt profile.
To simplify the representation of the Voigt profile, we let t = (ν − ν ′)/αD ,

y = α/αD , and x = (ν − ν0)/αD . Thus, we have

fυ(ν − ν0) = 1
αD

√
π

K (x, y), (1.3.19b)

where the Voigt function is defined by

K (x, y) = y
π

∫ ∞

−∞

1
y2 + (x − t)2

e−t2
dt. (1.3.20)
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Many attempts have been made to simplify the computation of the Voigt function.
Closed-form approximations can be developed. The Voigt profile satisfies the require-
ment of normalization such that

∫ ∞

−∞
fυ(ν − ν0)d(ν − ν0) = 1. (1.3.21)

Exercise 1.17 requires the derivation of Eq. (1.3.19b) and the proofs that in the limits
of α → 0 and αD → 0, the Voigt profile reduces to the Doppler and Lorentz shapes,
respectively.

One final note is in order. The line strength of a specific molecule that undergoes
a transition from an upper energy state i to a lower energy state j is proportional to
the square of the transition probability defined by

Ri j =
∫

ψ∗
i Mψ j dV, (1.3.22)

where M is the matrix of the dipole moment related to the time-dependent Hamiltonian,
V is the volume, ψi, j are wave functions of the upper and lower energy states that
can be determined from Schrödinger’s equation, and ψ∗ is the conjugate of ψ . The
line strength for absorption also depends on the ratio of the population, n j , of the
lower energy state of the transition to the total population of the absorbing gas, n. At
thermodynamic equilibrium, this ratio is defined by the Boltzmann factor in the form

n j/n = g j e−E j /K T
/

∑

i

gi e−Ei /K T , (1.3.23)

where the integer g j is called degenerate or statistical weight, which is the number
of distinct states having energy E j . The denominator on the right side of Eq. (1.3.23)
is the partition function, which can be determined for both vibrational and rotational
states.

1.3.3 Breakdown of Thermodynamic Equilibrium

In Section 1.2.4, we pointed out that in thermodynamic equilibrium, the source func-
tion is given by the Planck function, which depends only on temperature, frequency,
and the velocity of light, and that within a small constant-temperature enclosure in
which nothing changes, an element of matter absorbs and emits according to Planck’s
and Kirchhoff’s laws. However, as was first pointed out by Einstein, emission is also af-
fected by the incident radiation field, referred to as induced emission. In the following,
we wish to address the extent to which the source function and absorption coefficient
can be changed from their equilibrium values by the action of incident radiation. Since
the discussion now involves departure from the equilibrium state, the thermodynamic
arguments cannot be followed. We must now use a microscopic statistical model to
understand the condition under which Kirchhoff’s law cannot be applied.

Thermodynamic equilibrium can be defined in terms of Boltzmann’s law for the
distribution of molecules between two states. Consider a simple case where emission
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Figure 1.12 Radiative and collisional transitions connecting two energy states E1 and E2 where ni

are the numbers of molecules at the level Ei per unit volume; gi are the statistical weights; b21 denotes the
probability of transition by collisions per unit of time from the upper level E2 to the lower level E1 and b12
from E1 to E2; C12, C21, and A21 are the Einstein coefficients associated with emission and absorption;
and uν̃ denotes the radiant energy density.

(or absorption) occurs through transitions between the energy levels E1 and E2 of
a two-level energy system, as shown in Fig. 1.12. Let n1 and n2 be the numbers
of molecules at these levels per unit volume; and g1 and g2 denote the statistical
weights, defined in Eq. (1.3.23). In accordance with Boltzmann’s law, the distribution
of molecules between two states is defined by

n2

n1
= g2

g1
exp

(

− E2 − E1

K T

)

