
Chapter 9

Markov chain Monte Carlo methods

In this chapter we will continue with the Monte Carlo methods, but with a par-
ticulate family of MC metohds, that is, Monte Carlo Markov chain (MCMC). The
MCMC methods have become very popular over the few recent decades with the
improved power of computers, and because they offer a quite generic tool that is
especially suitable for Bayesian estimation problems with no closed-form solution.

The material in this chapter is based mainly on two references, first, the book by
Robert & Casella, Monte Carlo statistical methods (1999, Springer texts in statistics),
and second, the lecture notes by Solonen, Haario, and Laine, for the course Statis-
tical Analysis in Modeling (2014, Lappeenranta University of Technology).

Note that in this chapter we deal quite often with some non-specified distribution,
which I try to mark with the letter ’f’, so the distribution is F and its probability
density function is f. Furthermore, in most of the methods we need an auxiliary
(often called instrumental/proposal) distribution marked with ’g’, so distribution
G and pdf g. And, because these distributions appear in the algorithms a lot, it is
sometimesmore convenient to write shortly something like f(x|y), which should be
understood to mean the pdf of the conditional distribution, fX|Y (x, y), or in some
cases even the distribution X|Y ∼ F(X,Y).

Before actually going to MCMC, I will introduce two ’regular’ MC methods that
have lead the way towards the MCMC and the Metropolis-Hastings algorithm.

9.1 Monte Carlo towards MCMC

Importance sampling is a technique which allows us to sample from a distribution
F without actually being able to simulate F directly. The second example, the
simulated annealing algorithm, is leading us to theMetropolis-Hastings algorithm
in MCMC.

9-1

9.2 Importance sampling

Importance sampling is related to the accept-reject method of creating random
numbers from a distribution F with the help of an envelope distribution G (see
Sec. 8.1.3), but in this technique, all the proposed random numbers are accepted,
only with different weights.
The algorithm is based on the fact, that for any function h of the random variable
X , the expected value can be computed as

Ef [h(x)] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx. (9.1)

In the last formwe have simply multiplied and divided with the pdf g of an instru-
mental distribution G. For the equality to hold, the support of g (where g > 0) has
to be at least the support of f.
Now the last form in the previous equation means that we can simulate a sample
x1, . . . , xn from distribution G, and estimate

Ef [h(x)] ≈
1

n

n∑
i=1

h(xi)
f(xi)

g(xi)
. (9.2)

Especially if the h(x) = x, we are estimating the mean of the distribution F .
The importance sampling is useful when the distribution F is impossible or very
costly to simulate from, but the distribution G is not. There is a practical limitation
to G, the pdf g should have ’heavier’ tails than f, that is, the ratio f/g should not
approach to ∞. If the tails of g would be ’lighter’ than of f, then with rare cases of
large |xi|, the weights f(xi)/g(xi)would be very large, and the variance of the mean
estimator would behave badly.
An example of the importance sampling is shown here with the distribution F be-
ing the Fisher’s z-distribution, which is the the distribution of a logarithm-transfor-
med F-distribution (the distribution of the ratio of two independent χ2-variables)
variable. The pdf of Fisher’s z-distribution is already a bit complicated:

f(x;n,m) =
2nn/2mm/2

B(n/2,m/2)

enx

(ne2x +m)(n+m)/2
, (9.3)

where B is the Beta function. The inverse cdf needed for the general method for
creating random numbers involves the inverse of the regularized Beta function,
which is not a closed-form function. Even the expected value of the distribution
involves special functions.
To approximate the mean and pdf of F , we use the Cauchy distribution as the
instrumental distribution G. The inverse of the Cauchy cdf with parameters a, b

is F−1(u; a, b) = a + b tan(π(u − 1/2)), so it is easy to simulate. Furthermore, the

9-2

tails of the Cauchy distribution are heavy, so we can trust that f(xi)/g(xi) is limited
to a finite value.
The target pdf and the instrumental pdf are shown in Fig. 9.1 for Fisher’s z with
n = 2,m = 10, and for Cauchy with a = 0, b = 1/2. In the same figure, the sample
mean 1

n

∑
xi

f(xi)
g(xi)

withCauchy instrumental distribution is computed for five chains
of simulations with n from 10 to 10,000.

