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Chapter 1

Introduction

1.1 Information about course

This is lecture material for the course ”Statistical Inverse Methods in Astronomy”,
SIM in short. In Finnish, Tähtitieteen tilastolliset inversiomenetelmät. Course ID is
53834.
In spring 2016, 5 credit points are rewarded from the course. To achieve these
points you need to i) complete and return weekly exercises, and ii) pass the final
exam. At least 25 % of the weekly exercises need to be done in order to pass, and
completing more will earn you a better grade.
Exercises will include both problems that are to be solved analytically, i.e. with pen
and paper, and computer tasks that should be completed using some mathemati-
cal or statistical software on a computer. We do not specify what kind of software
should be used, choose one you are most familiar with or one you would like to
learn during the course. Programming or details about specific software are not
taught, so you need to have prior knowledge on programming or scientific com-
puting.
Most, if not all of the computer task are possible to do using any general purpose
mathematical package such as Matlab, Mathematica, Maple etc. Statistical soft-
ware packages such as R (free, under GNU GPL) is also an excellent choice for
a tool. Lower-level programming tools such as Python can be used, but we do
not recommend using very low-level programming such as C or Fortran, since too
much effortwould probably go towriting code for input/output and for producing
graphics. On the other hand, software packages with limited amount of generality
andversatile programming capabilities such as Excel or SPSS are not recommended
either. The University of Helsinki has a license for SAS software, which is a huge
statistical (among others) package that is used quite often in e.g. medical research
and business applications, but perhaps because of its vast application areas and
history, it is quite complected and a bit cumbersome to use.
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Prior knowledge should include mathematical tools that are taught on basic uni-
versity mathematics courses, e.g. Matemaattiset apuneuvot I and II (53704 and
53705) or Tähtitieteen matemaattiset menetelmät (53966). Especially we will need
basic linear algebra and basic multivariate differential calculus. Scientific comput-
ing (Tieteellinen laskenta) I and II (53398 and 53399) are recommended, because
basic programming, data handling, and plotting are needed in the exercise ses-
sions.

1.1.1 Spring 2016

Up-to-date version of the dates can be found on the course homepage at https://
wiki.helsinki.fi/display/53834/. Lecturer is Dr. Antti Penttilä (Antti.I.Penttila
(a t) helsinki.fi).

1.1.2 Material

The course material, i.e. this handout and exercises, are based on the following
course materials or books:

• A. Ekholm, ”Johdatus todennäköisyyslaskentaan” and ”Johdatus uskottavuus-
päättelyyn”, handouts

• S.Mustonen, Tilastolliset monimuuttujamenetelmät, book, University of Hel-
sinki

• Coursematerial for ”Data-analysis and InverseMethods in Astronomy, 2012”
by M. Juvela, K. Muinonen, H. Haario and A. Penttilä

• P. Saikkonen, ”Lineaariset mallit” and ”Epälineaariset mallit”, handouts

• C.P. Robert & G. Casella, Monte Carlo Statistical Methods, book, Springer

1.1.3 Notations

Throughout this material I will try to maintain a uniform and consistent style on
symbol notations. If succeeded, the readability of the formulae will probably be
better. Normal weight italic symbols are used for scalars: a, b, c, x. Random vari-
ables are usually written with capital letters: X, Y . For theoretical variables, i.e.
parameters of distributions and/or theoretical and random properties of random
variables such as the expected value or variance, Greek letters are usually used:
µ, σ2.
Functions arewrittenwith normalweight and non-italic font: sin(),P(). If possible,
named distributions such as normal distribution aremarkedwith calligraphic font,
N (µ, σ2).
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Withmultidimensional symbols bold weight is used. Vectors are with bold slanted
symbols (x,u,v,µ), andmatriceswith bold capital non-italics (X,A,B,Σ). Vectors
can be constructed from components as x = (1, 2, 3) — using () always refers to
column vector, i.e. n×1 matrix. With [] we always refer to matrices, so x = [1 2 3]T

would also be a (column)vector.

1.2 Randomevent, probability and randomvariable

The concept of random event, probability and random variable is very shortly in-
troduced, since it is probably discussed in previous courses, and we are not going
into details behind the philosophical or mathematical measure theory meanings of
random variable.

Probability can be interpreted from frequentist viewpoint— if randomphenomena
or experiment is repeated and its outcome is statistically stable, the ratio of the
number of events where result A is observed, nA, and the number of all events n
will estimate the the probability of A. In another words, P(A) ≈ nA/n. Naturally,
0 ≤ P(A) ≤ 1. The actual value of P(A) may be unknown, but we assume that it is
constant.

Frequentist interpretation has some caveats because we often want to consider
probability of events that cannot strictly speaking be repeated. Probability is better
interpreted through set theory. The sample space S includes all the possible events
si. The sample space can be finite, countably infinite or uncountable infinite. All
the probability calculus can be derived from three simple axioms for set A in S:

∀A holds that P(A) ≥ 0 (1.1)
P(S) = 1 (1.2)

If A1 ∩ A2 ∩ . . . ∩ An = ∅, then

P(A1 ∪ A2 ∪ . . . ∪ An) =
n∑
i=1

P(Ai) (1.3)

The third axiom tells that if events are mutually exclusive, the probability measure
is additive. The third axiom also holds for infinite sets. This set theory interpre-
tation of probability can often be graphically studied by means of Venn diagrams,
see Fig. 1.1 for an example.

1.2.1 Some probability laws

Laws of probability can be derived from the three axioms. Some simple and most
common definitions are given here. In what follows we will write A ∩ B shorter
with AB.
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Figure 1.1: Example Venn diagram with some group theory sets.

Addition:
P(A ∪B) = P(A) + P(B)− P(AB) (1.4)

that is valid also if A ∩B 6= ∅.
Conditional probability (ehdollinen todennäköisyys): Probability of eventA requiring
that B has happened, P(A|B).

P(A|B) =
P(AB)

P(B)
(1.5)

Statistical independence (tilastollinen riippumattomuus): EventsA andB are statisti-
cally (or stochastically) independent if and only if P(AB) = P(A)P(B). The usual
notation for this is

A ⊥⊥ B =⇒ P(AB) = P(A)P(B) (1.6)

Chain rule:
P(AB) = P(B)P(A|B) = P(A)P(B|A) (1.7)

and theorem of total probability:

P(B) =
∞∑
i=1

P(Ai)P(B|Ai) (1.8)

when the sample space S has been partitioned into mutually exclusive sets A1, . . .

Bayes formula:

P(Ai|B) =
P(Ai)P(B|Ai)∑∞
i=1 P(Ai)P(B|Ai)

(1.9)

where P(Ai) is called prior probability and P(Ai|B) posterior probability.
We will prove and use some of these formulae in the exercises.
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1.2.2 Random variable

Random variable (satunnaismuuttuja) is a mapping of the result of a random event
into real axis. If Y is a random variable, then every possible outcome s ∈ S can be
coded into real number y. For example, if there are only two possible outcomes, ”A
will happen, or Awill not happen”, it is often coded that Y (A) = 1, Y (not A) = 0.
Probability of certain randomevent to occur follows from set theory notation,P(Y =

y). This is often written also as PY (y) or even as P(y) for short, if it is evident what
random variable is considered. Evidently, from Eqs. (1.1) and (1.2) it follows that
0 ≤ P(Y = y) ≤ 1.
Discrete random variables are such that the set of possible outcomes is finite or
countably infinite. Finite set can be for example three categories where the event
will fall, and countable infinite set, for example, the set of natural numbers. It is
possible that P(Y = yi) = 0 for some yi, but from Eq. (1.2) it follows that there must
be at least one yi for which P(Y = yi) > 0.
Discrete variables can be divided into different scales according to their properties.
The nominal scale is themost simple one. In nominal scale the outcome of the event
is in finite set of ’categories’ for which there is no natural order. An example would
be the party a person is voting for. These categories are coded into numbers, but no
arithmetic operations are meaningful with the numbers. One cannot say that cat-
egory ’1’ is smaller than category ’2’. The only possible probability description of
nominal variable is to list the probabilities P(Y = y). The complete list of outcomes
and associated probabilities is the probability mass function (pistetodennäköisyysfunk-
tio)

f(y) = P(Y = y). (1.10)

With ordinal scale variable the order of the categories is a meaningful concept. For
example, many polls may ask if you ”agree fully” (Y = 4), ”agree partly” (Y =

3), ”disagree partly” (Y = 2), or ”disagree strongly” (Y = 1). In that case it is
meaningful to claim that ’4’ is more than ’3’, although operations such as 4− 3 = 1

are not meaningful. For ordinal variable, in addition to probability mass function,
a cumulative distribution function (kertymäfunktio) can be defined

F(y) = P(Y ≤ y) =

y∑
u=1

f(u). (1.11)

See Fig. 1.2 for examples.
The most advance scale for discrete variables is the interval scale. Variable has
countable number of outcomes, and they can be ordered, and their intervals are
meaningful and constant, i.e. 1 < 2 < 3 and 2−1 = 3−2 = 1. Both probabilitymass
function and cumulative distribution function are defined. Furthermore, one can
compute with the outcomes, and especially one can compute descriptive statistics
such as mean, median or standard deviation.
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Figure 1.2: Example of probability mass function (on left) and cumulative distribu-
tion function (on right) for discrete random variable.

Continuous variables are measured in interval or ratio scales. Ratio scale differs
from interval scale by having unique and non-arbitrary zero value, but there are
no real differences in using continuous interval or ratio scale variables in statistics.
Most importantly, continuous variables are uncountable infinite. From that reason
the probability of every single outcome is zero. Instead of probability mass func-
tion, a non-negative, real valued probability density function (pdf, todennäköisyysti-
heysfunktio) is defined so that

P(y0 < Y ≤ y1) =

∫ y1

y0

f(u)du for y0 < y1. (1.12)

The so-called probability density f(y) can be non-negative although the probability
of single event is zero. The cumulative density function (cdf) for continuous random
variable is defined as

F(y) = P(Y ≤ y) =

∫ y

−∞
f(u)du. (1.13)

See Fig. 1.3 for examples.

1.3 Descriptive statistics

The pdf or cdf of random variable is the complete description of the phenomenon,
at least in mathematical sense. However, we often would like to compress that in-
formation into some set of numbers that would give us important information on
the behavior of the random variable. These numbers are called statistics (tunnuslu-
vut). In principle everything that is computed from pdf or from random sample is
statistics, but there are some common choices on how distributions or samples are
described.
We should remember to make clear difference between theoretical statistics and
sample statistics. With theoretical statistics we mean quantities that can be derived
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Figure 1.3: Example of probability density function (on left) and cumulative den-
sity function (on right) for discrete random variable.

from the pdf of a random variable, and that pdf might be unknown. The idea is
that even though the distribution of random variable is unknown to us, it ’exists’
and we can gather knowledge about it by observing the realized outcomes of the
random variable. Theoretical statistics are often marked with Greek letters. The
most common example of theoretical statistics and its sample counterpart is the
expected value (µ) and the sample mean (x). Actually, sample mean can also be
thought to be random variable (X) and the mean computed from one particular
sample (x) is the realization of that.

1.3.1 Expectation

The expected value (odotusarvo) of variable is the ’center of gravity’ for a distribu-
tion. It is the most common statistics, andmany distributions use it as a parameter.
Expected value, or the expectation operator E(·), is defined as

E(Y ) =

∫ ∞
−∞

y f(y) dy (1.14)

for continuous variable, and

E(Y ) =
∑
y

y f(y) (1.15)

for discrete variable. It is said that the expectation does not exists unless the integral∫ ∞
−∞
|y| f(y) dy (1.16)

converges, i.e. it has a finite value, and similarly but with sum instead of integral
for discrete variable. Famous example of distributionwithout expected value is the
Cauchy distribution.
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Expectation is important statistics and is is useful to know some basic properties
of E(·) operator. First, it should be noted that a function of random variable is also
a random variable, i.e. if V = g(Y ) then V is a random variable. It can be shown
that expectation of V can be derived without knowing the pdf of V by

E(V ) =

∫ ∞
−∞

g(y) f(y) dy. (1.17)

With discrete variable the same holds but with sum instead of integral. Another
property is that expectation is a linear operator, i.e.

E(Y1 + · · ·+ Yn) = E(Y1) + · · ·+ E(Yn) (1.18)
E(cY ) = cE(Y ) , where c is constant (1.19)

1.3.2 Variance

As expectation is a location measure, variance is a dispersion measure. It describes
howmuch a random variable deviates from its expectation on average. Variance is
derived as

var(Y ) = E(Y − E(Y ))2 =

∫ ∞
−∞

(y − E(Y ))2 f(y) dy (1.20)

for continuous variable. Variance must be finite to exist. Instead of operators E and
var symbols µ and σ2 are often used.

Some properties of variance are dealt next. First,

var(aY + b) = a2var(Y ). (1.21)

Second, for the variance of sum of independent variables Y1, . . . , Yn ⊥⊥ hold that

var(Y1 + · · ·+ Yn) = var(Y1) + · · ·+ var(Yn), (1.22)

but the same is generally not true if the variables are not independent.

1.3.3 Other statistics

Other commonly used statistics to describe the shape of the distribution include
skewness (γ1, vinous) and kurtosis (γ2, huipukkuus). Both are derived from the cen-
tral moments µk of distribution, µk = E(Y − µ)k, so that

γ1 =
µ3

σ3
, and γ2 =

µ4

σ4
− 3. (1.23)

Kurtosis is defined so that it is zero for standard normal distributionN (0, 1). Skew-
ness is zero for all symmetric distributions.
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One important family of statistics are defined by quantiles. The p’th quantile is the
value ξ for which

F(ξ) = p. (1.24)

Especially median is the quantile at 1/2, the middle value of a distribution. Lower
or first quartile is at 1/4 and upper or third quartile at 3/4. Median and other quar-
tiles are so-called robust statistics, since their values are not heavily effected if the
distribution has very wide tails, unlike expectation or variance, for example. An
example of some of the abovementioned statistics is given in Fig. 1.4.
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Figure 1.4: Symmetric distribution (normal) on left, and skew distribution (log-
normal) on right. For both the place of expected value is marked with black line,
median with green, and 1st and 3rd quartiles with red and blue. For symmetric
distribution median and µ have the same value.

1.3.4 Covariance

We have not yet introduced multivariate random variables, but still it is best to
mention covariance and correlation at this point. As said, covariance deals with
two-dimensional random variable (U, V ), and it measures the linear dependence
between the variables. Definition for covariance is

cov(U, V ) = E[(U − E(U))(V − E(V ))] = E(UV )− E(U)E(V ) (1.25)

Without proof wemention that the expectancy of product of two random variables
is

E(UV ) =

∫ ∞
−∞

∫ ∞
−∞

uv f(u, v) du dv (1.26)

for continuous variables. The f(u, v) is the joint distribution (yhteisjakauma) of U
and V . Correlation is the covariance that is normalized with standard deviations

cor(U, V ) =
cov(U, V )

σUσV
(1.27)
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Independence is wider concept than only linear independence, so zero covariance
does not imply statistical independence, but the opposite is true,

U ⊥⊥ V =⇒ cov(U, V ) = cor(U, V ) = 0. (1.28)
With the concept of covariance we can generalize the Eq. (1.22) about the variance
of sum of independent variables to dependent ones,

var(U + V ) = var(U) + var(V ) + 2cov(U, V ), (1.29)
even when U 6⊥⊥ V .