= g2

g1
e−hν̃/K T , (1.3.24)

where ν̃ is the emitting frequency from Planck’s relation denoted in Eq. (1.3.1). Un-
der complete equilibrium, Eq. (1.3.24) is obeyed for all energy states throughout the
medium. It is known that collisions acting alone will bring about a Boltzmann distribu-
tion and consequently a Planck source function. However, in a collisionless medium,
radiation can bring about almost any population of energy levels through absorption
and induced emission involving a radiating molecule and a photon (C coefficients),
as shown in Fig. 1.12. Radiative transitions can also take place spontaneously without
the presence of a photon or a colliding molecule (A coefficients). This occurs from
the upper level to the lower level. Including both collision and radiation processes,
one can show from the balance of transitions between two energy levels that the state
population ratio is given by

n2

n1
= g2

g1

η + u ν̃

η exp(hν̃/K T ) + 8πhν̃3/c3 + u ν̃

, (1.3.25)

where u ν̃ is the energy density and the coefficient that governs the relative importance
of collision and radiation is defined by

η = b12 (collision)
C12 (radiation)

. (1.3.26)
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Exercise 1.18 requires the derivation of Eq. (1.3.25). The population of energy levels
and the resulting source functions will be governed by the conflict between radia-
tive and collisional effects. The rate of collisional adjustment of state populations is
determined by a relaxation time proportional to the pressure. Radiative adjustment
is determined by the natural lifetime of the excited states with respect to radiative
transitions and is dependent on specific molecules but independent of the state of the
medium. When the collision events are much larger than the radiative transitions, then
η ≫ 1 and Eq. (1.3.25) reduces to Eq. (1.3.24). In this case, LTE should occur and
Planck’s law will be valid. On the other hand, if η ≪ 1, then a different source func-
tion would be required. In the earth’s atmosphere, pressure varies rapidly with height
and since collisional processes are dependent on pressure, there will be a sharply de-
fined relaxation level below which Planck’s law (LTE) is valid for transitions between
energy levels but above which a different source function will be required (non-LTE).
This level occurs at about 60–70 km in the earth’s atmosphere.

1.4 Introduction to Radiative Transfer

1.4.1 The Equation of Radiative Transfer

A pencil of radiation traversing a medium will be weakened by its interaction with
matter. If the intensity of radiation Iλ becomes Iλ + d Iλ after traversing a thickness
ds in the direction of its propagation, then

d Iλ = −kλρ Iλ ds, (1.4.1)

where ρ is the density of the material, and kλ denotes the mass extinction cross section
(in units of area per mass) for radiation of wavelength λ. As discussed in Section 1.1.4,
the mass extinction cross section is the sum of the mass absorption and scattering cross
sections. Thus, the reduction in intensity is due to absorption by the material as well
as to scattering by the material.

On the other hand, the radiation’s intensity may be strengthened by emission from
the material plus multiple scattering from all other directions into the pencil under
consideration at the same wavelength (see Fig. 1.13). We define the source function
coefficient jλ such that the increase in intensity due to emission and multiple scattering
is given by

d Iλ = jλρ ds, (1.4.2)

where the source function coefficient jλ has the same physical meaning as the mass
extinction cross section. Upon combining Eqs. (1.4.1) and (1.4.2), we obtain

d Iλ = −kλρ Iλ ds + jλρ ds. (1.4.3)

Moreover, it is convenient to define the source function Jλ such that

Jλ ≡ jλ/kλ. (1.4.4)
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ds0 s1

Iλ(0)

Iλ Iλ
 + dIλ 

Iλ(s1)

Figure 1.13 Depletion of the radiant intensity in traversing an extinction medium.

In this manner, the source function has units of radiant intensity. It follows that
Eq. (1.4.3) may be rearranged to yield

d Iλ
kλρ ds

= −Iλ + Jλ. (1.4.5)

This is the general radiative transfer equation without any coordinate system imposed,
which is fundamental to the discussion of any radiative transfer process.

