Ex. 1
Do kernel density estimation for one-dimensional data asteroid_density.dat, where the densities (in $\mathrm{g} / \mathrm{cm}^{3}$) of some asteroids are recorded. Test either few different kernels or few values of smoothing parameter h. Plot the density estimates. Can there be 'unphysical' features in the density estimate?

Ex. 2

Draw a sample of 1000 observations from three-dimensional multinormal distribution. Vector of expected values is $\boldsymbol{\mu}=(1,2,3)$ and covariance matrix is

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
1 & 0.5 & 1.25 \\
0.5 & 2 & 1.75 \\
1.25 & 1.75 & 3
\end{array}\right]
$$

Use Eq. (6.7). When done, do scatterplots of Y_{1} against Y_{2}, Y_{1} against Y_{3}, and Y_{2} against Y_{3}.

Ex. 3

Load three datafiles MN-data-i. dat from the course webpage. Each file has 500 observations from two-dimensional multinormal distribution. The covariance matrix is

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
10 & -4 \\
-4 & 2
\end{array}\right]
$$

for all the sets. Plot the data and compute mean vectors for the three sets. Compute so-called distance matrix between the means using both Euclidean distances and Mahalanobis distances. Distance matrix \mathbf{D} is such that $[\mathbf{D}]_{i j}$ gives the distance between elements i and j.