1.3.5 Sample statistics

All the abovementioned theoretical statistics all have their sample counterparts, or
sample estimates (otosestimaatti), to be exact. The concept and derivation of esti-
mate is introduced only in the next chapter, but for now we list formulae for these
common statistics without proving their estimate properties.
Sample mean x is computed as

x =
1

n

n∑
i=1

xi, (1.30)

(sample) standard error as

s2 =
1

n− 1

n∑
i=1

(xi − x)2, (1.31)

and sample covariance as

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y). (1.32)

The denominator n− 1 is needed instead of n for the estimator to be unbiased, but
this is again a topic of estimation theory and not dealt with here. Estimates for
different quantiles are self-evident and can be made by sorting the sample with n
observations and searching for k’th value so that k/n = p.
Mean andvariance are not robust statistics. If the underlyingdistribution has heavy
tails, i.e. the probability for extreme values is not ’small’, the sample estimate may
vary a lot from one sample to another. With astronomical observations, for ex-
ample, sampling more and more is often not an option, so it is difficult to know
whether observations come from heavy-tail distribution or not, or if some of the
observations are simply wrong or affected by another process. Therefor, it is quite
difficult to objectively say if some observations are outliers and should be left out
from the analysis or not. However, due to the large effect that ’unusual’ observa-
tions can have in mean or variance estimates, they are sometimes left out, i.e. data
is censored or trimmed. Common practices include e.g. trimming out observations
with distance to mean larger than three standard deviations and then computing
mean and variance again.
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1.4 Distributions

The distribution, either probability mass function for discrete variable or proba-
bility density function for continuous, is the complete description of the random
variable. Alternatively, cumulative functions can be used. One should note that
all random variables have distribution, but that there are infinitive number of dis-
tributions and only few of them are ’known’ in the sense that they are named and
their formula is given. In this chapter wewill list some univariate distributions and
their statistics.

1.4.1 Discrete distributions

Bernoulli

Most simple discrete distribution is the Bernoulli distribution for binary random
variable, i.e. with two possible outcomes, 0 and 1. If the probability of having 1 is
π, then

Y ∼ B(π) =⇒ f(y) = πy(1− π)1−y, (1.33)
E(Y ) = π, var(Y ) = π(1− π), y ∈ {0, 1}. (1.34)

Notice the notation, Y ∼ B(π) should be read as Y has/obeys Bernoulli distribution
with parameter π.

Binomial distribution

When more than one identical and independent Bernoulli trials are sampled, the
total number of successes (outcome 1) is given by binomial distribution

Y ∼ Bin(n, π) =⇒ f(y) =
n!

y!(n− y)!
πy(1− π)n−y, (1.35)

E(Y ) = nπ, var(Y ) = nπ(1− π), y = 0, . . . , n. (1.36)

Poisson distribution

Poisson distribution can be used to model counts, i.e. howmany times some (rare)
event has occurred in one time unit. Good example could be the number of photons
that hit the CCD sensor per time unit. When the intensity parameter, i.e. expected
number of events per unit time, is λ, the distribution is

Y ∼ P(λ) =⇒ f(y) = exp(−λ)
λy

y!
, (1.37)

E(Y ) = λ, var(Y ) = λ, y = 0, . . . . (1.38)

Examples of Poisson and binomial pdf’s are shown in Fig. 1.5.
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Figure 1.5: Pdf’s of binomial (on left) and Poisson (on right) distributions.

1.4.2 Continuous distributions

Normal distribution

Normal distribution is by far the most common distribution due to the fact that it
is the limiting distribution of many derived random variables by the central limit
theorem, and thus can be used as approximative distribution to many otherwise
too complicated or non-traceable distributions. Gauss derived the distribution to
describe errors observed in themovements of planets and planetoids. With param-
eters µ and σ2 the distribution is

Y ∼ N (µ, σ2) =⇒ f(y) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
, (1.39)

E(Y ) = µ, var(Y ) = σ2, y ∈ R. (1.40)

The term standardization (standardointi) means that the expected value (or mean)
is subtracted from the original value, and the result is scaled (divided) with the
standard deviation. This operation is not limited to normal distribution in anyway,
but if general normal variable Y ∼ N (µ, σ2) is standardized, the results hasN (0, 1)

distribution, a.k.a. standard normal distribution.

The probability mass in normal distribution between µ− kσ and µ+ kσ is approxi-
mately 68% with k = 1, 95% with k = 2, and 99%with k = 3. These are the famous
one, two and three-sigma intervals that are commonly used in statistical tests and
error limits.

The central limit theorem states that, under quite common conditions, pdf of the
scaled sum Z of independent and identically distributed (i.i.d.) random variables
approaches to normal distributionwhen the number of summedvariables increases
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Figure 1.6: One (blue), two (red) and three-sigma (yellow) areas in normal distri-
bution.

without limit. Precisely

For i.i.d Y1, . . . , Yn with E(Yi) = 0 and var(Yi) = σ2, (1.41)

Z =
1√
n

n∑
i

Yi
approx∼ N (0, σ2), as n→∞.

This has evident implication to the sample meanX as a random variable, for large
samples the sample mean should have normal distribution around the true, un-
known mean, and the variance of sample mean around the true value is σ2/n.
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Figure 1.7: Pdf and cdf of normal distributions with different σ.
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Exponential distribution

Exponential distribution can be used to model waiting times between two succes-
sive events from Poisson distributed variable. When intensity parameter (same
interpretation as with Poisson) is λ, the distribution is

Y ∼ Exp(λ) =⇒ f(y) = λ exp(−λy), (1.42)
E(Y ) = 1/λ, var(Y ) = 1/λ2, y ≥ 0. (1.43)
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Figure 1.8: Pdf and cdf of exponential distributions with different λ.

Gamma distribution

Gamma distribution is a general case of exponential distribution, exponential is
gamma with index κ = 1. Gamma is flexible distribution and is used to model
lifetimes and other distances before event. With index κ and scale λ the distribution
is

Y ∼ Gamma(κ, λ) =⇒ f(y) =
λκyκ−1 exp(−λy)

Γ(κ)
, (1.44)

E(Y ) = κ/λ, var(Y ) = κ/λ2, y ≥ 0 (1.45)

where Γ() is the gamma function.

Log-normal distribution

Log-normal distribution is yet another distribution for positive-valued variable,
and as its name suggest, it is the result of logarithm of normal-distributed vari-
able. As the normal distribution can be justified through central limit theorem and
sum of i.i.d. variables, log-normal is the limiting distribution for the product of
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Figure 1.9: Pdf’s of gamma distributions with different κ and λ.

i.i.d. variables. With parameters µ and σ2, which refer to the underlying normal
distribution, the log-normal distribution is

Y ∼ LN (µ, σ2) =⇒ f(y) =
1

y
√

2πσ
exp

(
−(ln(y)− µ)2

2σ2

)
, (1.46)

E(Y ) = exp

(
µ+

1

2
σ2

)
, var(Y ) = exp(σ2 − 1) exp(2µ+ σ2), y ≥ 0. (1.47)
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Figure 1.10: Pdf’s of log-normal distributions with different µ and σ2.

Distribution of function of random variable

Functions of random variable introduce new random variables which have their
owndistributions. The newdistribution can be foundby replacing original variable
by inverse transform function and scaling by the derivative of the transform. More
formally, let us have original randomvariableU with knowndistribution fU(u), and
a transform function from U to V : V = g(U). With the following method function
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g must be differentiable. With inverse transform h(V ) = g−1(V ) = U we can define
that

fV (v) = fU(h(v)) |dh(v)

dv
| (1.48)

Please note that if inverse transform u = h(v) is multiple-valued function, for ex-
ample u = ±

√
v, then all the possible pdf’s must be summed together for fV (v), e.g.

fV (v) = fU(−
√
v) |d|+ fU(

√
v) |d|.

1.5 Statistical plots

A large part of data analysis is to describe the data withmethods that compress the
important information with numbers (statistics) or with figures. We show here a
few typical plots for one-dimensional data, and scatterplots for multi-dimensional
data. Previous pages have already shown examples of probability distribution
plots for both discrete and continuous variables. The corresponding plot for sam-
ple data is histogram.

Histogram collects data into bins, and plots the bins so that their height (discrete
variable) or area (continuous variable) corresponds to the frequency of the obser-
vations in bins. If the purpose of histogram is to compare against theoretical dis-
tribution, the frequencies must be scaled so that their heights (discrete) or areas
(continuous) sum up to one. The number of bins can be chosen freely, but one
’rule-of-thumb’ suggests to use number of bins between

√
n and 2 3

√
n for data with

n observations.

For data with outliers or otherwise long tails, the widths of the bins may differ in
the histogram. Especially then one must remember that the area of the ’bar’ in the
histogram is what counts, not the height. An example is shown in Fig. 1.11.
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Figure 1.11: Pdf of normal distribution and histogram of 500 normal-distributed
random numbers.

If distributions of several variables need to be compared in one figure, a box-and-
whiskers plot is quite handy choice. Box-and-whiskers plot shows the range where
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data is, and its quartiles. In that way one gets a rough idea on how the data is
spread, and about the symmetric / non-symmetric properties of the distribution
and tails. The plot is drawn using smallest and largest values of data as ’whiskers’,
and a box from first to third quartile. Median or mean value is drawn in themiddle
of the box. Example in Fig. 1.12 will enlighten the principle. If there seems to be
outliers in the data, the ’whiskers’ might use, e.g., 1% and 99% quantiles as the
endpoints instead of smallest and largest value.

NH15,25L NH15,64L LNH2.8,0.1L

0
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20

30

Figure 1.12: Box-and-whiskers plot of three samples of 100 observations from dif-
ferent distributions. First two are from normal distribution, and third from log-
normal.

Scatterplots (sirontakuviot) are used to show dependence between two ormore vari-
ables. Withmany variables the individual i vs. j plots can be organized intomatrix
of scatterplots.
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Figure 1.13: Scatterplot of data with
√
x-dependence and normally distributed er-

rors.
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Chapter 2

Statistical inference

Statistical inference (tilastollinen päättely) is the mathematical theory behind esti-
mates and their distributions. Estimates can be constructed in a way that statistical
hypothesis can be tested against their distributions. Estimate and its distribution
is the link between model (i.e. distribution and its parameters) and data.

2.1 Likelihood

Likelihood (uskottavuus) is the key concept in statistical inference. The theory is
developed by R.A. Fisher at the beginning of the 20th century. Likelihood deals
with data, model, and parameters. First of all, we need to have a model. Model
is the statistical distribution that we believe the random variable Y should obey,
so the model is probability density function fY (·). Model has parameters and their
values are unknown. In likelihood problems the parameter vector is often noted
with θ, although individual distributions usually have traditional conventionswith
the parameter symbols. For example, normal distribution has θ = (µ, σ2).

The final component in likelihood is data. Very seldom we are doing inference
based on single observation y, almost always the data consists of observations
y1, . . . , yn. In that case the data is vector of observations, y. In more general case
the data is vector of multidimensional observations, i.e. matrix Y.

We are not dealing with random processes here, so the observations yi are identi-
cally distributed and the model or its parameters are not assumed to change with
time. If there is (auto)correlation between consecutive observations (yi, yi+k) we
are dealing with time series (aikasarja), but here we do not consider such cases. We
limit ourselves to independent observations, so together with the assumption of
non-varying model we deal with i.i.d. observations y = (y1, . . . , yn).

The idea of likelihood is quite simple and straightforward. Let us say that we have
reasons to believe that our data is from process that can be described with normal
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distribution with fixed and known variance of 1. The unknown parameter is the
expectancy µ. What if we have one observation y1? We cannot say much, but our
best guess would be that µ = y1, as in Fig. 2.1 a).
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Figure 2.1: Example of normal model with one observation (a) and with three ob-
servations (b).

Next, we consider case with three observations y = (y1, y2, y3), as in Fig. 2.1 b).
Intuitively, we should place our normal distribution so that it would somehow fit
to all three observations in the best possible way. What is the best possible way? If
our model Y ∼ N (µ, 1) is correct, the probability (density) of observing Y = y1 can
be computed from fY (y1;µ, 1). As the observations are i.i.d., the joint probability
of observing all three can be computed as a product of individual probabilities
(densities), fY (y;µ, 1) = fY (y1;µ, 1)× fY (y2;µ, 1)× fY (y3;µ, 1). Please note that with
likelihood and related fields both the data and the parameters are usually written
out with the pdf as fY (y;θ). The abovementioned procedure is, in a nutshell, the
likelihood principle.

2.1.1 Likelihood function

Following the previous procedure we can formulate the likelihood function L(·) in
a more formal way. Likelihood function is

L(θ;y) = c(y) fY (y;θ), (2.1)

where the pdf is the joint density function for y. Note the small change of paradigm
— likelihood function is used to estimate the unknown parameter vector θ, so that
is the main parameter of the function, the observed data y is a ’secondary param-
eter’.
The function c(y) in Eq. (2.1) can be any function involving only the data andnot the
parameter vector, and in that sense the likelihood function is not uniquely defined.
Any function L(θ;y) ∝ fY (y;θ) is likelihood function. This fact can be used to
clean out unnecessary constants (i.e. terms independent of θ) from the likelihood,
making it a bit simpler.
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If we have i.i.d. observations, as we do in almost all the examples here, the likeli-
hood function is the product of the one-dimensional distributions:

L(θ;y) ∝
n∏
i=1

fY (yi;θ) , if y is i.i.d. (2.2)

The likelihood function is used together with maximum likelihood principle (su-
urimman uskottavuuden periaate). The principle simply states, that we should find
values (i.e. estimates) for our unknown parameters θ so that it will maximize the
likelihood function for observed data y. As L is defined through the joint proba-
bility density, we are essentially maximizing the probability of parameter values,
given the data.

In the example in Fig. 2.1 b) we have three observed values: −1.2, 0, 0.7. The like-
lihood function is L(µ) ∝ exp (− ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2) /2). It is not
too hard to see that setting µ = −1/6 will maximize the likelihood, see Fig. 2.2.
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Figure 2.2: Likelihood function of normal model with three observations as in
Fig. 2.1 b).

Log-likelihood function

The likelihood function is a product of pdf’s, and the aim is to maximize that. Tak-
ing any monotonic and increasing function of L will not alter the values where
the function reaches its extrema points. The logarithm function can be used to
reduce the likelihood into simpler form, because logarithm of product is sum of
logarithms. Therefore, maximum likelihood problems are often solved through
log-likelihood function (log-uskottavuusfunktio). Log-likelihood function l(·) is sim-
ply

l(θ;y) = log (L(θ;y) , (2.3)

where log stands for natural logarithm. Another convenient property of logarithm
is that log(exp(x)) = x. Many statistical distributions belong to the so-called ex-
ponential family, normal distribution being one of them, so the exponential form
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in likelihood function is quite common. With log-likelihood one can change from
product of exponentials to sum without exponent functions.
With log-likelihood function our example in Fig. 2.1 b) would reduce to task of
maximizing l(µ) ∝ − ((−1.2− µ)2 + (0− µ)2 + (0.7− µ)2), see Fig. 2.3.
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Figure 2.3: Log-likelihood function of normal model with three observations as in
Fig. 2.1 b).