-4 -2 0 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PDF's f and g

Fisher Z

Cauchy

10 100 1000 10000
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Convergence of mean

Figure 9.1: In the left, the target distribution Fisher z with n = 2,m = 10 with the
instrumental distribution Cauchywith a = 0, b = 1/2. In the right, the convergence
of the mean of the Fisher z-distribution estimated with the importance sampling
algorithm. The correct mean value (-0.237) ismarkedwith the horizontal gray line.

By choosing different functions h, quite many different properties can be estimated
with importance sampling. For example, probabilities such as P(X < c) (so, cfd
values) can be estimated by choosing h(x) = Ix<c (indicator function).
The usability of importance sampling is, however, a bit hindered by the fact that the
full f needs to be known, up to any normalizing constant. And, the instrumental
distribution g should be chosen so that the tails are heavier compared to f, which
is not always a straightforward task.

9.3 Simulated annealing

The importance sampling can be though as Monte Carlo integration, but the simu-
lated annealing is a method for Monte Carlo optimization. The algorithm is inter-
esting forMCMC, since theMetropolis-HastingsMCMC algorithmwas developed
from the simulated annealing algorithm.
Simulated annealing optimization fits well for large-dimensional global optimiza-
tion problems, and does not require any information about the derivatives of the
function to be optimized. The algorithm is the following:

• With the target function h to be minimized, choose x0

• At round i, i = 1, . . .

1. generate x from symmetric instrumental distribution G(xi−1)

9-3

2. Take

xi =

{
x with probability min (exp(∆hi/Ti), 1)

xi−1 otherwise
(9.4)

• Repeat

The symmetric instrumental distribution G(xi−1)will give us a randommovement
from the previous chain value xi−1. The symmetry means that both the directions
x and −x are equally probable, e.g., g(x;xi−1) = g(−x;xi−1). A simple choice is
the uniform distribution around the previous value, [xi−1 − c, xi−1 + c]. The width
of the instrumental distribution must be large enough for the chain to easily move
around the realistic search area, but not too large so that it will not ’shoot off’ too
often, which would lead to inefficiency of the algorithm.
The function Ti := T (i) is the ’temperature’ of the system. It must be decreasing as
the simulation goes forward. It has been shown that a choice of T (i) = k/ log(1+ i)

with sufficiently large k will guarantee good properties for the algorithm.
Finally, as the ’time’ i goes forward and the ’temperature’ Ti is decreasing, the prob-
ability of ’bad’ moves xi away from the minimum of h will be more and more dif-
ficult, because the ∆hi = h(xi−1)− h(x) are scaled with Ti, so the probability limit
exp(∆hi/Ti) → 0.
The global optimization is achieved by the ability of the algorithm to make ’bad’
moves from time to time, making sure it can escape local minima and converge
into global minimum. However, one can try to run the algorithm a few times with
different starting points x0 to make sure that the global minimum is really found.
In the example shown in Fig. 9.2 there is a quite nasty function

h(x, y) = (y sin(20x) + x sin(20y))2 cosh(x sin(10x))+

cosh(y cos(20y))(x cos(10y)− y sin(10x))2 (9.5)

with several local minima is optimized with the simulated annealing algorithm.
A step size of c = 0.1 for the instrumental uniform distribution is chosen, and
the temperature is lowered as T (i) = 10/ log(1 + i). We can see how the chain of
successive values in the optimization are mainly exploring the large plain in the
middle, and also the narrow valleys.

9.4 The Metropolis-Hastings algorithm for MCMC

TheMCMCmethod is quite generally defined inRobert&Casella (1999): ”AMarkov
chainMonte Carlomethod for the simulation of a distributionF is anymethod pro-
ducing an ergodic Markov chain (X(t))whose stationary distribution is F .” Before
moving to the most popular MCMC algorithm, the Metropolis-Hastings (M-H),
we will shortly introduce what is Markov chain so that we can understand a bit the
definition above.

9-4

Figure 9.2: A complex function and the simulated annealing minimization chain
with four different step size c and temperature decrease functions T (i).

