2nd exercises for SIM'2020

Ex. 1

a) Derive log-likelihood function for model where Y_1, \ldots, Y_n are i.i.d and follow Poisson distribution $\mathcal{P}(\lambda)$.

b) Make figure of $l(\lambda)$ in cases where (i) n = 10 and $\overline{y} = 5$, (ii) n = 20 and $\overline{y} = 6$.

Ex. 2

a) Formulate maximum likelihood equations for n i.i.d observations from Poisson distribution.

b) Derive the maximum likelihood estimate for parameter λ from ML equations

Ex. 3

a) Show that mean \overline{y} is the MLE for μ when Y_i are i.i.d and follow $\mathcal{N}(\mu, 1)$.

b) Make figure of $l(\mu)$ when $\overline{y} = 5$ and (i) n = 15, (ii) n = 30.

Ex. 4

We have 10 observations from i.i.d. Poisson model and $\overline{y} = 2.7$. Construct 95 % confidence interval for λ using asymptotic result in Eq. (2.7).