2.1.2 Maximum likelihood estimate

The concept of likelihood defines the maximum likelihood (ML) principle (suurim-
man uskottavuuden periaate) in statistics. The maximum likelihood estimate (MLE)
of the unknown parameter in our probability model, given the data, is the value θ̂
that maximizes the likelihood (or log-likelihood) function:

L(θ̂;y) ≥ L(θ;y) ∀θ. (2.4)

This θ̂ is the point-estimate (piste-estimaatti) to θ.
In most of the cases the likelihood and log-likelihood functions are at least twice
differentiable over the whole parameter space. If this is the case, the MLE can be
found by studying the first and second derivatives of the (log-)likelihood function.
Extrema points of continuous and differentiable functions have zero value of the
first derivative. Furthermore, if the extremum point is maximum, the value of the
second derivative is negative.
The conditions described before form the so-called likelihood equation. In the gen-
eral case the parameter is a vector (of length d here), and the vector of first partial
derivatives is called the score function u(·):

u(θ;y) = ∇ l(θ;y) =

(
∂ l

∂ θ1

, . . . ,
∂ l

∂ θd

)
, (2.5)

and the Hessian matrix H is the matrix of second order partial derivatives:

H = ∇∇T l(θ;y) =

[
∂2 l

∂θi ∂θj

]
ij

. (2.6)
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With these notations, theMLE satisfies the likelihood equation, i.e. u(θ̂;y) = 0 and
H at θ̂ is negative definite.

Properties of maximum likelihood estimate

MLE has some nice properties which make it even more important in statistics. We
list the most important here, invariance and asymptotic properties. First, MLE is
invariant in re-parametrization. If we would change our parameter of interest so
that we would use parameter φ := g(θ), the MLE of the re-parametrized model
would still be φ̂ = g(θ̂).
What is even more important with MLE is that we know its asymptotic distribu-
tion, and it is the normal distribution. The proof of that relies on the central limit
theorem, but is far too cumbersome for us. So, without proof, we state that

θ̂
∼−→ Nd

(
θ,−H−1

)
. (2.7)

That means, at least, four things. First of all, it states that if we have ’enough’ data,
the MLE will approximately obey normal distribution. Note that as the parameter
here is a vector, the distribution is multidimensional.
Second, the MLE is unbiased. This means that the expectation of MLE is the ’true’
θ. Third, the MLE is efficient. This concept has not been mentioned here, but it
means that the variance of MLE is the smallest possible over all estimators.
Fourth consequence is very important in practice —we have a asymptotic variance
for the MLE, so we know how much it typically varies around true θ. This is the
basis for confidence intervals and statistical tests. The asymptotic variance for vec-
tor parameter is expressed through the expectation of the Hessian matrix, i.e. the
second partial derivatives of the log-likelihood function. While this may seem a bit
cumbersome, the good thing is that we usually do not need to derive estimators
and their variances ourselves. Somebody else has gone through the trouble and
done that for us using the abovementioned equations. For many practical cases the
formulas can be reduced to quite simple forms, for example that the variance of
mean x for normal model is σ2/n.

2.2 Statistical tests

From estimators and their distributions we can continue to statistical tests and con-
fidence intervals. Let us first deal with confidence intervals.

2.2.1 Confidence intervals

The MLE is a point-estimate, it gives us the most probable value for the unknown
parameter of our model. In the same manner, any statistics, whether MLE or any
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other t := t(y), are point-estimates. On the other hand, the data that we have
observed, y, is just one possible outcome of the randomprocess. If wewould repeat
the experiment or redo the observations, we would get different data vector y∗.
Following the though, we would also get another value for the statistics, t∗, that
would probably differ from the original t. As the observations y and y∗ are both
realizations of a random variable Y , also the estimates t and t∗ are realizations of a
random estimator T := t(Y ).
For that reason, often the point-estimate alone is not enough for us for data-analysis
purposes. A more interesting would be to know an interval where the statistics
would most probably be, even if we would repeat the experiment over and over
again. This interval is called confidence interval (CI; luottamusväli), or credible in-
terval in Bayesian inference.
The p 100 % confidence interval (e.g. 95 %) for parameter θ is the region where the
true value of parameter lies, with p 100 % confidence. More formally

P(θ ∈ Ωp) = p, (2.8)

although there are somephilosophical issues in frequentist probability concept that
require slightly different formulation∗. The Eq. (2.8) does not define how the area
Ωp is chosen. There are some options for that, but with symmetric distributions (of
T ) all the options lead to the same conclusion — the area Ωp should be chosen so
that it is a symmetric interval around the θ, and only (1 − p) 100 % of the density
is left out from the tails of the pdf. Thus, CI for one-dimensional parameter and
symmetric distribution is such that

P(θ̂ − c ≤ θ ≤ θ̂ + c) = p. (2.9)
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Figure 2.4: Confidence interval (µ̂ − c, µ̂ + c) for µ, when data is from normal dis-
tribution.

∗Actually, in frequentist sense the parameter value is an unknown but constant value, and proba-
bility is notmeaningful for it. The interval should be formulated using statistics as random variable,
T := t(Y ). Still, in practice the interpretation is more or less the same, and in Bayesian concept it is
allowed to speak about the probability of the parameter.
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Confidence interval for mean

Mean y is the most common statistics. With normal distribution as model, it is the
MLE for expected value, but the same is true for many other (symmetric) distribu-
tions and their location parameters. And, due to the asymptotic behavior of mean,
normal distribution is at least its asymptotic distribution.

The CI for mean and (asymptotic) expectancy µ is

P(y − ξ s√
n
≤ µ ≤ y + ξ

s√
n

) = p, (2.10)

where the term s/
√
n is the standard error of the sample, divided by the number

of observations, i.e. the ’standard error of the mean’. The coefficient ξ depends on
the selected confidence level p. The ξ is selected so, that the probability in standard
normal pdf φ(·) from −ξ to ξ is p, i.e.∫ ξ

−ξ
φ(x)dx = p. (2.11)

For 95 % CI (i.e. p = 0.95) this value is 1.96, and similarly 2.58 for 99 % CI. To be
exact, the Eq. (2.10) with ξ from normal distribution is only the asymptotic result. If
the probability model actually is normal distribution, the ξ-values should be taken
from the Student’s t-distribution with n − 1 degrees of freedom. The difference is
not large, in practice it is something to be taken into account if sample size is, say,
less than 10. Example of normal and t-distributions are shown in Fig. 2.5.
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Figure 2.5: Standard normal distribution (black) and t-distribution with 2 (blue), 4
(red), and 9 (yellow) degrees of freedom.

2.2.2 Tests

With statistical tests we can check the likelihood of our hypothesis against the ob-
served data, and make conclusions that are based on quantitative results. For tests
we need suitably constructed test statistics t(y) and a hypothesis, the so-called null
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hypothesis H0 (nollahypoteesi). The null hypothesis needs to define the probability
model for test statistics, i.e. we must be know how T |H0 is distributed.
If the data shows that our null hypothesis is very unlikely to be true, then we
conclude that the alternative hypothesis H1 (vastahypoteesi) seems more plausible.
While the null hypothesis defines either one point in the parameter space, or at
least some (small) set of parameters, the alternative hypothesis is its complement
and does not define single value for the parameter, rather a single value that the
parameter is not. For example, one could test with the mean from normally dis-
tributed data if (H0) the µ = c or, (H1) the µ 6= c.
The principle of statistical tests lies in the distribution of T |H0 and the likelihood
of observed t. As said, we must know the pdf of T |H0, i.e. fT |H0(t). With that
knowledge we can calculate the probability of observing as extreme value of T as
we have, or even more extreme, on the condition that H0 is true. We return to the
question of ’even more extreme’ in the next section, but for now we just formulate
that

P(T more extreme as t|H0) =

∫
tmore extreme

fT |H0(x)dx

= 1−
∫
t less extreme

fT |H0(x)dx = p. (2.12)

Now, the philosophy is that if it is not that unlikely to observe such values of the
statistic t if H0 is true, we should not reject it. We do not say that H0 is proven, but
that there is no evidence that it should be rejected. If the p-value is very small it
is quite unlikely to observe such value of t if H0 is true. In that case we have two
possibilities — either H0 is not true, or very unlikely event has happened. When
the p-value is small enough, we tend to rule out the very unlikely event and say that
H0 is rejected and H1 is accepted with certain p-value. See Fig. 2.6 for an example
of test statistics where T |H0 obeys χ2-distribution and the corresponding p-value.
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Figure 2.6: χ2-distribution, observed test statistics t and the area corresponding to
p-value of the one-tailed test.

A certain conservative attitude is adopted with test, and typical p-values where the
H0 is rejected are 0.10, 0.05 and 0.01. In times before computers it was common that
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just these three p-values were used, because tabulated values were looked up from
tables containing these three cases. Nowadays one can as easily compute the exact
p-value for the test and report that.
With statistical tests one needs to understand their capabilities and limitations.
Tests are quite good to quantify observed facts when there is moderate amount
of data in hand. With just a few observations the uncertainty is usually so large,
that it is very hard to reject H0. With large amount of data the problem is the op-
posite — it is quite easy to reject H0. This is because the test usually states that
there is evidence of deviation from H0. What the test does not quantify that well
is how large the deviation from H0 is, and especially, does it have any practical
consequences. For example, if one tests the correlation between two variables, H0

is that there is no correlation, i.e. ρ = 0. With almost any kind of data, the pa-
rameter ρ probably deviates slightly from zero. When the number of observations
increase, the test becomes stronger and picks up smaller and smaller differences
from zero. Therefore, with large data it is easy to conclude that the correlation is
not zero, and thus there is correlation, but the amount of correlation can be very
small and not significant within the physical/real-world context behind the data.
That said, statistical tests are very useful with moderate number of observations
and with moderate deviations from H0 when it is difficult to see without statistics
if the deviation is ’unusual’ or not.

Rejection areas

We need to define what we mean in Eq. (2.12) by areas where t is ’even more ex-
treme’. That depends on the distribution of the test statistics, and on the alternative
hypothesis. First, if the test statistics can have both negative and positive values,
the distribution must be symmetric over zero. This is the case, for example, if the
test statistics has normal or t-distribution underH0. If we cannot say beforehand if
it is impossible to have smaller (larger) values of t than assumed inH0, our alterna-
tive hypothesis must be two-tailed (kaksisuuntainen), i.e. H0 : θ = c, H1 : θ 6= c. In
this case (symmetric distribution, two-tailed H1), the rejection area for test is such
that

P(T ≥ abs(t)|H0) = 2

∫ ∞
abs(t)

fT |H0(x)dx = 2

∫ −abs(t)

−∞
fT |H0(x)dx

= 1−
∫ abs(t)

−abs(t)

fT |H0(x)dx = p. (2.13)

If we have some a priori knowledge so that we can rule out, for example, positive
values of t, we have one-tailed (yksisuuntainen) alternative hypothesis H1 : θ < c

and the rejection area is

P(T ≤ t|H0) =

∫ t

−∞
fT |H0(x)dx = 1−

∫ ∞
t

fT |H0(x)dx = p, (2.14)
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and in similar manner for alternative hypothesis H1 : θ > c but with integration
limits changed accordingly.
The test statistics might have distribution that is only valid for positive values, for
example χ2- or F -distribution. These distributions are not symmetric, and we have
to choose carefully the rejection area. If our statistics is close to zero and we have
one-tailed H1, the test is defined as

P(T ≤ t|H0) =

∫ t

0

fT |H0(x)dx = 1−
∫ ∞
t

fT |H0(x)dx = p. (2.15)

With observed test statistics ’large’ and with one-tailed H1, the test is

P(T ≥ t|H0) =

∫ ∞
t

fT |H0(x)dx = 1−
∫ t

0

fT |H0(x)dx = p. (2.16)

If we cannot rule out beforehand the small or large values of t, we must choose
two-tailed test. Then, as we observe t to be either (i) close to zero or (ii) large, we
choose (i) Eq. (2.15) or (ii) Eq. (2.16) andmultiply the p-value in the correct equation
by two to get the two-tailed p-value.

Mean tests

To list some tests, let us first consider the mean test, i.e. test for the expected value.
The data is y, and the statistics of interest is the mean value y. The null hypothesis
if of form µ = µ0. For practical reasons we rather use the test statistics

t =
y − µ0

s/
√
n
, (2.17)

where s is the sample standard deviation. From Eq. (2.7) we know that the asymp-
totic distribution of T |H0 is standard normal distribution. We can formally say that

H0 : µ = µ0 =⇒ T
approx.∼ N (0, 1). (2.18)

Actually, if we know that the distribution of data is normal, we can replace the
asymptotic distributionwith the exact one: T ∼ tn−1, i.e. the Student’s t-distribution
with n− 1 degrees of freedom.
In Fig. 2.7 there are 10 random numbers that are sampled from N (0.1, 1) distri-
bution. Our H0 is that µ = µ0 = 0, and that distribution is drawn in subfig-
ure a) together with the data. The test statistics t is calculated and the areas ] −
∞,−t] and [t,∞] drawn in subfigure b) together with the distribution of T |H0, the
t-distributionwith 9 degrees of freedom. The p-value, i.e. the colored area in subfig
b), is 0.212. Therefore, we do not have enough evidence against H0 : µ = 0 and we
cannot reject that possibility, although we actually know that the data comes from
distribution with µ = 0.1.
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Figure 2.7: Data and H0-distribution in left (a), observed value of t and the distri-
bution according to H0 in right (b).

Similar mean test can be also constructed for two samples and the difference of
their mean values. One has to assume that the samples have the same distribu-
tions (expect for the location parameter) and that their variances σ2

1 and σ2
2 , while

unknown, are equal. In that case,

H0 : µ1 − µ2 = d0 =⇒ T =
(y1 − y2)− d0

sp
√

1/n1 + 1/n2

∼ tn1+n2−2, (2.19)

where pooled variance

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
. (2.20)

In what follows we will shortly describe some tests, but the list is not by far com-
plete. You will notice that almost all the distributions for test statistics are either
Student’s t-distribution, χ2-distribution or F -distribution. This is simply because
all these distributions are derived from normal distribution – t-distribution from
the ratio of normal variable and its standard deviation, χ2-distribution from sum
of squared normal variables, and F -distribution from ratio of normal variables.

Variance tests

For variance of one normal distributed sample the test is

H0 : σ2 = σ2
0 =⇒ T = (n− 1)

s2

σ2
0

∼ χ2
n−1, (2.21)

and rejection areas for two-tailed test can be computed using Eq. (2.15) or (2.16)
and adjusting p-value to 2p.
For two normal distributed samples the test for equal variance is

H0 : σ2
1 = σ2

2 =⇒ T =
s2

1

s2
2

∼ Fn1−1,n2−1, (2.22)

2-11



and the alternative hypothesis will define the rejection area to either Eq. (2.15) or
(2.16).

Correlation test

The linear correlation, i.e. the value of correlation coefficient ρ and its sample statis-
tics r = cor(x,y), can be tested against being zero. The test is

H0 : ρ = 0 =⇒ T =
r
√
n− 2√

1− r2
∼ tn−2, (2.23)

and rejection area is defined by Eq. (2.13) for two-tailed, and by Eq. (2.14) for one-
tailed test.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov (K-S) test is our first non-parametric test. It can be used to
test if the observed distribution differs from theoretical distribution, and the test
is valid for all (continuous) distributions. The test is based on the empirical CDF
and the theoretical CDF. The test statistics t is defined as t =

√
nD, where D is the

maximum difference between the two CDF’s, see Fig. 2.8.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

maximum difference D

Figure 2.8: Empirical and theoretical cumulative distribution functions and the
Kolmogorov-Smirnov difference D.

The K-S test is always one-tailed, and the test statistics have Kolmogorov distribu-
tion if H0 that the sample comes from the theoretical distribution is true, rejection
area is defined as in Eq. (2.16).

There is a similar version for K-S test between two empirical distributions, check
e.g. Wikipedia for the details.
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Goodness-of-fit test

Goodness-of-fit test can be used for discrete variables. It is formulated as

H0 : Empirical distribution obeys the theoretical one =⇒

T = n
n∑
i=1

(oi − ei)2

ei
∼ χ2

n−1−m, (2.24)

and large values speak against H0 as in Eq. (2.16). The terms oi are the observed
probabilities (proportions) of class/value/category i in the sample, and terms ei are
the expected probabilities ifH0 is true. The variablem in the degrees of freedom for
the χ2-distribution is the number of unknown parameter values estimated from the
data for the theoretical distribution. For example, if we want to test if the observed
proportions come from uniform (discrete) distribution, we do not need to estimate
any parameter values from the data, andm = 0.