9.4.1 Markov chain

Themathematics behindMarkov chains are quite involved, so to our purposes they
justwork, likemagic. But, for them towork, they need to have some properties such
as ergodicy, so let us try to list the required properties. First, Markov chains are,
in MCMC, discrete random processes (X(t)), t = 1, The markovian property
of the chain is that the next value of the chain, (X(t+1)) depends on the previous
values only by the current value (X(t)).
The chain is often associated with a transition kernel K where K(x, y) marks the
probability density to move from x to y in the chain. In another words, the kernel
is the conditional probability distribution G so that K(x, y) = g(y|x).
The ergodicy of the chainmeans that is will converge to a stationary distributionF .
It can be proven that this requires the chain to beHarris recurrent, i.e., the expected
number of visits of the chain to a arbitrary set A is infinite. In practice, this means
that every possible value of F is accessible by the chain, regardless of the starting
value of the chain.
If we can construct a (Markov) chain such that the limiting stationary distribution

9-5

of (X(t)) is F , then we can estimate for any function h∫
h(x)f(x)dx = Ef [h(x)] ≈

1

T

T∑
1

h(x(t)). (9.6)

Note that the ’x’ here will usually be the unknown parameter (vector) θ of our
probabilitymodel or, in Bayesian analysis, of our posterior density f(θ|y) ∝ f(θ)L(θ;y).
From now on, we will use the symbol θ, not x.

9.4.2 General Metropolis-Hastings algorithm

To complete themagic in the previous sectionwe need away to construct aMarkov
chain that has the required properties and, most of all, has the ability to have an
arbitrary distribution F as the limiting distribution. Such a magic can be done
with the Metropolis-Hastings (M-H) algorithm. The general version of that is the
following:
Algorithm General Metropolis-Hastings

• Choose θ(0)

• At round t, t = 1, . . . , T

1. Generate θ from distribution Gθ|θ(t−1)

2. Take

θ(t) =

{
θ with probability min

(
f(θ)

f(θ(t−1))

g(θ(t−1)|θ)
g(θ|θ(t−1))

, 1
)

θ(t−1) otherwise

• Repeat

The popularity of theM-H algorithm, especially with Bayesian analysis, lies now in
the ratios of f’s and g’s, because any common normalizing factors not depending on
the parameter θ can be canceled from f(x)’s and from g(x|y)’s. So, in the Bayesian
framework, the pdf ’f’ of the target distribution can be the proportional part of the
posterior distribution, f(θ)L(θ;y), and the transition kernel pdf g can be anything
that produces an ergodic chain.
From this M-H algorithm description one can notice the relationship to the sim-
ulated annealing algorithm. In both the algorithms, ’bad’ moves can be accepted
with a positive probability. In M-H, this probability value is given by the ratio
f(θ)/f(θ(t−1)). If the proposed new value θ is ’more probable’, then the ratio is above
one and the accepted (well, the transition probability ratio g(θ(t−1)|θ)/g(θ|θ(t−1)) has
to be taken also into account). But even if the ratio is below one and the proposed
value is ’less probable’, it can be accepted with a positive probability. The reason
why the simulated annealing is not strictly a MCMC algorithm is in the decreas-
ing temperature of the system, which makes the chain non-homogeneous, which
is needed for the ergodicy.

9-6

9.4.3 Independent Metropolis-Hastings algorithm

The MCMC in general form is presented above. It seems quite straightforward
with the only ambiguous part being the choice of distribution Gx|y. One particular
choice, leading to the so-called independent Metropolis-Hastings is to have G so that
it is not conditional, i.e., Gx.

Algorithm Independent Metropolis-Hastings

• As general M-H, but select g(x|y) = g(x)

This algorithm is in particular quite similar to the importance sampling (see Sec. 9.2).
The proposal (i.e., instrumental) distribution is the same, but the weights of the ac-
cepted samples are a different. In independent M-H, there are no weights in such,
but some chain values are repeated (giving them larger weights) if the proposed
chain movement is not accepted.

The similar considerations for the proposal distribution G hold with independent
M-H— the g should be able to visit all the values from the support of f, and prefer-
ably with a reasonable probability (compare with tail weights f/g in importance
sampling).

