5th exercises for SIM’2018

Ex. 1

Fit nonlinear model to observed degree of linear polarization of comet Hale-Bopp in red wavelength filter. Download data from course webpage (dataRed.dat). Use trigonometric model

$$
\begin{equation*}
y_{i}=\mathrm{f}_{i}(\boldsymbol{\beta})=\beta_{1} \sin \left(x_{i}\right)^{\beta_{2}} \cos \left(x_{i} / 2\right)^{\beta_{3}} \sin \left(x_{i}-\beta_{4}\right) \tag{1}
\end{equation*}
$$

a) Program function $S\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\sum^{n}\left(y_{i}-\mathrm{f}_{i}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)\right)^{2}$ in your computing environment. Use minimization procedure to find best estimates $b_{1}, b_{2}, b_{3}, b_{4}$. (If you cannot use minimization, test few choices for parameters yourself and choose the best ones).
b) Plot data together with the best fit function.
c) Compute sum of squared residuals, $S S E$, and residual variance s^{2}.
d) Compute test statistics $t_{i}=\frac{b_{i}}{s \sqrt{m^{i i}}}$ for the parameters. For $m^{i i}=\left[M^{-1}\right]_{i i}$ you need the matrix $\mathbf{F}(\boldsymbol{b})$ as in Eq. (4.15). Partial derivatives of f are given in the end of this page.
e) Which parameter is the most uncertain, i.e. has smallest value of test statistics? Test it's p-value for the hypothesis H_{0} that it could be removed from the model.

Ex. 2

Do kernel density estimation for one-dimensional data asteroid_density.dat, where the densities (in $\mathrm{g} / \mathrm{cm}^{3}$) of some asteroids are recorded. Test either few different kernels or few values of smoothing parameter h. Plot the density estimates. Can there be 'unphysical' features in the density estimate?

$$
\begin{align*}
\frac{\partial \mathrm{f}}{\partial b_{1}} & =-\sin (x)^{b_{2}} \cos \left(\frac{x}{2}\right)^{b_{3}} \sin \left(b_{4}-x\right) \tag{2}\\
\frac{\partial \mathrm{f}}{\partial b_{2}} & =-b_{1} \sin (x)^{b_{2}} \cos \left(\frac{x}{2}\right)^{b_{3}} \sin \left(b_{4}-x\right) \log (\sin (x)) \tag{3}\\
\frac{\partial \mathrm{f}}{\partial b_{3}} & =-b_{1} \sin (x)^{b_{2}} \cos \left(\frac{x}{2}\right)^{b_{3}} \sin \left(b_{4}-x\right) \log \left(\cos \left(\frac{x}{2}\right)\right) \tag{4}\\
\frac{\partial \mathrm{f}}{\partial b_{4}} & =-b_{1} \sin (x)^{b_{2}} \cos \left(\frac{x}{2}\right)^{b_{3}} \cos \left(b_{4}-x\right) \tag{5}
\end{align*}
$$