Independence test

The same test statistics as above can be used to test the independence between two-
dimensional categorical variable, i.e. proportions in two-way contingency tables
(cross tabulations, ristiintaulukko). Every observation has two properties, A and B,
and it can be associated to one cell in the contingency table. The proportions of the
associations are counted, resulting the following table

A \B 1 . . . k Σ

1 o11 . . . o1k A1

... ... ... ...
m om1 . . . omk Am
Σ B1 . . . Bk 1

The expected proportions, if the two properties A and B are independent, can be
estimated from the product of themarginal proportions: eij = AiBj . The test statis-
tics is computed over all the rows and columns, and

H0 : A ⊥⊥ B =⇒ T = n
m∑
i=1

k∑
j=1

(oij − eij)2

eij
∼ χ2

(m−1)(k−1), (2.25)

and large values speak against H0 as in Eq. (2.16).
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Chapter 3

Linear model

3.1 Introduction

Linear model (LM, lineaarinen malli) or (linear) regression analysis (regressioana-
lyysi) is a family of models that is used to analyze dependence between scalar de-
pendent variable (selitettävä muuttuja, vastemuuttuja) and one or more explanatory
variables (selittävä muuttuja).

The term regression refers to regression towards mean, the fact that the expected
value (i.e. ’mean’) is the best prediction to unknown randomvariable. We construct
the linear model in such a way that it actually models the expected value of the
random variable, and the difference between the model and the observations is the
’random part’ of the model.

3.1.1 Systematic part of linear model

The terminology in LM is such that the observed values of explanatory variable
xi = (xi1, . . . , xik) are collected together into n×k data matrix X:

X =

x11 . . . x1k

. . .
xn1 . . . xnk

 , (3.1)

and the observed values of the dependent variable are collected to vector y =

(y1, . . . , yn). Linear regression refers to model where the functionality between
explanatory and dependent variables is linear. With common choice of symbol
β = (β1, . . . , βk) for the regression coefficients, i.e. the linear function between
variables, we end up with

y = Xβ, (3.2)
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or for single observation i:

yi = xi· · β = β1xi1 + · · ·+ βkxik. (3.3)

The equations above describe the systematic part of LM, there is no random com-
ponent included.

3.1.2 Random part of linear model

The systematic part of LM does not say anything about random variables or devi-
ations between the model and reality. For that we need to introduce randomness
into LM. That is done via the residuals (residuaali, jäännös). The idea is that the sys-
tematic part of the model is described perfectly by Eq. (3.2), but the randomness
is added to the equation and that explains the errors between model and observa-
tions. With residual ε (random variable) this means that LM for one observation
is

Yi = xi· · β + εi = β1xi1 + · · ·+ βkxik + εi, (3.4)

or in matrix form for all the observations

Y = Xβ + ε (3.5)

i.e. Y1

...
Yn

 =

x11 . . . x1k

. . .
xn1 . . . xnk


β1

...
βk

+

ε1...
εn

 . (3.6)

Figure 3.1 shows an example of one-dimensional linear model and Fig. 3.2 for two-
dimensional model.
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Figure 3.1: Concepts in regression model — data x, dependent variable y, regres-
sion model ŷ = E[y(x)], and residual ε.
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Figure 3.2: Linear model with two explanatory variables.

3.1.3 Assumptions for linear model

Some assumption are needed to make LM statistically and technically valid. The
so-called standard assumption are:

1. Explanatory variable is non-random. There are way to go around this as-
sumption, and this is more important in principle than in practice. Anyway,
it should be noted that LM in its basic form does not take possible errors in
X into account in any way.

2. Explanatory variables are not (completely) linearly dependent on each other.
There cannot be an explanatory variable whose values can be computed as a
linear combination from other explanatory variables. This will indicate that,
for example, the correlation coefficient ρ between any two explanatory vari-
ables cannot have values 1 or−1. This is mostly a technical assumption, since
if violated, the matrix XTX is singular, i.e. cannot be inverted. The inversion
will be needed in the estimation of LM as you will see later. We can run into
numerical problems also in cases where some explanatory variable is almost
a linear combination of the other variables.

3. The expected value of residuals are zero, i.e. E(εi) = 0 ∀i, or E(ε) = 0. This
is a vital assumption, since it guarantees that we are modeling the expected
value of Y with the systematic part of our model, because now

E(Yi) = E(β1xi1 + . . .+ βkxik + εi) = β1xi1 + . . .+ βkxik + E(εi)

= β1xi1 + . . .+ βkxik. (3.7)

4. The variance of the residuals are constant, i.e. var(εi) = σ2 ∀i, or var(ε) = σ21.
This is the so-called homoscedasticity assumption. In many cases where this
is initially not true, it is possible toweight the samples so that this assumption
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becomes true for the weighted model (dealt later in this chapter). For the
dependent variable this indicates that var(Yi) = σ2.

5. There is no correlation/covariance between the residuals, i.e. cov(εi, εj) =

0 ∀i 6= j or cov(ε) = σ2In. The lack of (auto)correlation rules out time-series
from standard linear model.

You may notice that there are no assumptions about the normality of the residuals.
These are not needed for LM to be ’valid’ in statistical sense. However, if normality
can be assumed, it will enable us to do certain statistical inference dealing with
confidence intervals, tests etc. But, even in cases where normality is not assumed
per se, results derived from normal assumption are usually asymptotically valid.
The normal assumption states that

ε ∼ Nn(0, σ2In), (3.8)

and thus
Y ∼ Nn(Xβ, σ2In), (3.9)

3.1.4 Linear model is linear with respect to model coefficients

An important detail to notice with LM and its formulation (e.g. Eq. (3.5)) is that
only the functional dependence between data and dependent value needs to be
linear, i.e. of formXβ. The data itself can be transformed by any linear or nonlinear
function. The justification is simple— ifwewant to use f(xi)where f is any function
in LM instead of xi, we can just introduce new variable x∗i = f(xi) into matrix X.
More generally, Y = f(X)β + ε = X∗β + ε. In Fig. 3.3 there are examples of one-
dimensional LM’s where the dependence is through x2 or log(x).
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Figure 3.3: Examples of two linear models with one explanatory variable.
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Constant term

One application to above is the constant term (vakiotermi) in LM, β0. You will often
see models in the form of

Yi = β0 + β1xi1 + · · ·+ βkxik + εi, (3.10)

but this is a simple transformation to data matrix. If you introduce constant value
of 1 as the first variable, you will end up with previous equation. Thus, constant
term is introduced to LM by constructing data matrix

X =

1 x11 . . . x1k

... . . .
1 xn1 . . . xnk

 . (3.11)

With constant term it is a popular convention that the coefficients are re-numbered
from 0 to k, instead of 1 to k + 1.

Interaction term

With multivariate linear model a common ’derived variable’ is the so-called in-
teraction term (yhteisvaikutustermi), i.e. variable of type xjxl. With interaction term
present the (hyper)plane fromLMwith only linear xj’s transforms intomodels that
are not (hyper)planes with respect to original xj’s. In Fig. 3.4 there are examples of
two-dimensional LM’s where dependence is not of form of (hyper)plane as respect
to x1 and x2.
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Figure 3.4: Examples of two linear models with two explanatory variables. In left,
dependence is of form β0 +β1x1 +β2x1x2, and in right of form β0 +β1x

2
1 +β2 log(x2).
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Transformation into linear

The fact that explanatory variables can be transformed can also be applied to the
whole model equation and the dependent variable Yi, but with certain conditions.
Let us have an example of model where the systematic part is yi = β0x

β1
i1 · · · x

βk
ik .

By applying logarithm function to both sides of the equation, we end up with new
dependent and explanatory variables: y∗i = log(yi) = log(β0) + β1 log(xi1) + · · · +
βk log(xik) = β∗0 + β1x

∗
i1 + · · ·+ βkx

∗
ik. The transformed model is linear.

The one important thing to consider in transformations is that it does not only trans-
form the systematic part, but the residuals also. With the example above, residuals
must be additive to the transformedmodel. That implies that theyweremultiplica-
tive in the original one, i.e. Yi = β0x

β1
i1 · · · x

βk
ik εi. If this is not reasonable model for

residuals, the transformed model violates the LM form.

Categorical variables

Categorical variables (luokittelumuuttujat, i.e. discrete variables with reasonably
small number of possible values) can be used in linear models, although there
should usually be continuous variables also present in the model. Model with
only categorical variables can be analyzed better as special cases of LM, e.g. with
analysis-of-variance (ANOVA) methods. The recipe for including categorical vari-
ables is again to encode the categories to one or more explanatory variables.
Let us have categorical variable c that has p + 1 different outcomes (categories),
codedhere to numbers 0, 1, . . . , p. We can introduce a set of pnewvariables {gi1, . . . ,
gip} into X. We need one ’reference category’, for example the case c = 0. With
reference case we have {0, . . . , 0}. With case c = 1 we have {1, 0, . . . , 0}, with c =

2, {0, 1, 0, . . . , 0} etc., and finally with c = p, {0, . . . , 0, 1}. Now the augmented
data matrix row for, e.g., observation with c = 2 and p + 1 = 4 would be x∗i =

(0, 1, 0, xi1, . . . , xik).
With the data matrix augmented with new variables coded from the categorical
variable, the systematic part of ML is

yi = β0 + β1gi1 + . . .+ βpgip + βi(p+1)xi1 + . . .+ βi(p+k)xik, (3.12)

and the model can be estimated in the normal manner. The additional limitation
with categorical variable is that if we do variable selection or model diagnostics
(see later in the chapter), the augmented variables must be dealt as a group.
The interpretation of the model with augmented variables for categories is that
the constant term β0 is now related to case with c = 0. The regression coefficient
βj estimates the difference in y when moving from reference class to class c = j.
There is a technical reason behind the reference class having zeros for all the new
variables— otherwise the ’constant’ variable 1 would be sum of new variables, and
that would violate the beforementioned assumption 2 with ML.
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3.2 Estimation of linear model

The first task in LM analysis is to estimate the coefficients β for the model. The
LM is implicitly assumed to refer to case where L2-norm between model and ob-
servations is minimized. This combination of LM and minimization of L2-norm
is called the method of least squares or ordinary least squares (OLS, pienimmän neliö-
summan menetelmä, PNS). With OLS the values for the coefficients can be computed
analytically, which is generally not the case with non-linear models or other than
L2-norm.
So, in OLS we want to minimize the sum of squared residuals (or errors, SSE):

SSE =
n∑
i

(yi − β1xi1 − . . .− βkxik)2 = (y −Xβ)T (y −Xβ) = ‖y −Xβ‖2 . (3.13)

The solution to the minimization above can be derived by solving the root of its
derivative. Without details it will give us the so-called normal equations (NE)

XTXβ = XTy. (3.14)

The solution to NE is the estimate to the model, b = β̂:

b = (XTX)−1XTy. (3.15)

With estimate b forβwe can compute the observed residuals, e = y−Xb, and again
this is the estimate for the random variable ε. Now the SSE can be expressed with

SSE = ‖e‖2 , (3.16)

and the residual variance σ2 (jäännösvarianssi) of the model can be estimated by s2

as
s2 =

1

n− k
SSE. (3.17)

Note that to compute the OLS estimate b the matrix inversion in Eq. (3.15) can be
avoided, which can be preferable with large number of variables k because matrix
to be inverted, XTX, is k×k matrix. The solution to normal equations in Eq. (3.14)
can be computed with LU- or Cholesky decomposition and Gaussian elimination.

3.2.1 Properties of OLS estimate

Wecanderive quite easily someproperties of theOLS estimate b. Most importantly,
it holds that

E(b) = β, (3.18)

and
cov(b) = σ2(XTX)−1. (3.19)
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These properties do not require any assumption of normal distribution for the
residuals ε. However, if we assume that residuals follow normal distribution we
can show that the OLS estimate is also the maximum likelihood estimate, and that

b ∼ Nn(β, σ2(XTX)−1) (3.20)

3.2.2 Weighted linear model

Weighed LM comes up in cases where the variance of residual or dependent vari-
able is not constant. The observations where the variance is small should influ-
ence ’more’ to the estimate, they should ’weight’ more. This means that instead of
var(εi) = σ2 we have var(εi) = σ2/wi, where wi is the weight of the observation. In
matrix formulation this is written as

cov(ε) = σ2V, (3.21)

where V is diagonal matrix d1/w1 · · · 1/wnc.
The estimation of weighted LM is derived with the help of (Cholesky) decomposi-
tion V = CCT . Multiplying LM by C−1 from left we get

C−1y = C−1Xβ + C−1ε, (3.22)

which can be written as y∗ = X∗β + ε∗. It is easy to see that

E(ε∗) = C−1E(ε) = 0 (3.23)

and
cov(ε∗) = C−1cov(ε)(C−1)T = σ2C−1CCT (CT )−1 = σ2In, (3.24)

so that the transformedmodel is regular LM. For estimation of β one does not even
need to form the decomposition, since

b =
(
(C−1X)TC−1X

)−1
(C−1X)T C−1y =

(
XT (CCT )−1X

)−1
XT (CCT )−1y

= (XTV−1X)−1 XTV−1y. (3.25)

This equation abovemeans thatweightedmodel can be estimated quite similarly as
the normal LM, only including an extra weight matrix V. Actually, the procedure
is valid for any positive definitive V, therefore it is called the generalized linear
model and it allows also covariance between residuals.

3.3 Diagnostics of linear model

The estimation of linear model, as seen above, is not too complicated. Main inter-
ests for researcher with LM is usually the diagnostics for the model. These include
checks regarding the model assumptions, selection of variables, confidence inter-
vals etc.

3-8



3.3.1 Validity of model assumptions

The assumptions behind LM were introduced in Sec. 3.1.3. The validity of the as-
sumptions can be assessed with the observed residuals of the model

e = y −Xb, (3.26)

or even better, with standardized (i.e. studentized) residuals ri:

ri =
ei

s
√

1− pii
, (3.27)

where s is the estimate of the residual standard deviation, see Eq. (3.17). The term
pii is part of the covariance matrix of the observed residuals:

pii is [P]ii in P = X(XTX)−1XT . (3.28)

With weighted model where vii are elements [V]ii in cov(ε) = V, the standardized
residuals are

ri =
ei√

vii
√

1− pii
. (3.29)

With residuals, the best way to study the validity of different assumptions is to
draw figure(s) of (standardized) residuals against explanatory variables, or against
predicted response ŷ = Xb.

Model is unbiased

The first assumption to check with the model is assumption 3 in Sec. 3.1.3, which
says that the expected value of residuals should be zero, E(ε) = 0. As the observed
residuals should estimate theoretical ones, the (standardized) residuals should have
mean value of zero. If the mean of observed residuals is not zero, there are missing
variables in the model, or the data cannot be explained with linear model.
An example is shown in Fig. 3.5. The data is produced from y = x2 + ε, and two
models are fitted. First model is y = β1x, and second the correct one, y = β1x

2.
This can be seen in the residual plot, where residuals from y = β1x are clearly
biasedwith nonzeromean. Residuals from y = β1x

2 show random, non-systematic
variation around zero, as is expected if the assumptions of LM are valid.