As an example, we repeat the sampling from Fisher’s z-distribution with n = 2,
m = 10 as in Sec. 9.2, and use the Cauchy distribution with a = 0, b = 1/2 as the
proposal distribution. One important benefit of MCMC is, that now the chain (θ(t))

should have the distribution F without any weights. This means that we can not
only estimate any function h(θ)with θ ∼ F , but also the distribution F itself.

To speed up the computation, we can clean the f(x) for the Fisher z-distribution
fromanything not depending on x, sowe canuse f(θ;n,m) ∝ exp(nθ) (m+exp(2θ)n)

1
2
(−n−m).

-3 -2 -1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fisher Z pdf and

histrogram of iM-H samples

10 100 1000 10000

-0.4

-0.2

0.0

0.2

0.4

0.6

Convergence of mean

Figure 9.3: In the left, the target distribution Fisher z with n = 2,m = 10 and a his-
togram of one 100,000 sample independent M-H chain using the Cauchy(0, 1/2) as
the proposal distribution. In the right, the convergence of the mean of the Fisher z-
distribution estimated with the independentM-H. The correct mean value (-0.237)
is marked with the horizontal gray line.

9-7

9.4.4 Random walk Metropolis-Hastings

Probably themost used version of theM-Halgorithms is the randomwalkMetropolis-
Hastings. This is because the construction of the algorithm does not require de-
tailed knowledge of the target distribution F . In fact, one basically needs only to
know the support of F , and the proportional form f(x) ∝ f∗(x).

Algorithm Random walk Metropolis-Hastings

• As general M-H, but with symmetric random-walk proposal distribution g:

g(θ|θ(t−1)) = g(θ − θ(t−1)) = g(θ(t−1) − θ) = g(θ(t−1)|θ)

• The acceptance probability simplifies to

min

(
f(θ)

f(θ(t−1))

g(θ(t−1)|θ)
g(θ|θ(t−1))

, 1

)
= min

(
f(θ)

f(θ(t−1))
, 1

)

In practice, the symmetric g can be implemented as a random movement from the
previous chain value, i.e., random walk. With a small random number (or vector
of numbers) ξ, the random-walk g can such that

θ = θ(t−1) + ξ. (9.7)

The random number ξ can be drawn from, e.g., uniform distribution over [θ(t−1) −
c, θ(t−1) + c], or Gaussian distribution N (θ(t−1), σ2).

Let us go through the use of random walk M-H in a Bayesian framework. Let us
model the photon count in a detector with an exponential distribution Exp(λ). The
parameter λ describes the number of events (i.e., photons arriving) on a unit time
interval. Furthermore, we have some previous knowledge saying that the distribu-
tion of λ could be modeled with the log-normal distribution LN (α, β)with α = 1.5

and β = 0.75.

The posterior distribution f(λ|α, β) ∝ fp(λ;α, β)L(λ;x), where fp is the prior dis-
tribution (log-normal), and L is the likelihood function of exponential-distributed
data vector x. Now the posterior can be solved analytically, but it is not in the form
of any ’common’ distribution. In some other case, the posterior could not be solved
in closed form. Also, the estimates such as the posterior mean cannot be solved an-
alytically.

With datax = (0.254, 0.360, 0.0372, 0.340, 0.252, 0.105, 0.111, 0.222, 0.162, 0.0307) the
prior distribution and the likelihood-function (correctly scaled to a proper pdf)
are shown in Fig. 9.4. Now, using the random-walk M-H algorithm we can create
a chain of values (λ(t)) that should have the correct posterior distribution. One
example chain is shown in Fig. 9.5.

9-8

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

λ

pd
f(
λ
)

Likelihood and prior distribution

prior

likelihood

Figure 9.4: The likelihood function for the exponential model, and the a priori pdf
with log-normal distribution for the parameter λ.

0 50000 100000 150000 200000 250000 300000
0

2

4

6

8

10

12

t

(λ
t
)

Random-walk M-H run for log-normal - exponential model

Figure 9.5: The random-walkM-H chain for the parameter λwith 300,000 samples.
The correct mean of 5.23 is shown in the figure with the gray horizontal line.