1.4.2 Beer–Bouguer–Lambert Law

Consider a direct light beam from the sun, which covers the wavelengths from about
0.2 to 5 µm. Emission contributions from the earth–atmosphere system can be gener-
ally neglected, as discussed in Section 1.2. Moreover, if the diffuse radiation produced
by multiple scattering can be neglected, then Eq. (1.4.5) reduces to the following form:

d Iλ
kλρ ds

= −Iλ. (1.4.6)

Let the incident intensity at s = 0 be Iλ(0). Then the emergent intensity at a distance
s away shown in Fig. 1.13 can be obtained by integrating Eq. (1.4.6) and is given by

Iλ(s1) = Iλ(0) exp
(

−
∫ s1

0
kλρ ds

)

. (1.4.7)

Assuming that the medium is homogeneous, so that kλ is independent of the distance
s, and defining the path length

u =
∫ s1

0
ρ ds, (1.4.8)

Eq. (1.4.7) can be expressed by

Iλ(s1) = Iλ(0)e−kλu . (1.4.9)
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This is known as Beer’s law or Bouguer’s law or Lambert’s law, referred to here as the
Beer–Bouguer–Lambert law, which states that the decrease in the radiant intensity
traversing a homogeneous extinction medium is in accord with the simple exponential
function whose argument is the product of the mass extinction cross section and the
path length. Since this law involves no directional dependence, it is applicable not
only to the intensity quantity but also to the flux density and the flux.

From Eq. (1.4.9), we can define the monochromatic transmissivity Tλ as follows:

Tλ = Iλ(s1)/Iλ(0) = e−kλu . (1.4.10)

Moreover, for a nonscattering medium, the monochromatic absorptivity, representing
the fractional part of the incident radiation that is absorbed by the medium, is given
by

Aλ = 1 − Tλ = 1 − e−kλu . (1.4.11)

Equations (1.4.10) and (1.4.11) are normally expressed in the wavenumber domain
in conjunction with the application of infrared radiation transfer. Finally, if there is a
scattering contribution from the medium, certain portions of the incident radiation may
reflect back to the incident direction. In this case, we may define the monochromatic
reflectivity Rλ, which is the ratio of the reflected (backscattered) intensity to the
incident intensity. On the basis of the conservation of energy, we must have

Tλ + Aλ + Rλ = 1 (1.4.12)

for the transfer of radiation through a scattering and absorbing medium.

1.4.3 Schwarzschild’s Equation and Its Solution

Consider a nonscattering medium that is in local thermodynamic equilibrium. A beam
of intensity Iλ passing through it will undergo the absorption and emission processes
simultaneously. This is the case for the transfer of thermal infrared radiation emitted
from the earth and the atmosphere. The source function, as defined in Eq. (1.4.4), is
given by the Planck function and can be expressed by

Jλ = Bλ(T ). (1.4.13)

Hence, the equation of radiative transfer can now be written as

d Iλ
kλρ ds

= −Iλ + Bλ(T ), (1.4.14)

where kλ is now the absorption coefficient. The first term in the right-hand side of
Eq. (1.4.14) denotes the reduction of the radiant intensity due to absorption, whereas
the second term represents the increase in the radiant intensity arising from blackbody
emission of the material. To seek a solution for Schwarzschild’s equation, we define
the monochromatic optical thickness of the medium between points s and s1 as shown
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τ λ
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Figure 1.14 Configuration of the optical thickness τλ defined in Eq. (1.4.15).

in Fig. 1.14 in the form

τλ(s1, s) =
∫ s1

s
kλρ ds ′. (1.4.15)

By noting that

dτλ(s1, s) = −kλρ ds, (1.4.16)

Eq. (1.4.14) becomes

− d Iλ(s)
dτλ(s1, s)

= −Iλ(s) + Bλ[T (s)]. (1.4.17)

Upon multiplying Eq. (1.4.17) by a factor e−τλ(s1,s), and integrating the thickness ds
from 0 to s1, we obtain

−
∫ s1

0
d[Iλ(s)e−τλ(s1,s)] =

∫ s1

0
Bλ[T (s)]e−τλ(s1,s)dτλ(s1, s). (1.4.18)

Consequently, we have

Iλ(s1) = Iλ(0)e−τλ(s1,0) +
∫ s1

0
Bλ[T (s)]e−τλ(s1,s)kλρ ds. (1.4.19)

The first term in Eq. (1.4.19) is essentially equivalent to Eq. (1.4.7), representing
the absorption attentuation of the radiant intensity by the medium. The second term
denotes the emission contribution from the medium along the path from 0 to s1. If the
temperature and density of the medium and the associated absorption coefficient along
the path of the beam are known, Eq. (1.4.19) can be integrated numerically to yield the
intensity at the point s1. Applications of Eq. (1.4.19) to infrared radiative transfer and
to the remote sounding of atmospheric temperature profiles and compositions from
orbiting meteorological satellites will be discussed in Chapters 4 and 7, respectively.