Residuals are homoscedastic

The assumption 4 in Sec. 3.1.3 says that residuals should be homoscedastic, i.e. the
variance of the residuals should be constant. This can be quite reliably checked
graphically from residual plots. In Fig. 3.6 we show example of homoscedastic and
heteroscedastic residuals. In many cases the heteroscedasticity can be removed by
choosing suitable weighting for the observations, i.e. modeling out the trends in
variance.
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Figure 3.5: Observations and two linearmodels on left, and their residuals on right.
Blue color is for model y = β1x, and red color for y = β1x
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Figure 3.6: Example of homoscedastic residuals (on left) and heteroscedastic resid-
uals (on right).

Residuals are normal-distributed

The assumptions 1, 2 and 5 from Sec. 3.1.3 cannot be verified from residual plots.
The first one requires background information from the observation event and the
physics behind the data. The second one is seen as difficulties in the numerical es-
timation of the model. The validity of the assumption 5 can be seen from residuals,
but without further information about the process it is not possible to distinguish
that effect from the possible bias resulting from selecting wrong variables to the
model.

The ’extra’ assumption about normality, however, can be tested from the residu-
als. If residuals seem to follow normal distribution, all the tests and confidence
intervals regarding LM are more reliable. There are special tests for normality, e.g.
Saphiro-Wilk or Anderson-Darling, but one graphical analysis tool is the so-called
quantile-quantile (Q-Q) plot.

The Q-Q-plot is drawn so that the theoretical quantiles of the residuals are plotted
against residuals. Let us first sort the (standardized) residuals so that e[] = (e[1] ≤
e[2] ≤ . . . ≤ e[n]). Then we form corresponding empirical cumulative distribution
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values c = (1/(n + 1), 2/(n + 1), . . . , n/(n + 1)). The theoretical quantiles are now
computed with the inverse cumulative distribution function of standard normal
distribution from the ci’s as ti = F−1(ci). Finally pairs (ti, e[i]) are plotted as in
Fig. 3.7.
If the data is fromnormal distribution, the pairs should lie approximately in a y = x

line in the plot. Large deviations from the line is a sign of non-normal distribution.
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Figure 3.7: Residuals that are normally (blue) or non-normally (red) distributed in
the top, and their Q-Q-plots in the bottom.

3.3.2 Model performance

The overall performance of LM is generally measured from the amount the ob-
servations deviate from the model, and that is measured by the observed sum of
squared residuals (residuaalineliösumma), SSE

SSE = e · e = ‖e‖2 =
n∑
i

e2
i = ‖y −Xb‖2 =

n∑
i

(yi − xi · b)2, (3.30)

or by the observed residual variance s2 = SSE/(n − k), where k is the number of
parameters in the model. The smaller SSE, the better the model fits to observa-
tions.
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The SSE does not take into account the general variability of the dependent variable
Y , only the amount of variability around the model. Therefore the coefficient of
determination R2 (selitysaste) is preferred, because it relates the residual variance
to the total variance. The coefficient of determination is defined as

R2 = 1− SSE

SST
, (3.31)

where the sum of squares total (kokonaisneliösumma) is

SST =
n∑
i

(yi − y)2 = y · y − ny2 (3.32)

TheR2 is always between 0 and 1, and can be said to be the fraction of unexplained
variance in the model. For that reason, R2 is often given in per cents.
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Figure 3.8: Observations and two fitted models. Red line is for model y = β0 + β1x

and blue line for y = β0 + β1x+ β2x
2. The R2-values for the models are 39 % (red)

and 82 % (blue).

3.3.3 Variable diagnostics

If we have physical model for the observations we know what kind of explanatory
variables to include. Often, however, we need to find suitable model just by ’guess-
ing’ or trying different choices. In these cases it is very important to be able to say
if certain variables are or are not important for the model. The importance can be
tested.
In LM a variable xj (which can also be any function of the ’original’ x), is not impor-
tant if its coefficient βj is zero, because then it will not influence to the prediction.
Of course the estimate bj is practically never exactly zero, so we need to have amea-
sure which tells how close it must be to zero to be unnecessary. That depends on
the variability of the explanatory and the dependent variable. The test statistics tj
that can be used to study the importance of variable xj is defined as

tj =
bj

s
√
mii

, (3.33)
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where s is the observed residual standard error, and bj the estimate for the coeffi-
cient βj . The factormii is the element (i, i) from matrix M−1 = (XTX)−1.
The null hypothesis H0 is that βj = 0, i.e. it is not important in the model. Under
H0 the test statistics is (asymptotically) t-distributed with n−k degrees of freedom,
and rejection area is defined by Eq. (2.13). The standard practice for reporting LM
fit is to construct a table of its coefficient estimates, their standard deviations, test
statistics, and p-values:

β0 b0 s
√
m00 b0/s

√
m00 2 FT (−abs

(
b0/s
√
m00)

)
... ...
βk bk s

√
mkk bk/s

√
mkk 2 FT (−abs

(
bk/s
√
mkk)

)
Let us take an example. In Fig. 3.9 we have 50 observations and fitted model of
from y = β0 + β1x+ β2x

2. This fit could be reported as:

estimate s.d. test statistics p-value
β0 1.84 0.157 11.7 1.46×10−15

β1 1.36 0.246 5.53 1.4010−6

β2 −0.0790 0.107 −0.738 0.464

The conclusion of the report is that the p-value for coefficient β2 is large, much
larger than e.g. 5 %. The H0 stating that β2 = 0 cannot be rejected. Because β2 = 0,
the variable x2 is unnecessary in the model and should be removed. A new model
of y = β0 + β1x should be fitted.
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Figure 3.9: Observations and fit y = 1.84 + 1.36x− 0.0790x2.

Confidence regions and distribution of the estimated coefficients

Following from previous tests we can also construct confidence intervals for single
variables in the model, or confidence regions for multiple variables. The main re-
sult that we need is that the vector of estimated coefficients should follow, at least
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approximately, the multinormal distribution:

β̂
approx.∼ Nk

(
b, s2(XTX)−1

)
(3.34)

Confidence intervals for individual coefficients can be constructed using this rela-
tion. Confidence regions for multiple coefficients will be (hyper)ellipsoids due to
the properties of multinormal distribution (discussed later in Sec. 6).

The covariance matrix of the coefficient estimate C = cov(β̂) = s2(XTX)−1 is in-
teresting as such for diagnostic purposes. Or rather, correlation matrix Σ with
elements

[Σ]ij =
Cij√

Cii
√
Cjj

(3.35)

is interesting. If the cross-correlations out of the diagonal of the correlation matrix
are close to zero, the variables in the model are close to being independent. Inde-
pendent variables are a good thing, since they introduce explanatory power to the
model that is not covered by other variables. If there are cross-correlations close to
±1, the variables in the model are correlated. That means that they more or less
’measure the same quantity’ or ’explain the same phenomena’. Usually one of two
highly cross-correlated variables should be removed from the model.

3.3.4 Model selection

Model selection is a procedure where the correct explanatory variables are not
known beforehand, and decisions on the variables that are selected to the final
model are based on the variable diagnostics. The selection procedure is not always
very straightforward, and that is because the possible cross-correlationsmentioned
above in the previous section and in Eq. (3.34). The cross-correlations are the rea-
son that variables can be added or removed to the model only one by one, not in
groups. When, for example, the variable with the largest p-value is removed from
the model, the p-values of the remaining variables will change. Furthermore, the
order of the least important variables might change.

There are two different procedures that can be used in automated model selec-
tion — the forward selection and the backward elimination. With small number
of variable candidates in the model, all possible combinations can be checked. As
the number of variable candidates increase, the number of possible combinations
becomes too large for every combination to be computed. Search methods have
to be incorporated. In forward selection the best possible single variable is added
to the model at one round, and this is continued. In backward elimination one
starts from the full model, i.e. from the model with all the possible variables. In
each round the worst variable is removed. The ranking of variables is based on
their p-values. The bidirectional elimination is a combination of the forward- and
backward methods.
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Selection criteria

We can have competingmodels either bymanual selection of a few sets of variables,
or as the result from the model selection tree. A quantitative measure to compare
different models as whole is needed to select the best models from the possible
ones. The coefficient of determination R2 could seem as a possible measure be-
tween the models, but it has one unwanted property. If you have set of variables A,
and you add one variable xj , the R2 for the latter model is always as large or larger
as for the former model. In another words, new variable cannot add ’negative’ ex-
planatory power, it always contributes positively to R2. Only models with exactly
the same number of variables can be compared fairly using R2.
Therefore, differentmeasures of the ’goodness-of-fit’ have beendeveloped that take
into account the number of explanatory variables that is used to reach certain level
of R2. In one way or another, there is a ’penalty’ from adding more variables. The
most important model selection criteria are adjustedR2 (R2

adj), Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC). These are defined as:

R2
adj = R2 − (1−R2)

k

n− k
(3.36)

AIC = n log

(
SSE

n

)
+ 2k (3.37)

BIC = n log

(
SSE

n

)
+ log(n)k (3.38)

Large values for R2
adj are ’good’, while for AIC and BIC small values are searched

for. The three different criteria ’punish’ a bit differently from adding variables, but
all are quite good in practice. The BIC is perhaps commonly preferred over the
others.
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Chapter 4

Nonlinear model

4.1 Introduction

Nonlinear model (NLM, epälineaarinen malli) is an extension to linear model where
the systematic part of the model is no longer a linear function Xβ. Generally, NLM
is of form

Yi = f(xi1, . . . , xik; β1, . . . , βp) + εi = f(xi;β) + εi (4.1)

for i = 1, . . . , n observations, k variables and p parameters. Note that for LM k = p,
but this is not requirement in NLM. In vector form the NLM is

Y = f(X;β) + ε, (4.2)

where Y is n×1, X is n×k, β p×1, and ε n×1. Function f is vector-valued function
(f(x1;β), . . . , f(xn;β)). In what follows we might shorten f(xi;β) to fi(β) or even to
fi.

4.1.1 Some nonlinear models

Some nonlinearmodel types are introduced here, but because any (non)linear func-
tion f will introduce NLM, the list is merely just a small set of examples. First of
all, multiplicative model is NLM if errors are additive, i.e.

Yi = β0x
β1
i1 · · ·x

βk
ik + εi (4.3)

Please note that if errors are also multiplicative, the model can be transformed into
linear:

Yi = β0x
β1
i1 · · ·x

βk
ik e

εi ⇒ (4.4)
log(Yi) = log(β0) + β1 log(xi1) + . . .+ βk log(xik) + εi (4.5)
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In modeling the degree of linear polarization in atmosphereless Solar System tar-
gets such as asteroids covered with regolith, or dust in comets coma, the so-called
trigonometric model is used. It is defined as

Yi = β1 sin(xi)
β2 cos(xi/2)β3 sin(xi − β4) + εi, (4.6)

where xi is the phase angle and Yi is the degree of linear polarization. The function
is shown in Fig. 4.1(a).
A model for limited growth is shown in Fig. 4.1(b). The model is

Yi = β1 + β2

(
1− e−β3xi

)
+ εi, (4.7)

The growth starts from β1 and is limited by β1 + β2. The parameter β3 controls the
speed of growth.
A growth curve can be defined so that it will reach itsmaximum, but slowly decline
after that. A model that is shown in Fig. 4.1(c) is

Yi = β1 +
β2xi

β3 + xi + β4x2
i

+ εi, (4.8)

The growth starts again from β1 and reaches its maximum at
√
β3/β4, but will then

decrease.
One more type of growth curves is the S-type curves such as the logistic function
in Fig. 4.1(d):

Yi =
β1

1 + e−β2(xi−β3)
+ εi, (4.9)

where β1 controls the limiting value of the growth, β2 its steepness, and β3 the
location where positive derivative turns into negative.
Many of the NLM’s can be derived as a solution for differential equation, for ex-
ample the growth curves (b) and (d).

4.2 Model estimation

Most of the model estimation and diagnostics are done more or less the same way
as in linear model. The main difference is, that results regarding the distribution
of parameters, i.e. parameter errors, are always asymptotic, and that the model
estimation is a numerical optimization problem. With LM the model estimate is
given in closed form, and results regarding parameter distributions are exact under
the normal assumption.
Let us derive theNLMparameter estimate from themaximum likelihood principle,
although the same result can be reached from the ’minimal least squares’ principle.
Our model, now with normal assumption, is that

εi ⊥⊥ εj, εi ∼ N (0, σ2) , or alternatively (4.10)
Yi ⊥⊥ Yj, Yi ∼ N (fi(β), σ2)

4-2



0 50 100 150

0.0

0.1

0.2

0.3

HaL

0.0 0.5 1.0 1.5 2.0 2.5

Β1

Β1+Β2

HbL

0
Β3 � Β4

Β1

HcL

0 Β3

0

Β1

HdL

Figure 4.1: Four examples of different models in nonlinear regression.

Because the i.i.d observations, the likelihood function for the model is

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
(yi − fi(β))2

)
(4.11)

We will write the squared residual sum in a shorter form, S(β) =
∑n (yi − fi(β))2,

and state that the log-likelihood function for the model is

l(β, σ2) = −n
2

log(σ2) − 1

2σ2
S(β) (4.12)

Themaximumof the log-likelihood gives theML estimates for theNLM.Regarding
to parameter vectorβ, we can easily see that estimate b = β̂mustminimize the sum
of squared residuals S(β). When inputting that back to log-likelihood, derivating
with respect to σ2, and searching for root, we find that s2 = σ̂2 = 1

n
S(b).

Contrary to linear model, the estimate b cannot (usually) be expressed in closed
form. The minimization of S(β) must be done numerically. Quite generally a
Gauss–Newton or Levenberg–Marquardt algorithms are used.

4.2.1 Parameter properties

The asymptotic properties of theNLMestimates b and s2 can be found by analyzing
the Hessian matrix of the MLE’s (see Eq. (2.6)). After some cumbersome calculus,
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we can find that for the residual variance we have

s2 as.∼ N
(
σ2,

2σ4

n

)
, (4.13)

and for the actual parameters

b
as.∼ Nn

(
β, σ2

(
F(β)TF(β)

)−1
)
. (4.14)

The matrix F(β) is short for the n×p partial derivative matrix with elements

F(β) =

[
∂fi(β)

∂βj

]
ij

. (4.15)

The tests regarding individual parameters inNLMare done in similarmanner than
with LM, only change being that instead of matrix M−1 = (XTX)−1 in LM (see
Eqs. (3.33)–(3.35)) we have matrix M−1 = (F(β)TF(β))−1 in NLM.
The model diagnostics with e.g. residual plots are also done as with LM. The co-
variance matrix of b is even more important than with LM — highly correlated
parameters are hard to estimate with numerical methods. Moving to a different
parametrization might help.
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Chapter 5

Nonparametric regression anddistri-
bution estimation

Nonparametric methods in statistics refer to analysis methods which try to avoid
assuming certain parametric distribution in the model. Usually, the assumption
to be avoided is the normal distribution. As contrary to the name nonparametric
(epäparametrinen), these methods usually have a large number of parameters.
Nonparametricmethods are used in all the fields in data-analysis, for example there
is a variety of nonparametric tests available. However, here we mention only two
nonparametric methods — spline regression and kernel density estimation.

5.1 Spline regression and other smoothing techni-
ques

Sometimes the functional formor dependence between explanatory variable(s) and
dependent variable is not interesting in such, only some kind of smooth description
of the behavior. In these cases either direct smoothing of the data or regression
smoothing is searched for.
There are many different data smoothing techniques, from which moving average
or moving median are the most simple ones. In these, the values of yi are replaced
by average (ormedian) over a smoothingwindow that holds k observations around
the i’th observation. An example of such smoothings are shown in Fig. 5.1 with
window size of 10. Other, more advancedmethods include e.g. LOESS or LOWESS
smoothing.
Onemore interesting smoothing or nonparametric regression technique is the spline
regression. This method should not be mixed with spline interpolation where all
the variability of the observations is reproduced. In spline regression, a small num-
ber of so-called cubic B-splines that are local third-order polynomials are used as a
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Figure 5.1: Moving average and moving median smoothing to the data.

basis for linear regression. When the spline basis Bj(x) is formed, the sum of these,∑
j βjBj(x) is fitted to the data in least-square sense.