9.4.5 MCMC diagnostics

The M-H algorithmwith suitable proposal distribution should converge to the tar-
get distribution F if you have infinite time. However, with finite (computer) time,
you should somehow make sure that your results have already converged. There
is no definite proof for that, but some steps of checks that you should at least make.

First of all, you should try different starting values for the chain, i.e., run several
chains. There is a so-called burn-in period with the random chains when the chain
start from an initial point and finds its way towards the target distribution. This
burn-in period should be discarded from the data when doing analysis based on
the chain values. In Fig. 9.6 there are three chains with different starting points.
One can see that the chains approach to same distribution only after some, say
3,000, steps.

The mixing of values is one interesting property to be followed with the conver-
gence. Itmeans that the chain should visit different values and ranges often enough.
This also means that the acceptance ratio, the ratio of accepted movements to all the
proposed movements, should not be too low (chain stuck) or too high (chain still
converging). In Fig. 9.7 one can see three chains with different random walk step
sizes c. The acceptance ratios are 99 % (c = 0.1), 97 % (c = 0.25), and 87 % (c = 1).
The smallest step size causes too slow mixing and too high acceptance ratio, while

9-9

0 5000 10000 15000 20000
0

2

4

6

8

10

t

(λ
(t
))

Three random walk M-H runs

Figure 9.6: Three chains with different starting points for random walk M-H.

the largest step size is inefficient with too small acceptance ratio.

Figure 9.7: Three different step sizes for random walk M-H.

Other properties to follow include the chain autocorrelation, which should not be
too long. The autocorrelation for distance ρt can be computed as

ρt =
(
∑T−t

i=1 (θ
(i) − θ)(θ(i+t) − θ)/(T − t)

(
∑T

i=1(θ
(i) − θ)2)/T

(9.8)

and should approach 0when the distance grows. The length of the chain should be
remarkably larger than the length where its autocorrelation approaches 0. For the
three chains (see above), the autocorrelation length are shown in Fig. 9.8. For step

9-10

size c = 0.1 the autocorrelation is above 0 for up to 8,000 samples, so the autocorre-
lation length is quite large. The chain with c = 1.0 has a very short autocorrelation
length, but also small acceptance ratio. The chain with c = 0.25 has quite reason-
able autocorrelation length of ∼1,000 samples and a large acceptance ratio.

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

t

A
C
(t
)

Chain autocorrelation

c=0.1

c=0.25

c=1

Figure 9.8: Chain autocorrelation with three different step sizes for random walk
M-H.

9.4.6 Metropolis-Hastings with regression models

In regression models we have the systematic part of the regression model, let us
call that r(x;β) to distinguish from target distribution f. In linear regression the
function r is the linear matrix equation Xβ, and in nonlinear regression it is any
function r.
The random part for regression comes with the residuals ϵ. If we assume these
residuals to follow a normal distribution, our probability model is then

Y ∼ Nn(r(x;β),Σ), (9.9)

whereΣ is the (unknown) covariance matrix, usually assumed to be σ2I. The like-
lihood function for the model parameters β and σ2 is now

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i

(yi − r(xi;β))
2

)
(9.10)

The prior distributions for β and σ2 can be usually thought to be independent of
each other, so fp(β, σ

2) = fp(β)fp(σ
2). With this information we can write the pos-

terior distribution as
f(β, σ2|y) ∝ fp(β)fp(σ

2)L(β, σ2). (9.11)

In practice, the M-H update round for the vector (β, σ2) can be done component-
wise, updating only one coordinate at time. This increases the overall acceptance
ratio in problems with many coefficients βi.
Algorithm for component-wise regression random walk Metropolis-Hastings (but
see forward for practical alternative version):

9-11

• Choose β(0) and (σ2)(0)

• At round t, t = 1, . . . , T

1. Initialize vector β = β(t−1)

2. Generate σ2 from random-walk proposal distribution
3. Take

(σ2)(t) =

{
σ2 with probability min

(
fp(σ2) L(β,σ2)

fp((σ2)(t−1)) L(β,(σ2)(t−1))
, 1
)