In the discussion of the absorption and emission lines in the spectra of sun and
stars, Schwarzschild (1914) presented Eq. (1.4.14) within the context of Kirchhoff’s
law and derived an integral solution for the condition without scattering. It is thus
referred to as Schwarzschild’s equation.



1.4 Introduction to Radiative Transfer 31

Z

X

Y

s

0

z

φ

θ

Figure 1.15 Geometry for plane-parallel atmospheres where θ and φ denote the zenith and azimuthal
angles, respectively, and s represents the position vector.

1.4.4 The Equation of Radiative Transfer for Plane-Parallel Atmospheres

For many atmospheric radiative transfer applications, it is physically appropriate to
consider that the atmosphere in localized portions is plane-parallel such that variations
in the intensity and atmospheric parameters (temperature and gaseous profiles) are
permitted only in the vertical direction (i.e., height and pressure). In this case, it
is convenient to measure linear distances normal to the plane of stratification (see
Fig. 1.15). If z denotes this distance, then the general equation of radiative transfer
defined in Eq. (1.4.5) becomes

cos θ
d I (z; θ, φ)

kρ dz
= −I (z; θ, φ) + J (z; θ, φ), (1.4.20)

where θ denotes the inclination to the upward normal, and φ the azimuthal angle in
reference to the x axis. Here, we have omitted the subscript λ on various radiative
quantities.

Introducing the normal optical thickness (or depth)

τ =
∫ ∞

z
kρ dz′ (1.4.21)

measured downward from the outer boundary, we have

µ
d I (τ ; µ, φ)

dτ
= I (τ ; µ, φ) − J (τ ; µ, φ), (1.4.22)

where µ = cos θ . This is the basic equation for the problem of multiple scattering in
plane-parallel atmospheres.
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Figure 1.16 Upward (µ) and downward (−µ) intensities at a given level τ and at top (τ = 0) and
bottom (τ = τ∗) levels in a finite, plane-parallel atmosphere.

Following the same procedure as that described in Section 1.4.3, Eq. (1.4.22) can
be solved to give the upward and downward intensities for a finite atmosphere that is
bounded on two sides at τ = 0 and τ = τ∗ as illustrated in Fig. 1.16. To obtain the
upward intensity (µ > 0) at level τ , we multiply Eq. (1.4.22) by a factor e−τ/µ and
perform integration from τ to τ = τ∗. This leads to

I (τ ; µ, φ) = I (τ∗; µ, φ)e−(τ∗−τ )/µ +
∫ τ∗

τ

J (τ ′; µ, φ)e−(τ ′−τ )/µ dτ ′

µ
(1 ≥ µ > 0).

(1.4.23)

To derive the downward intensity (µ < 0) at level τ , a factor eτ/µ is used and µ is
replaced by −µ. After carrying out integration from τ = 0 to τ , we obtain

I (τ ; −µ, φ) = I (0; −µ, φ)e−τ/µ +
∫ τ

0
J (τ ′; −µ, φ)e−(τ−τ ′)/µ dτ ′

µ
(1 ≥ µ > 0).

(1.4.24)

In Eqs. (1.4.23) and (1.4.24), I (τ∗; µ, φ) and I (0; −µ, φ) represent the inward source
intensities at the bottom and top surfaces, respectively, as shown in Fig. 1.16.