The spline basis functions are distributed to the range of explanatory variables xi
evenly, or preferably to the quantiles of the data. We will not go into details with
B-spline basis derivation, there are suitablematerial in e.g. Wikipedia or inNumer-
ical Recipies. A spline regression for the data in previous moving average/median
example is shown in Fig. 5.2, together with the cubic spline basis that is distributed
along x to 7 quantiles of the data plus the end-points, 0%, 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5%, 100%.

For technical reasons, the spline basis if formed with knots where the end-points
are repeated four times in the knot list, so with k quantiles there are k+ 2× 4 knots
in the basis. With those knots, total of k + 4 splines are available.
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Figure 5.2: Spline basis for 7 quantiles and end-points of the data (left) and fitted
regression spline of the basis functions (right).

5-2



5.2 Kernel estimation

Kernel estimation (ydinestimointi) is a nonparametric method for estimating (con-
tinuous) distribution (pdf) of the data. Themethodsworks for both one-dimensional
or multidimensional data. The result of kernel estimation is not a parametrized
close-formed distribution, but a numerical function that can be used to compute
values of the distribution estimate.
The idea of kernel estimation is quite simple. Every observation xi in the data is
replaced by a kernel function Ki(x;xi, h), and the total kernel estimate is the scaled
sum of kernels:

K(x;x, h) =
1

n

n∑
i

Ki(x;xi, h), (5.1)

where x is the data vector, x the value where the distribution is evaluated, and h is
the smoothing parameter (siloitusparametri).
The choice of the kernel function should not be too critical, any non-negative func-
tion that is symmetric around its maximum and integrates to one should do. One
suitable choice is to use the pdf of normal distribution, with expected value µ = xi
and variance σ2 = h2. So, kernel is

Ki(x;xi, h) =
1√
2πh

exp

(
−(x− xi)2

2h2

)
. (5.2)

More important than the actual shape of the kernel should be the choice of the
smoothing parameter h. There are different advices, one of such is the method of
Silverman:

h = s

(
4

p+ 2

) 1
p+4

n−
1
p+4 , (5.3)

where p is the dimension of the data. With one-dimensional case the s is simply
the standard deviation of the data. An example of kernel estimation of the density
function for three observations is shown in Fig. 5.3.
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Figure 5.3: Three observations, normal pdf kernels and the kernel density estimate
of the pdf.
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Kernel estimation suits quite well for multidimensional cases, too. For these, a
multidimensional normal distribution pdf can be used as the kernel with covari-
ancematrix h2Ip or evenwith h2CwhereC is the correlationmatrix estimated from
the data. For smoothing parameter h the s in Eq. (5.3) should be computed from
the diagonal elements of the covariance matrix S of the data:

s =

√√√√1

p

p∑
i

Sii. (5.4)

Example for two-dimensional kernel estimate is shown in Fig. 5.4.

Figure 5.4: Two-dimensional observations and kernel estimate for the pdf. On left,
a contour plot of the estimate with the data, on right, 3-D surface plot of the kernel
estimate.
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Chapter 6

Multivariate methods

Multivariate methods in data-analysis refer to the vast collection of methods that
are applied to data with several variables. In principle regression analysis (linear
or nonlinear models) withmultiple variable data is also amultivariate method, but
usually multivariate regression is treated separately. Different clustering, classifi-
cation, pattern recognition and data reduction methods are in the core of multi-
variate data-analysis.

6.1 Multivariate distributions

Multivariate distributions are distributions for vector-valued randomvariables, and
multivariate pdf’s and cdf’s are functions from Rn to positive real axis R+. Apart
from the fact that the variable ismultidimensional, they are just like one-dimensional
distributions.
With one-dimensional distributions there are plenty of different types of choices
available. With multiple dimensions, the multivariate normal distribution governs
the field and other choices are rare. With independent variables this is not an is-
sue, since the joint distribution of independent components is the product of the
one-dimensional distributions. With just a few components these distributions are
often called by the names of the individual components, e.g. gamma-normal dis-
tribution for the product distribution of gamma and normal distributed variables.

6.1.1 Multinormal distribution

Multinormal distribution for p-dimensional random vector Y ,Np, is parametrized
by p-dimensional vector of expected values µ and p× p-dimensional covariance
matrix Σ. The pdf is

f(y;µ,Σ) = (2π)−
p
2 det(Σ)−

1
2 exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, (6.1)
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where det(·) is the determinant of a matrix.

The covariance matrix Σ has all the information about the dependencies between
multinormal variables. Two variables Yi and Yj are independent if [Σ]ij = σij =

σji = 0. In that case their correlation is also zero. Note that for other than multi-
normal variables it might be that the (linear) correlation between the variables is
zero, but that they are not independent. For normal distribution, however, corre-
lation is equivalent to dependency.

The possible dependency can be generalized to groups of variables. Let us say that
the random vector Y constitutes of k components A1, . . . , Ak, and m components
B1, . . . , Bm. The random vector, expected value vector and the covariance matrix
can be partitioned into submatrices or -vectors:

Y = [AB]T = [A1 · · · Ak B1 · · · Bm]T (6.2)
µ = [µA µB]T = [µA1 · · · µAk µB1 · · · µBm ]T (6.3)

Σ =

[
ΣAA ΣAB

ΣAB ΣBB

]
(6.4)

Now, if the variables A are all independent of B, it means that ΣAB = 0. Further-
more, it holds now that A ∼ Nk(µA,ΣAA) and similarly for B. Two examples of
pdf’s of two-dimensional normal distribution are shown in Fig. 6.1. The variables
are independent in the first example, and dependent on the second.

Construction of multinormal distribution

It might be useful to understand how a multinormally distributed variables are
formed. First of all, we need p random variables Zi that are independently and
normally distributed. Without loss of generality, we can assume at this point that
they all are distributed as Zi ∼ N (0, 1).

Second, let us have a p×p matrix of coefficients cij , C. Third, we need a vector
µ = (µ1, . . . , µp). Now we can construct a new random vector Y as

Y1 = c11Z1 + . . .+ c1pZp + µ1 (6.5)
Y2 = c21Z1 + . . .+ c2pZp + µ2

...
Yp = cp1Z1 + . . .+ cppZp + µp

which can be written shorter as

Y = CZ + µ (6.6)

After this transform Y has multinormal distribution Y ∼ Np(µ,Σ), where Σ =

CCT .
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Figure 6.1: Contour plots (upper row) and 3Dplots (lower row) of two-dimensional
normal distribution. Distribution on left has no dependence (ρ = 0) between the
variables, while distribution on the right has ρ = 0.75.

The construction of multinormal variables above can be used to create samples of
(pseudo)random numbers from multinormal distribution. The creation of stan-
dard (0, 1) normal random numbers is available in almost all software packages, so
it is easy to create sampleZ = (Z1, . . . , Zp). The required covariance matrix should
be decompositioned with Cholesky decomposition Σ = CCT , or preferably with
eigendecomposition (ominaisarvohajotelma) Σ = UΛUT , where Λ is diagonal ma-
trix of eigenvalues. In the latter case, C = UΛ1/2. Now Eq. (6.6) can be directly
applied to Z to get the multivariate random sample:

Y = UΛ1/2Z + µ. (6.7)

Because Λ is diagonal matrix, the Λ1/2 is simply
⌈√

Λ11 · · ·
√

Λpp

⌋
.

Mahalanobis distance

The Mahalanobis distance is a generalized distance measure that is suitable for
multinormal distributed variables. Let us have an example of two-dimensional
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sample frommultinormal distribution as in Fig. 6.2. The two variables might mea-
sure completely different quantities and thus have different scales. The expectancy
of the distribution is at (100, 1). Let us say that we have three interesting obser-
vations, the red, green and the blue dots in the figure. One might want to know
which one is further from the expected value (red dot).
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Figure 6.2: Random multinormal sample and Mahalanobis distance.

The expected value (mean) has coordinate y = (y1, y2). The squared Euclidean
distance to mean would beD2

e = (y−y)T (y−y). In this case, the distances would
be about 10 (red), 14 (green), and 1.4 (blue) for the three colored dots. Euclidean
distance is clearly a bad measure in this case, since it assumes that both coordinate
axes Y1 and Y2 have the same scale.

An improved version of the distance measure could be constructed if the observa-
tions would be normalized (scaled with their standard deviations) before taking
the Euclidean distance. However, that procedure would not take into account the
evident strong correlation between the variables. After normalization the points
would have approximately the same Euclidean distances to mean. Still, based on
the gray sample points from the distribution, it would seem that the red point is
”more common” and should have smallest distance from mean.

The Mahalanobis distance takes both the scales of the different axis and the corre-
lation into account. The distance is defined as

Dm =
(
(y − y)T S−1 (y − y)

)1/2
, (6.8)

where S is the sample estimate of the covariance matrix. One can see that the Ma-
halanobis distance is Euclidean distance that is weighted by the inverse of the co-
variance. For multinormal sample this is the correct distance measure to be used.
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Test of multinormality with Mahalanobis distance

There are a number of tests for multinormality, each focusing on different require-
ments for a multinormal sample. The Mahalanobis distance can also be used to
test the multinormality. It can be shown that the squared Mahalanobis distances
of multinormal sample should have the χ2-distribution with p degrees of freedom.
The Q-Q plot, as described in Fig. 3.7 and the related text, can be used to graph-
ically check the distribution assumption. Sorted squared distances are plotted on
the vertical axis, and quantiles from the χ2(p)-distribution of the squared distances
on the horizontal axis. The points should lie close to diagonal line if the sample is
from multinormal distribution.
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Figure 6.3: Q-Q-plot of the squared Mahalanobis distances against χ2-distribution
from the sample in Fig. 6.2

6.2 Principle component analysis

Principle component analysis (PCA, pääkomponenttianalyysi) is one of the most im-
portant multivariate methods, especially in natural sciences. In social sciences Fac-
tor Analysis (faktorianalyysi) is similar and popularmethod, but PCA ismore ’phys-
ical’ while there are more possibilities to subjective judgment in factor analysis.
The importance of PCA comes from its wide applicability. PCA can be used in
visual analysis, clustering, pattern recognition, exploratory data analysis, variable
reduction, searching for dependency structures etc. Furthermore, PCA is quite
straightforward to implement and is ’objective’ in the sense that it does not need
any parameters to be set.
PCA can be understood perhaps the easiest way be a geometrical approach. In
Fig. 6.4 (a) there are contour ellipses from two-variate normal distribution. There
is correlation between the variables, so the axis of the ellipsoids are not parallel
to the coordinate axis. What the PCA does is that is searches for these axis of the
contour ellipses and then transforms the data so that the ellipse axis are the new

6-5



coordinate vectors. After PCA the newvariables (coordinate axis) are uncorrelated,
as shown in Fig. 6.4 (b).
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Figure 6.4: Sketch of the PCA in geometrical interpretation.

6.2.1 Implementing principle component transform

The PCA can be implemented quite easily in a computing environmentwhere there
are tools for matrix algebra and for eigenvalue decomposition. The data matrix
Y has n rows, one for each observation, and p columns for the variables. First
the data matrix needs to be centered or standardized. If the data is only centered,
the method is based on the covariances, and if standardized, it is based on the
correlations.
The correct method can be chosen based on the quantities and scales the variables
are measuring. If all the variables measure the same quantity, and we want to
preserve the information that is in the variances of the variables, we should choose
the covariance method. The centering of the data is done using the mean vector y
which holds the mean values over the observations for each variable, i.e.

y = (y1, . . . , yp) =
1

n
(
n∑
i

yi1, . . . ,
n∑
i

yip). (6.9)

The centered data matrix X is computed from Y by:

X = Y − 1n,p diag(y), (6.10)

where 1n,p is n×p matrix full of ones, and diag(·) is an operator that constructs a
diagonal matrix of the values.
However, if the variables measure different quantities and their variances cannot
be compared with each other, we should choose the correlation method and use
the standardized data matrix. In standardization the centered data is further di-
vided by standard deviations, variable by variable. This can be formulated with
the diagonal matrix of inverses of standard deviations, [V]ii = 1/sii as

X∗ = X V (6.11)
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The rest of the PCA procedure identical to correlation and covariance methods, so
we use symbolX for both the cases. Next, the sample estimate to covariancematrix
S is needed. If (and only if) the data matrix is centered, as with X here, the sample
covariance matrix can be computed as

S =
1

n− 1
XT X, (6.12)

If X was standardized, S is actually correlation matrix.
Third step is to compute the eigenvalue decomposition of S. Eigenvalue decompo-
sition is such that

S = U Λ UT , (6.13)
where U is the p×pmatrix of eigenvectors, and Λ is the diagonal matrix of eigen-
values. Finally, the data is transformed into PCA space by

Z = X U. (6.14)

An example of PCA transform in shown in Fig. 6.5.
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Figure 6.5: Example of PCA transform to 500 observations from two-dimensional
multinormal distribution. Original observations are in subfigure (a), and data in
PCA space in (b).

6.2.2 Interpretation of principal components

As can be seen fromEq. (6.14), PCA is a linear transform. Ifuj’s are the eigenvectors
in U = [u1 · · · up], and xi is the row in centered (standardized) data matrix, the
value of jth new PCA variable for observation i is

zij = xTi uj = xi1u1j + . . .+ xipupj (6.15)
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In that context, the eigenvectors uj are the new coordinate basis, andmap the orig-
inal variables to the PCA space. The eigenvectors are often called loadings. Large
absolute values in ukj mean that original variable k has large impact, loading, to
PCA variable j. Therefore by plotting eigenvectors one can visually inspect how
the original variables influence the PCA variables.
The eigenvalues, i.e. the diagonal values in Λ are the variances of the data in the
PCA space. The PCA will preserve the total variance of the data, i.e.

p∑
j

[Λ]jj =

p∑
j

[S]jj (6.16)

In PCA based on the standardized data matrix the total correlation is preserved, so∑p
j [Λ]jj = p.

6.2.3 Principal component analysis in variable reduction

One of the applications of PCA is in variable or dimensionality reduction or data
compression. The fact that the PCA variables are uncorrelated makes this possi-
ble. Unnecessary PCA variables can be removed without affecting the remaining
variables. The variances of the PCA variables is used to judge which variables are
”unnecessary”.
Usually the procedure that computes eigenvalues and -vectors already sorts them
so that the first eigenvalue is the largest and so forth. The eigenvectors are also
sorted because the order of values and vectors must match. If this is not done by
the procedure, one should do this manually. So, eigenvalues must be sorted so that
Λ[1] ≥ Λ[2] ≥ · · · ≥ Λ[p]. The same ordering must then be applied for eigenvectors,
U = [u[1] u[2] · · · u[p]].
If there are correlations between the original variables, it is often so that the total
variance in the data is redistributed with PCA variables so that the first few PCA
variables make up almost all the total variance. The interpretation is that the first
few PCA variables with large variances are the ”real signal” and the rest of the
PCA variables with variances close to zero are ”random noise”. Variable reduction
is based on this.
The portion c of total variance that is reproduced with the first k PCA variables is
derived with

c =

∑k
j Λj∑p
j Λj

. (6.17)

Usually the limit for c is set close to 100 %, to 95 % or 99 % for example. When the
first k PCA variables can reproduce the required portion, the variable reduction
is done by forming U∗ = [u1 · · · uk], i.e. taking only the first k eigenvectors and
dropping out the rest. The reduced data Z∗ in PCA space is received by Z∗ = X U∗.
The reduced matrix has now only k variables. If the PCA variable reduction is
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successful, the reduced number of variables k can be significantly smaller than the
original number of variables p.
One application for PCAvariable reduction is the visualization of high-dimensional
data. If the first two or three PCA variables can reproduce a large portion of the
total variance, the data can be visualized in 2D or 3D plots in the reduced PCA
space. Another is in classification or clustering problems. While PCA is not itself
optimized for classification, it can find structures in the data that can be both visu-
alized in low dimensions, and used in classification. An example of this is shown
in Fig. 6.6.