(σ2)(t−1) otherwise

4. For i = 1, . . . , k

(a) Copy current β to β′. Generate component β′
i from random-walk

proposal distribution
(b) Take

βi =

{
β′
i with probability min

(
fp(β

′) L(β′,(σ2)(t))

fp(β) L(β,(σ2)(t))
, 1
)

βi otherwise

5. Repeat
6. Update β(t) = β

• Repeat

While the algorithm above is correct in principle, the probabilities and their ratios
in steps 3. and 4. (b) might suffer from some numerical instabilities due to very
small numbers being multiplied and divided. An alternative version would be to
simplify and log-transform these steps. We can start by following Eq. 9.10 and
writing the sum-of-squared-residuals as S(β):

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2
S(β)

)
. (9.12)

Next, we can transform the test for a uniform random number ξ in step 3., with the
help of log-transform, to

ξ < min

(
fp(σ

2) L(β, σ2)

fp((σ2)(t−1)) L(β, (σ2)(t−1))
, 1

)
⇔

log(ξ) < min
(
log(fp(σ

2)) + l(β, σ2) − log(fp((σ
2)(t−1))) − l(β, (σ2)(t−1)), 0

)
,

(9.13)

where
l(β, σ2) = −n

2
log(2πσ2)− S(β)

2σ2
. (9.14)

Similarly, the test in step 4. (b) can be written as

log(ξ) < min
(
log(fp(β

′)) + l(β′, σ2) − log(fp(β)) − l(β, σ2), 0
)
. (9.15)

9-12

Advanced MCMC

There is a vast collection of different small improvements to the randomwalkM-H
algorithm for cases where the convergence is poor using the basic form of the algo-
rithm. Adaptive MCMC uses multidimensional normal distribution as the proposal
distribution. The adaptation is achieved by estimating the covariance matrix of the
proposal distribution from the previous values of the chain.

Other small tweaks to the proposal distribution include using a population of pos-
sible parameter values, and computing ’typical’ movements somehow from them.

9.5 Gibbs sampling for MCMC

Gibbs sampling (GS) can be treated as a special case of M-H algorithm. GS is suit-
able for MCMC simulation of multidimensional parameter vector θ in a stepwise
manner, similar to component-wise M-H. The distinct features of GS are, that the
proposed values are always accepted, and that the full conditional distributions of
F needs to be known. By full conditional distribution we mean the pdf’s

θi|θ1, . . . , θi−1, θi+1, . . . , θp ∼ f(θi|θ1, . . . , θi−1, θi+1, . . . , θp) = f(θi|θ\θi). (9.16)

If the full conditionals are known, the Gibbs sampling algorithm is:

• Choose multivariate θ(0) = (θ
(0)
1 , . . . , θ

(0)
p)

• At round t, t = 1, . . . , T

– Update θ(t) = θ(t−1)

– Loop over i = 1, . . . , p

∗ Generate θ(t)i from f(θi|θ(t)\θ)

– Repeat

• Repeat

Gibbs sampling is quite suitable for Bayesian multivariate regression problems if
suitable prior distributions are selected for the parameters. For example, by se-
lecting (multivariate) normal prior to θ the conditional posterior distributions are
(1D) normal distributions. Another typical application are the so-called hierarchical
models.

9-13

9.5.1 BUGS software

BUGS (Bayesian interface Using Gibbs Sampling) and its versions WinBUGS and
OpenBugs are software packages for Bayesian analysis with Gibbs sampling. The
BUGS software is quite unique in its user interface and internal logic, but once one
learns it, it can be a powerful tool for Bayesian model analysis.
It is somewhat hard to explain the software here in text. Instead, we will take a
quick look at its usage in the lecture.

9-14

	Markov chain Monte Carlo methods
	Monte Carlo towards MCMC
	Importance sampling
	Simulated annealing
	The Metropolis-Hastings algorithm for MCMC
	Markov chain
	General Metropolis-Hastings algorithm
	Independent Metropolis-Hastings algorithm
	Random walk Metropolis-Hastings
	MCMC diagnostics
	Metropolis-Hastings with regression models

	Gibbs sampling for MCMC
	BUGS software