For applications to planetary atmospheres, it is desirable to measure the emergent
outward intensities at the top and bottom of the atmosphere in conjunction with the
remote sensing of atmospheric compositions and radiation balance studies. Upon
setting τ = 0 in Eq. (1.4.23), we have

I (0; µ, φ) = I (τ∗; µ, φ)e−τ∗/µ +
∫ τ∗

0
J (τ ′; µ, φ)e−τ ′/µ dτ ′

µ
, (1.4.25)

where the first and second terms represent, respectively, the bottom surface contri-
bution (attenuated to the top) and the internal atmospheric contribution. On the other
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hand, if we set τ = τ∗ in Eq. (1.4.24), we obtain

I (τ∗; −µ, φ) = I (0; −µ, φ)e−τ∗/µ +
∫ τ∗

0
J (τ ′; −µ, φ)e−(τ∗−τ ′)/µ dτ ′

µ
, (1.4.26)

where, again, the first and second terms represent the top surface contribution (atten-
uated to the bottom) and the internal atmospheric contribution, respectively. Detailed
applications of the preceding equations associated with infrared radiation transfer and
multiple scattering will be discussed in Chapters 4 and 6.

1.4.5 Radiative Transfer Equations for Three-Dimensional
Inhomogeneous Media

In several atmospheric conditions, the plane-parallel assumption may not be valid.
These include the transfer of radiation in the atmosphere where spherical geometry
must be accounted for, and in clouds with finite dimension and/or inhomogeneity in
the horizontal direction. The latter has been a subject of contemporary research and
development in conjunction with studies of clouds in climate and remote sensing.
Although this topic will be further elaborated upon in Chapter 6, here we provide
some introductory notes consistent with the preceding presentation. We begin with the
general equation of radiative transfer discussed in Section 1.4.1. Letting the extinction
coefficient be βe = kλρ and omitting the subscript λ for simplicity, we write

− d I
βe ds

= I − J. (1.4.27)

The differential operator can be defined in time and space as follows:

d
ds

= 1
c

∂

∂t
+ Ω · ∇, (1.4.28)

where c is the velocity of light, Ω is a unit vector specifying the direction of scatter-
ing through a position vector s, and t is time. Under the condition that radiation is
independent of time (steady state), such as the illumination from the sun, Eq. (1.4.27)
can be expressed by

− 1
βe(s)

(Ω · ∇)I (s,Ω) = I (s,Ω) − J (s,Ω), (1.4.29a)

where the source function, J , can be produced by the single scattering of the direct
solar beam, multiple scattering of the diffuse intensity, and emission of the medium.

In Cartesian coordinates (x, y, z), we have

Ω · ∇ = $x
∂

∂x
+ $y

∂

∂y
+ $z

∂

∂z
, (1.4.29b)

where the directional cosines are given by

$x = ∂x
∂s

= sin θ cos φ = (1 − µ2)1/2 cos φ, (1.4.30a)
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$y = ∂y
∂s

= sin θ sin φ = (1 − µ2)1/2 sin φ, (1.4.30b)

$z = ∂z
∂s

= cos θ = µ, (1.4.30c)

where θ and φ are the zenith and azimuthal angles defined previously, and |s| = s =
(x2 + y2 + z2)1/2. In general, analytic solutions for Eq. (1.4.29a) do not exist and it
must be solved numerically. In cases where the medium is homogeneous with respect
to its single-scattering properties including the extinction coefficient, Eq. (1.4.29a)
reduces to a first-order partial differential equation from which simplified solutions
can be derived. Interested readers should refer to Chapter 6 for further details.

Exercises

1.1 What is the meaning of isotropic radiation? Show that for isotropic radiation,
the monochromatic flux density is Fλ = π Iλ.

1.2 A meteorological satellite circles the earth at a height h above the earth’s surface.
Let the radius of the earth be ae and show that the solid angle under which the
earth is seen by the satellite sensor is 2π [1 − (2aeh + h2)1/2/(ae + h)].

1.3 Express the Planck function in the wavelength and wavenumber domains based
on the Planck function in the frequency domain.