Figure 6.6: PCA example from Wikipedia. A PCA scatterplot of haplotypes calcu-
lated for 37 Y-chromosomal STR markers from 354 individuals. PCA has success-
fully found linear combinations of the different markers, that separate out different
clusters corresponding to different lines of individuals’ Y-chromosomal genetic de-
scent.

6.3 Other multivariate methods

We will not go through multivariate (MV) methods apart from principle compo-
nent analysis. The algorithms tend to be more complicated so the methods could
only be introduced here without details. I will only brieflymake some notes on the
other methods.
Both classification and clustering are among themost importantMVmethods. The
difference between classification and clustering is that in clustering the number of
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groups is not known beforehand, and its estimation is one of the tasks in cluster-
ing. In classification the groups or classes where data is to be designed is known
beforehand.
Classificationproblemshave, in general, twomain taskswhere different approaches
can be applied. First of all, a distance measure must be derived between MV ob-
servations. As was already seen in Sec. ”Mahalanobis distance”, the standard Eu-
clidean distance withMVdata is not always the optimal one. Mahalanobis orMan-
hattan distances can perform better. Euclidean distance can be used after the data
is suitably transformed. The PCA transform can be used for that, although it is not
designed with classification purposes in mind. The Linear Discriminant Analysis
is a transform that is closely related to PCA, but designed for classification.
After the distance measure is decided, the actual classification to one of the pre-
assigned groups must be done. There are, again, different choices of methods.
Classification by the shortest distance to group center is the most straightforward
method. The so-called linear classifier or Naïve Bayes classifier are methods to be
considered also. The k nearest neighbor method is simple nonparametric classifi-
cation scheme if training data is available. If training data with known classes is
available, a cross-validation should be performed to asses the error rate of the clas-
sifier. Pattern recognition or machine learning are also more or less classification
problems, and nonlinear methods such as neural networks are sometimes applied
in addition to beforementioned techniques.
Clustering differs from classification in the sense that the possible classes of ob-
servations are not known beforehand. Again, consideration should be applied to
the distance measure or the transformation of data before the actual clustering.
The clustering algorithm works by choosing groups for each observation by min-
imizing a chosen measure of ”group conformance” while maximizing the differ-
ence between groups in some sense. This is usually done for different number of
groups, and the recommend number of groups is chosen so that it optimizes the
ratio between ”within-group” and ”between-groups” variances.
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Chapter 7

Bayesian inference

7.1 Introduction

Bayesian inference (BI) gives the theoretical basis to Bayesian (statistical) methods
the same way as frequentist (statistical) inference is the basis for frequentist (sta-
tistical) analysis. There are some philosophical and technical differences between
frequentist (i.e. classical) and Bayesian approaches, but actually many parts of the
inference are done similarly.
The philosophical difference is in theway the unknownparameters are interpreted.
In frequentist inference the parameter is an unknown but a fixed constant, while
in BI the parameter itself is a random variable. In what follows we do not concen-
trate on the philosophical differences that much, but give guidance to the technical
procedure and theory behind BI.
The one formula behind the whole Bayesian standpoint is, of course, the Bayes
formula as in Eq. (1.9). In parameter estimation, the idea is to use Bayes formula
as:

P(parameters|data) =
P(parameters) P(data|parameters)

P(data)
(7.1)

Let us write it here for continuous variables using pdf’s:

fΘ|Y (θ|y) =
fΘ(θ) fY |Θ(y|θ)

fY (y)
=

fΘ(θ) fY |Θ(y|θ)∫
Ω

fΘ(θ) fY |Θ(y|θ) dθ
(7.2)

We explicitly write out here the random variables the different pdf’s are referring
to, but in what follows we will often shorten it, e.g. fY |Θ(y|θ) = f(y|θ).
From the way Eq. (7.2) is written, one can immediately recognize the application to
parameter estimation. The left side is the pdf of the unknown parameter vector θ,
given that we have observed data y. The left side is called the posterior distribution
of the parameters. The numerator of the right side(s) is from the chain rule, it has
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both the prior distribution for the parameter, fΘ(θ) and the distribution of data
given the parameters, fY |Θ(y|θ).
An important point in BI is that the denominator of Eq. (7.2) is often unnecessary
to be known. The denominator is the (unconditional) distribution of the parame-
ters. Definition fY (y) =

∫
Ω

fΘ(θ) fY |Θ(y|θ) dθ uses the formula of total probability
and integrates over the possible parameter space Ω. However, the denominator is
constant with respect to θ. In fact, the role of the denominator is only to scale the
resulting formula to pdf, i.e. to ensure that the area of

∫
fΘ|Y (θ|y)dθ = 1.

In many applications the knowledge of properly scaled posterior distribution is not
important. If you compare to the task ofmaximum likelihoodparameter estimation
with frequentist approach, one is only interested of the maximization of f(y;θ), i.e.
the probability density of data with given parameter value θ (so, classical f(y;θ)

equals Bayesian f(y|θ)). In comparable BI case it is enough to know the unscaled
posterior, fΘ(θ) fY |Θ(y|θ). There is even closer connection to classical inference —
if unscaled posterior is enough, we can use the likelihood function instead of the
pdf. So, the version of the Bayes formula that is usually applied in BI is

f(θ|y) ∝ f(θ) f(y;θ) ∝ f(θ) L(θ;y) (7.3)

7.2 Prior distributions

When comparing Eq. (7.3) to traditional maximum likelihood problems, one can
see that themain difference is the presence of the prior distribution. Selecting prior
pdf is subjective decision, that should of course be somehow justified by the re-
searcher. In principle any pdf can be used as a prior pdf, or the prior does not even
need to be a proper pdf, but there are some common approaches to the problem.

7.2.1 Conjugate prior distributions

Especially in times before efficient computers and easy-to-use software, the con-
cept of conjugate prior (liitännäispriori) was important, since it allowed analytical,
closed-form formulas to be derived. In short, a conjugate prior f(θ) is such a distri-
bution that the posterior f(θ|y) has the same distribution family as the prior. The
selection of a conjugate prior is always related to the probability model of the data,
f(y|θ).
The attractive benefit in using conjugate prior is that the results can be easily com-
puted and interpreted, and the influence of both the data and the choice of pa-
rameters of prior distribution, i.e. hyperparameters, to the posterior parameters is
clear. For example, if we conduct n independent Bernoulli trials with parameter
(probability of success) π, and receive k positive outcomes, the likelihood model
for the data is L(π; k) = πk(1 − π)1−k. Now, the Beta distribution is the conjugate
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prior for Bernoulli data. That means that if π ∼ B(α, β), then the posterior is also
Beta-distribution but with some other parameters. Without calculating anything
ourselves we can check from literature that the posterior is

π | k ∼ B(α + k, β + n− k) (7.4)

The complete Bayesian analysis of the case is nowdone and the result is compressed
into the distribution and its parameters. With conjugate priors it can be straight-
forward to interpret the effect of data and hyperparameters in the a priori to the
properties of the posterior distributions. For example, the expected value a priori
in the Bernoulli-Beta example is µprior = α

α+β
. After the data has been collected, the

posterior expected value is µposterior = α+k
α+β+n

.
The simpleness of the conjugate prior approach is at the same time its shortcoming.
The subjective choice of prior distribution is the key point in BI. In this era of effi-
cient computing tools a conjugate prior should be used only if the prior would suit
the case anyway, not just because the result is easy to derive and interpret. Lists
of likelihood models with their prior distributions can be found in the literature,
for example in Wikipedia. For the most common model of normal likelihood the
prior distribution for the expectation parameter µ is also the normal distribution,
and for variance σ2 it is the inverse gamma distribution.

7.2.2 Uninformative prior distributions

Another common approach, or rather a framework of approaches, is the use of
uninformative or vague priors. This means that if the researches does not have any
particular information of the parameter a priori the observations, the uncertainty
should be described in the prior. The idea is straightforward, but the practicemight
not be so simple to implement.
It is easy to think that if there is no knowledge of the location parameter, the µ for
normal model for example, all the values of µ should be equally probable, f(µ) ∝ c.
So, the uninformative prior for µ should be the uniform distribution.
The first immediate problem is that the uniform distribution over the real axis is
not a proper distribution since it does not integrate to one, it is a so-called improper
prior. If the prior distribution is improper, the posterior is often also an improper
distribution. However, in many BI analysis this problem can be avoided by using
the form in Eq. (7.3) and deriving computational results byMonte Carlo or Markov
chain Monte Carlo sampling. The recommended uninformative prior for scale pa-
rameter (i.e. variance) is of the form σ2 ∝ 1/σ2

If the improper prior is not a problem, the reparametrization of the model might
arise new problems. Reparametrization means that the original parameter of the
model is transformed by some function. In many physical models it is possible to
change from one set of parameters to another. For example astronomical coordi-
nates can be defined in several ways. The reparametrizationwill also transform the
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shape of the prior distribution. It can easily happen that ’uniform’ distribution in
one parametrization will transform into something quite non-uniform in another
parametrization.

It can be thought that the prior information should be invariant under parameter
transformations. The prior that implements this principle is the Jeffreys prior. It
has the form

f(θ) ∝
√

det(I(θ)), (7.5)

where I(θ) is the so-called Fischer informationmatrix for the parameter θ. The Fis-
cher information is the expectancy of the Hessian matrix H of the models second
partial derivativesmentioned inEq. (2.6). While Jeffreys prior solves the reparametriza-
tion problem, it is not always evident if the Jeffreys prior will describe the uncer-
tainty in a meaningful way. With normal distribution and location parameter this
is not the case, since the Jeffreys prior for that model is f(µ) ∝ c.

Other common choices for uninformative priors, or at least for priors with very
small amount of information, are proper distributions with very large variances
so that they are ’almost flat’ but still integrate to one. For example, with normal
likelihood model the normal distribution itself is a conjugate distribution for the
expectancyµ. If normal distributionwith hyperparameter σ2

0 is very large, the prior
is almost flat but the posterior is a proper normal distribution.

7.2.3 Informative or subjective prior distributions

A criticism towards the use of uninformative priors is that, first, sometimes it can
be difficult to actually express the lack of information as seen above. Second, BI
with uninformative priors will actually give more or less the same result as the
traditional frequentist approach since the resultswill only depend on the likelihood
function of the data. Third, choosing an uninformative prior is also a subjective
choice. Therefore, the most rewarding case for BI is when there actually is a priori
information about the parameter and when that information can be represented in
the form of a (prior) distribution.

In this case of subjective choice or prior distribution, a sensitivity analysis would
often be a good idea. If the variance of the prior pdf is small, a lot of observations
are needed to shift the posterior estimate away from the prior. The sensitivity of
the posterior to observations is weak. If the variance of the prior is large, already
a few observations can overdrive the prior information in the posterior, and the
sensitivity to observations is strong. Often it needs some numerical tests to assure
that the sensitivity is on the right level. An example of two priors, observations
and posteriors is shown in Fig. 7.1.
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Figure 7.1: Three observations from normal distribution, normal prior (red dashed
line) and posterior (blue solid line) for the parameter µ. In (a) the prior variance is
large, and in (b) it is small.

7.3 Parameter estimation

Derivation of the point-estimates to the (unknown) model parameters θ within
Bayesian framework is based on either Eq. (7.2) or Eq. (7.3). There are three com-
mon choices for parameter estimate θ̂: the posterior median, the posterior mean,
and the maximum a posteriori (MAP) estimates. The analytical derivation of pos-
terior median and mean estimates require the knowledge of the proper posterior
distribution (Eq. (7.2)), because e.g. the posterior mean is calculated as

The posterior mean θ̂ =

∫
Ω

θ f(θ|y) dθ (7.6)

WithMarkov chainMonte Carlo (MCMC)methodswewill see that the explicit for-
mulation of the proper posterior distribution is not always necessary, and posterior
mean or median estimates can be computed from samples.
WithMAPestimate however, the proper formof posterior distribution is not needed.
Maximization of Eq. (7.2) can be equally well done using only Eq. (7.3). Note the
similarities with the MLE estimate which is computed in the similar manner, only
without the prior distribution.
The fact that there are three equally justified and popular methods for parame-
ter estimation in Bayesian framework is somehow typical for BI. There is a certain
amount of subjectivity in every Bayesian analysis, and the best practice is to write
out all the choices made, so that other researchers can reproduce the results and
follow the formulations if needed.

7.3.1 Bayesian interval estimation

With frequentist ML inference the uncertainty about the ML estimate is described
with confidence intervals. The similar construction in BI is the credible interval.
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Because in BI it is natural to speak about probability of the parameter, the credible
interval is defined as ∫ θ2

θ1

f(θ|y) dθ = 1− α (7.7)

The problem with the equation above is that it does not define the limits θ1 and θ2

unambiguously. There are two different extra conditions that can be used to define
the interval properly. The first one is the equal tail credible intervalwhere we require
that the tail probabilities are the same:∫ θ1

−∞
f(θ|y) dθ =

∫ ∞
θ2

f(θ|y) dθ =
α

2
(7.8)

The second possibility is that we require the posterior densities inside the credible
interval to be larger than any density value outside the interval. This is called the
highest posterior density region:

θ1 and θ2 so that f(θ|y) ≥ f(θ∗|y), (7.9)
when θ1 ≤ θ ≤ θ2 , and θ∗ < θ1 or θ2 < θ∗

For symmetric unimodal distribution these intervals will coincide.
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Figure 7.2: Equal-tail (on the left) and highest posterior density (on the right) 90 %
credible intervals for parameter µwhen its posterior density is log-normal.
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Chapter 8

Monte Carlo methods

Monte Carlo (MC)methods are statistical methods that are based on the computer-
generated random numbers. Random numbers can be used directly to asses some
features of complicated randommodel, or they can be used in drawing randomized
samples of existing data. The latter case is called resampling. WhenMonte Carlo is
is used to create so-called Markov chains, the method is called MCMC and that is
not dealt in this chapter. In any case, the inference withMC (orMCMC) is based on
the averaged descriptive statistics of the data that results from the MC procedure.

8.1 Random number generation

Before MC methods can be used, we must have procedure that can generate ran-
dom numbers from the desired distribution. In some cases the probability model
can consist of an algorithm that is difficult to describe with parametric distribu-
tion. In that case, the algorithm itself can be used to create samples that obey the
unknown distribution when some random input is created. In the common case,
however, we know the parametric distribution from which we want to create ran-
dom numbers.
Even the creation of uniform random integers is somewhat complicated if we want
the pseudorandom numbers to come from a sequence that will seem random. First of
all, the length of the period, i.e. the length of unique sequence of integers, should be
large. Second, the integers should pass any test of uniformity. Third, there should
not be detectable autocorrelation in the sequence. All the uniform number gen-
erators in the modern computing environments should be reliable nowadays. For
example, theMersenne twister algorithmwas developed in 1997 and has very good
random properties.
The pseudorandomnumber generators always generate random integers. The con-
version to uniform real numbers between 0 and 1, U ∼ U(0, 1), is done by dividing
the random integer by the largest possible integer (plus one) in the system. Usually
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the generators can return the lower limit of 0.0 (naturally, with very low probabil-
ity), but not the upper limit of 1.0.

