4th exercises for SIM'2020

Ex. 1
Linear model. Download data linear-model-data-1.dat from the course webpage. Complete the following task by writing yourself the functions/procedures needed. At this point, do not use existing regression analysis packages that might be available in your computing platform.
a) Import data and plot. First column is x and second is y.
b) Form data matrix \mathbf{X} for linear model $y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}$.
c) Estimate coefficient vector $\hat{\boldsymbol{\beta}}=\boldsymbol{b}$. Use either Eq. (3.14) or (3.15).
d) Plot data with the estimated linear model.
e) Compute observed residuals \boldsymbol{e} and residual variance s^{2}.
f) Compute standardized residuals (from Eq. (3.27)) and plot against x.
g) Form diagnostic parameter table from model variables as in page 3-13 in the lecture material. What can be deducted regarding the model variables from the parameter table?

Ex. 2
We have two sets of observations, linear-model-data-2a.dat and linear-model-data-2b.dat (on course webpage). We know that both should have dependency $y=\beta_{0}+\beta_{1} x^{2}$, but we do not know if the constant β_{0} is the same for both groups. Study this and make decision based on joined linear model for both sets together, with categorical variable included to separate the sets, i.e. $y_{i}=\beta_{0}+\beta_{c} g_{i}+\beta_{1} x_{i}^{2}$, where $g_{i}=0 / 1$ is the categorical variable marking the group, and β_{c} is it's coefficient.

