2nd exercises for SIM'2016

Ex. 1

a) Derive log-likelihood function for model where Y_1, \ldots, Y_n are i.i.d and follow Poisson distribution $\mathcal{P}(\lambda)$.

b) Make figure of $l(\lambda)$ in cases where (i) n = 10 and $\overline{y} = e$, (ii) n = 10 and $\overline{y} = 25$.

Ex. 2

a) Formulate maximum likelihood equations for \boldsymbol{n} i.i.d observations from Poisson distribution.

b) Derive maximum likelihood estimate for parameter λ in ML equations in case a)

Ex. 3

a) Show that mean \overline{y} is the MLE for μ when Y_i are i.i.d and follow $\mathcal{N}(\mu, 1)$. b) Make figure of $l(\mu)$ when $\overline{y} = 3$ and (i) n = 20, (ii) n = 40.

Ex. 4

We have 10 observations from i.i.d. Poisson model and $\overline{y} = 3.4$. Construct 95 % confidence interval for λ using asymptotic result in Eq. (2.7).

Ex. 5

We have two sets of stars, A and B, and we have observed their magnitudes. In set A we have 61 observations with mean magnitude -24.4, standard deviation is 3.9. In set B there is 71 observations, mean magnitude is -23.2 with standard deviation of 3.8. Test if the expected magnitudes could be the same in the groups.

Ex. 6

Test if hair color and color of eyes are independent. The data from 95 persons is

hair \eyes	blue	brown	other
blonde	32	14	6
dark	12	22	9

Note to Exs. 5 and 6. If your software cannot compute the cdf and inverse cdf for *t*-distribution you can use $\mathcal{N}(0,1)$ instead. If you cannot compute χ^2 -distribution, you can approximate it with $\mathcal{N}(\kappa, 2\kappa)$, where κ is the degrees of freedom. If you cannot compute cdf and inverse cdf values for $\mathcal{N}(0, 1)$, change software.