Since the uniform distribution should be well implemented in almost all systems,
and it is hard to implement yourself, we will concentrate on the creation of con-
tinuous random numbers from more complicated distributions using the uniform
numbers as an input.

8.1.1 Inversion method

The most general algorithm for random numbers is the inversion method or in-
verse transform method. It is based on the following deduction. Let U be random
number from U(0, 1). Let us compute F−1(U), where F−1(·) is the inverse cumula-
tive probability function of the desired distribution. If we compute the cumulative
probability of F−1(U) being less than x, we can see that

P
(
F−1(U) ≤ x

)
= P

(
F
(
F−1(U)

)
≤ F(x)

)
[by applyingF to both sides]

= P (U ≤ F(x)) = F(x) (8.1)

because U is uniform, so the probability of U ≤ y is y when y is between zero and
one. A graphical example is shown in Fig. 8.1.
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Figure 8.1: Example of the inverse transform method with Beta(3,5)-distribution.

The inverse transformmethod is valid, in theory, for all distributions. The problem
is that the inverse cdf does not exist in closed from for all the distributions, for
example the cdf and the inverse cdf for normal distribution are not closed-form
functions.
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8.1.2 Normal distribution

Random numbers from standard normal distribution can be generated with the
special transformation, the Box-Muller algorithm. For two uniform numbersU1, U2

it holds that the transformation

X1 =
√
−2 log(U1) cos(2πU2), X2 =

√
−2 log(U1) sin(2πU2) (8.2)

produces X1 and X2 that are independent and have standard normal distribution.
In Sec. 6.1.1we introduced how to create correlated values frommultinormal distri-
bution, but for two-dimensional multinormal distribution there is a shortcut with
the Seppo Mustonen -algorithm. It is the same transform to X1 as the Box-Muller,
but X2 is computed by

X2 =
√
−2 log(U1) sin(2πU2 + arcsin(ρ)), (8.3)

where ρ is the correlation coefficient between X1 and X2.
Other special transforms exists, and some of them are based on the way the distri-
bution is originally derived. For example, as we know that sum of squared normal
variables has χ2-distribution, random numbers from χ2 can be derived simply just
by first creating normal random numbers and the summing their squares. Often
these kind of transformations are inefficient when the parameters require a lot of
source variables per one outcome.

8.1.3 Accept-Reject method

The Accept-Reject method is based on the creation of random coordinates uni-
formly inside an area (in 2-D) that bounds the pdf of the target distribution. If
the coordinate is inside the area bounded by the target pdf, it’s x-coordinate is ac-
cepted as a random number from the distribution. If not, it is rejected and a new
coordinate is created.
The most simple application of the accept-reject method is the ’box-counting’ ver-
sion where random coordinates are created inside the rectangular area that holds
the target pdf inside. For this to work, the target pdf must have finite support.
For example, the Beta distribution is defined between 0 and 1 — example of box-
counting accept-reject algorithm for Beta distribution is shown in Fig. 8.2.
The box-counting comes less effective in multiple dimensions and in cases where
the support of the distribution is very wide, because the number of the rejected
point grows. The effectiveness can be improved by finding an envelope that has
smaller reject-area outside the target pdf than the rectangle. In general, any ’enve-
lope pdf’ g(·) can be used in accept-reject method, if only we can find constant c so
that

f(x) ≤ c g(x) ∀x (8.4)
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Figure 8.2: Beta(3,5)-distribution and box-counting accept-reject algorithm. The
x-coordinates of the blue points have the desired distribution.

If this condition can be fulfilled, the X that is generated from the envelope pdf g

can be accepted if

U ≤ f(X)

c g(X)
, (8.5)

where U is from U(0, 1), and rejected otherwise. The box-counting is a simple ver-
sion of this where the envelope is also a uniform distribution, so that c g(x) = c.
If the envelope is very close to the target distribution, only a small fraction of the
random numbers must be rejected. For the envelope method to work we naturally
need to have such a distribution g that it is easy to create random numbers from it.

The Gamma distribution is one example of a distribution that can be simulated
by the envelope accpet-reject algorithm efficiently. The trick is that Gamma(α,β)-
variables are easy and fast to create if α is an integer. For other α, the Gamma
distribution with integer α can be used as an envelope with suitable choice of β
and constant c. Example is shown in Fig. 8.3.

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

Figure 8.3: Gamma(2.5,1) distribution and a suitable envelope for envelope accept-
reject algorithm.
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8.2 Resampling methods

The resampling methods are procedures that recycle the existing data in some ran-
dom manner, i.e. draw random (re)samples of the data. If the original sample is
a good representation of the unknown sample space, then the random resamples
also estimate the properties of the sample space well. Resampling methods have
troubles with small and biased samples, but then again, this is true for more or
less all the statistical methods. We will introduce bootstrap, permutation tests and
cross-validation here. The so-called jackknife is also a resampling method for vari-
ance estimation, but the bootstrap is more general and preferable in many cases, so
the jackknife method is not dealt here.

8.2.1 Bootstrap

The bootstrap method was developed by Bradley Efron in 1979 as an extension to
jackknife. The name refers to phrase ”pull oneself up from one’s bootstraps”, and
suits the method quite well. The initial situation for bootstrap is that we have only
one random sample of the interesting phenomena, y, and no other information.
However, the sample should represent the total sample space. If so, we could draw
new samples y∗i from y, and they should also represent the sample space. These
resamples should be drawnwith replacement from the original sample, and have the
same size.
From the original sample we can compute a value for an estimator of interest, θ̂.
With bootstrap we can asses the uncertainty, e.g. the variance or the confidence
intervals, of the estimator. If we compute the same estimator value for every boot-
strap sample, θ∗i , the empirical distribution of θ∗i ’s should estimate the true distri-
bution of θ̂. The inference about θ̂ can be made based on the empirical distribution
by descriptive statistics.
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7 1 9 5 10 8 4 10 10 3

4 1 8 3 8 1 3 7 5 8

8 3 9 3 7 2 9 3 3 6

...

y

*y 1

*y 2
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Figure 8.4: Sample with return.

For example, we have a sample of 10 numbers from the exponential distribution
in Fig. 8.5. The mean y is 1.09. Without knowing that the underlying distribution
is exponential, one could compute the variance or the confidence interval to the
mean using normal approximation. The resulting CI will be symmetrical about
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the mean. However, exponential distribution is skewed to right, and thus the real
CI is not symmetrical.
The histogram in Fig. 8.5 is drawn from the 40,000 means computed from 40,000
bootstrap samples of y. Their distribution is slightly skewed to right, as it should
be. The bootstrap CI can be computed from the ordered values of y∗i . For 95 %
CI we will take the 1,000th (2.5 %) value and the 39,000th (97.5 %) value of sorted
bootstrapmeans, and end upwith a CI of (y∗[1000], y

∗
[39000]) = (0.507, 1.879). This CI is

shown in the figure with gray vertical lines, and it is clearly nonsymmetric around
the mean with red vertical line.
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Figure 8.5: Ten samples (gray dots), their mean (red line), histogram of 40,000 boot-
strap means and bootstrap CI for the mean (gray lines).

The great advantage with bootstrap is that variances or CI’s can be derived for any
estimator as easily as for mean, for example for median. The number of bootstrap
samples should be large in order to smooth out the finite sampling effects. What
is ’large’ depends on the problem, but with modern computers the speed is usu-
ally not an issue, so 10,000, 50,000 or even 100,000 could be used as the number of
bootstrap samples.
Bootstrap can be used also in regression problems (LM and NLM), but then the
bootstrap sampling should be used for residuals instead of the original data. The
procedure is such that first the standard LM or NLM is fitted, and estimates b,
fitted values ŷi and residuals ei are received. Then, bootstrap dataset is formed by
adding randomly chosen residual value ej to each ŷi, thus creating new dataset
with (xi, ŷi + ej). The same regression analysis is computed, and bootstrap values
b∗k are received. This is repeated, and inference is based on the distribution of b∗k’s.

8.2.2 Cross-validation

Resamplingmethods are often quite simple and straightforward ideas that are easy
to implement if only the computing power is not an issue. This is true with the
bootstrapping, and is especially true with the cross-validation.
Cross-validation is practical with methods involving some kind of prediction, and
the accuracy of the prediction interest us. For example, LM or NLM can be used
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to predict the values of the dependent variable for given explanatory variable. The
CI of the prediction can be computed using the residual variance of the model, i.e.
the observed errors. However, the residual variance gives too optimistic estimate.
The model is fitted to exactly the same observations from which the residuals are
computed, and this introduces overfitting if we consider new observations. Actu-
ally, this can be taken into account analytically in LM, but in NLM or in general
linear models this is not possible.
Another example is a classification procedure. Let us say thatwe have a dataset and
we use that to form (i.e. train) our classification scheme. We can try to estimate the
error rate the classifier does by letting it classify our training data, but again, the
estimate will be too optimistic because the classification is tuned with exactly these
data.
The solution is to leave out one part of the data from the model estimation, and use
the model to predict the values for the left-out data. The prediction error is then
computed using the errors computed with the left-out data. The usual problem
is, of course, that we seldom have huge amounts of data available, and the fitted
model will perform worse when estimated with smaller training data than with
all the available data. The cross-validation, especially with the so-called leave-one-
out procedure, is the best compromise between large training set and realistic error
estimation. In leave-one-out, one repeatedly leaves one observation out from the
training set, estimates the model, and computes the prediction error for the one
left-out observation. This is then repeated for all the observations, or at least for a
large number, and the mean prediction error is computed from these numbers.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

estimatepredict

estimatepredict

estimatepredict

...

y

k  round1

k  round2

k  round3

Figure 8.6: Leave-one-out crossvalidation.

Cross-validation can bedone for larger dedicateddata than one (k-fold cross-validation),
but usually the leave-one-out is the most accurate estimate.

8.2.3 Permutation tests

Permutation tests can be used in cases where we have two or more datasets, and
the null hypothesis claims that these should come from the same distribution. A
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test for medians can be used as an example. Let us have two sets, y and x, and
we want to test if the medians of the groups are the same with certain statistical
significance. The null hypothesis for this test is that the medians are the same.
If the null hypothesis is correct, we could divide the data randomly into newgroups
y∗i and x∗i with the sizes nyand nx. The difference between themedians is recorded.
Again, if the null hypothesis is correct, the difference between themedians between
the original sets, d̂ = my −mx, should be ’common’ in the set of all median differ-
ences d∗i computed from the randomly divided groups. If not, the original divi-
sion was somehow ’special’ and the probability of receiving such groups and such
difference in median is very small. In the latter case, the null hypothesis can be
rejected.

1 2 3 4 5 6 1 2 3 4

3 4 1 5 3 1

5 4 1 6 4 2

1 4 6 2 2 1

6 2 2 4

1 3 3 2

3 5 4 3

...

x, y

* *x , y1 1

* *x , y2 2

* *x , y3 3

Figure 8.7: Random groupings.

The decision between ’common’ and ’special’ can be based on the distribution of
d∗i ’s in similar manner as in traditional test theory. The p-value of the test is the
proportion of d∗i ’s that are as large or larger than our d̂. If the p-value is small, i.e.
less than 5 %, the null hypothesis can be rejected.
An example of this kind of permutation test for themedians of two groups is shown
in Fig. 8.8. The two datasets have both sizes of 30, and they dome from exponential
distributions with intensity λ of 1.0 (group 1) or 2.0 (group 2). The difference be-
tween themedians is 0.353. With 40,000 randompermutations of the groupswe can
find that only 2.16 % of the median differences in randomly divided groups have
values larger than 0.353. Therefore, the p-value for one-sided test (H1 : m1 > m2)
is 2.16 % and for two-sided test (H1 : m1 6= m2) 4.32 %. In both cases, the null
hypothesis can be rejected — the groups do not have equal medians.
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Figure 8.8: Permutation test for equal medians. Box-and-whiskers plot of the two
groups in (a), and histogram of the permuted median differences in (b), where red
vertical line show the observed median difference.
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Chapter 9

Appendix

9.1 Normal and related distributions

Pdf’s, cdf’s and inverse cdf’s for normal, t, χ2, and F-distributions, formulated us-
ing special functions.

Standard normal distribution

f(y) =
1√
2π

exp

(
−y

2

2

)
(9.1)

F(y) =

∫ y

−∞
f(x)dx =

1

2

(
1− erfc

(
− y√

2

))
(9.2)

F−1(p) = {y : F(y) = p} = −
√

2 erfc−1(2p) (9.3)

where erfc is the complementary error function, and erfc−1 its inverse function.
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Pdf and cdf for N H0,1L

Standard normal distribution, pdf and cdf.
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t-distribution

f(y) =
1√

κB(κ/2, 1/2)

(
κ

κ+ y2

)κ+1
2

(9.4)

F(y) =

∫ y

−∞
f(x)dx =

1

2
I

(
κ

y2 + κ
,
κ

2
,
1

2

)
, if y ≤ 0, and (9.5)

1

2

(
1 + I

(
y2

y2 + κ
,
1

2
,
κ

2

))
, if y > 0

where κ is the degrees of freedom for the distribution, B is the Euler beta function,
and I(z, a, b) is the regularized incomplete beta function.
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Student’s t-distribution with 10 degrees of freedom, pdf and cdf.

χ2-distribution

f(y) =
2−κ/2 exp(−y/2)y

κ
2
−1

Γ
(
κ
2

) (9.6)

F(y) =

∫ y

−∞
f(x)dx = Q

(κ
2
, 0,

y

2

)
(9.7)

where κ is the degrees of freedom for the distribution, Γ is the Euler gamma func-
tion, and Q(a, z0, z1) is the generalized regularized incomplete gamma function.
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χ2-distribution with 10 degrees of freedom, pdf and cdf.
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F-distribution

f(y) =
κ
κ1/2
1 κ

κ2/2
2 y

κ1
2
−1(κ2 + κ1y)

1
2

(−κ1−κ2)

B
(
κ1
2
, κ2

2

) (9.8)

F(y) =

∫ y

−∞
f(x)dx = I

(
yκ1

yκ1 + κ2

,
κ1

2
,
κ2

2

)
(9.9)

where κ1 and κ2 are the degrees of freedom for the distribution, B is the Euler beta
function, and I(z, a, b) is the regularized incomplete beta function.
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F-distribution with κ1 = 10, κ2 = 15, pdf and cdf.

9.2 Matrix algebra

In what follows we introduce some simple properties of matrix algebra that should
be useful with the material in this course. First, some rules regarding matrix trans-
pose:

(A + B)T = AT + BT (AB)T = BTAT (AT )T = A (9.10)
(A−1)T = (AT )−1 det(AT ) = det(A) (9.11)

If A symmetric, then AT = A (9.12)
If A orthogonal, then AT = A−1 andAAT = I (9.13)

and matrix inverse:

AA−1 = I (AB)−1 = B−1A−1 det(A−1) = det(A)−1 (9.14)
If det(A) = 0, then A is singular and cannot be inverted (9.15)

If A is invertible, then columns of A are linearly independent (9.16)
If A is invertible, thenAT is invertible (9.17)
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If matrix A is diagonal, all the entries outside the diagonal [A]ii are zero. Diagonal
matrix can be noted by listing its diagonal elements, A = da11 a22 · · · annc. For
diagonal matrices inverse and determinant are easy to calculate:

A−1 =

⌈
1

a11

1

a22

· · · 1

ann

⌋
(9.18)

det(A) =
∏
i

aii (9.19)

Basic rules regarding expectation and covariance operators with matrices:

E(AY ) = A E(Y ) cov(AY ) = A cov(Y ) AT (9.20)
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