1.4 From Eq. (1.2.10), show that Eq. (1.2.11) is true.

1.5 Show that the maximum intensity of the Planck function is proportional to the
fifth power of the temperature.

1.6 An infrared scanning radiometer aboard a meteorological satellite measures the
outgoing radiation emitted from the earth’s surface in the 10 µm window region.
Assuming that the effect of the atmosphere between the satellite and the surface
can be neglected, what would be the temperature of the surface if the observed
radiance at 10 µm is 9.8 W m−2 µm−1 sr−1?

1.7 A black land surface with a temperature of 15◦C emits radiation at all frequencies.
What would be the emitted radiances at 0.7 µm, 1000 cm−1, and 31.4 GHz?
Use appropriate Planck functions in the calculations.

1.8 Assuming the average normal body temperature is 98◦F, what would be the
emittance of the body? If it is not a blackbody but absorbs only 90% of the
incoming radiation averaged over all wavelengths, what would be the emit-
tance in this case? Also, at which wavelength does the body emit the maximum
energy?

1.9 (a) The photosphere of the sun has a temperature of about 5800 K. Assuming it
is a blackbody, compute the percentage of its emitting intensity at wavelengths
longer than 5 µm. (b) The earth–atmosphere system has an equilibrium temper-
ature of about 255 K. Assume it can be considered a blackbody and compute
the percentage of its emitting intensity at wavelengths shorter than 5 µm.
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1.10 Show that when λ → ∞, the Planck intensity is directly proportional to the
temperature, referred to as the Rayleigh–Jeans distribution. When λ → 0, de-
rive the expression referred to as the Wien distribution. Plot the Planck intensity
for the temperatures of the sun and the earth–atmosphere system and compare
these two approximations with the exact values.

1.11 (a) From Newton’s second law of motion and Coulomb’s law, find the kinetic
energy of an electron in a hydrogen atom moving with a velocity v in a circular
orbit of radius r centered on its nucleus. Express r in terms of the quantum
number n using the selection rule for the angular momentum mvr. Then find the
potential energy of the proton–electron system. By combining the kinetic and
potential energy, derive Eq. (1.3.3). (b) Considering only the transitions between
the ground state (n = 1) and the excited states and letting the highest quantum
number be 6, compute the wavelengths of hydrogen emission lines.

1.12 In spectroscopy, the wavenumber ν in cm−1 is not only used to specify a spectral
location, but also as a measure of energy itself. From the energy equation,
compute 1 cm−1 of energy of terms of 1 joule per molecule.

1.13 (a) Derive Eq. (1.3.9) from Eq. (1.3.8). (b) For the Q-branch, show that the line
spacing is proportional to the difference of the rotational constants in the ground
and excited states.

1.14 Derive Eq. (1.3.10) from Eq. (1.3.13).

1.15 Prove that the line intensity S =
∫ ∞
−∞ kν dν for Lorentz, Doppler, and Voigt

absorption lines.

1.16 Calculate and plot the shape factor of the Lorentz and Doppler profiles for ozone
whose half-width is assumed to be 0.1 cm−1 in the wavenumber domain at the
standard temperature and pressure.

1.17 Derive Eq. (1.3.19b) from Eq. (1.3.19a). In the limits of α → 0 and αD → 0,
show that the Voigt profile reduces to the Doppler and Lorentz shapes,
respectively.

1.18 (a) From Eq. (1.3.24) for collision, derive an expression for b12/b21 from n2/n1.
(b) For radiation, show that C21/C12 = g1/g2 and A21/C12 = g1/g2 · 8πhν̃3/c3,
where u ν̃ is the energy density defined in Appendix A. (c) Then, based on the
balance of transitions between two energy levels (Fig. 1.12), show that the state
population ratio for the general case is given by Eq. (1.3.25).

1.19 A He–Ne laser beam at 0.6328 µm with an output power of 5 mW (10−3 W)
is passing through an artificial cloud layer 10 m in thickness and is directed at
30◦ from the normal to the layer. Neglecting the effect of multiple scattering,
calculate the extinction coefficients (per length) if the measured powers are
1.57576 and 0.01554 mW. Also calculate the normal optical depths in these
cases.

1.20 The contrast of an object against its surroundings is defined by

C ≡(B − B0)/B0,


