9th exercises for SIM’2021

Ex. 1
Use inversion method from 8.1.1 and derive a formula for drawing random numbers from exponential distribution $\mathrm{f}(y)=\lambda \exp (-\lambda y)$. Create 1,000 numbers from $\operatorname{Exp}(3)$ and draw histogram or box-and-whiskers plot.

Ex. 2
a) Create two random data from normal distribution. Use Eq. (8.2) and the fact that if $X \sim \mathcal{N}(0,1)$ then $Y=\sigma X+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Both data should have $n=1,000$, but \boldsymbol{y}_{1} with $\mu=2, \sigma^{2}=2$ and \boldsymbol{y}_{2} with $\mu=4, \sigma^{2}=4$.
b) Compute the difference between medians, $m=\operatorname{median}\left(\boldsymbol{y}_{2}\right)-\operatorname{median}\left(\boldsymbol{y}_{1}\right)$. Use bootstrap to resample from both datasets and compute the (bootstrap) 95% confidence interval for m.

Ex. 3

Let's invent our own "order test". We have array of integers $\boldsymbol{y}=(1,2,3,16,5,12,13,11,9,10,8,6$, $7,14,15,4,17,18,19,20)$. It seems like it has some kind of order, but can it be purely by accident? We could compute e.g. a measure of order as

$$
t=\sum_{i}^{n-1} \mathrm{I}\left(y_{i}, y_{i+1}\right), \text { where } \mathrm{I}(a, b)=\left\{\begin{array}{r}
1, \text { if } a<b \\
-1, \text { if } a>b
\end{array}\right.
$$

Test using permutation test and the statistics t if the array has order or is randomly ordered.

