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Course Organization

• Lectures 3h/week: theory and demonstrations.

• Computer lab sessions 2h/week: practical work.

• MATLAB is used throughout the course (make sure you know the
basics!).

• Several homeworks that need to be returned in paper.

• Homeworks are graded (0-3 pts each).
• 20% of the points are required to pass the course.
• Extra points awarded to the first exam based on the

homeworks.

• Lab sessions are reserved for going through the homeworks and
preparing for the next ones.

• All homeworks and material will be posted on the NOPPA page.

• Lecture notes also available at the AALEF bookstore.



Homeworks

• Return preferably on paper in person (at lectures or lab sessions).
In extreme cases, return by email (as PDF) to
heikki.haario@lut.fi or the exercise assistants
gasper.mwanga@lut.fi and isambi.mbawalata@lut.fi

• Write your documents preferably in LaTex (Word or something
else is OK too).

• Points are awarded based on the homeworks according to the
table below:

% of points Extra pts
20-29 0 (obligatory)
30-39 1
40-49 2
50-59 3
60-69 4
70-79 5
80-89 6
90-100 7

Note: exam will be 5 tasks, each worth 6 points.



Course Outline

1. Intro: mathematical models and their uncertainties

2. Prequisities: some statistics, methods for generating random
numbers

3. Linear models and their statistical analysis, design of
experiments

4. Nonlinear models, approximative error analysis

5. Classical Monte Carlo methods: bootstrapping

6. Bayesian analysis: MCMC, the Metropolis algorithm and
variants

7. Dynamical state estimation: Kalman filtering



Mathematical Models

Mathematical modeling is a central tool in most fields of science and
engineering. Mathematical models can be either

• Mechanistic: based on principles of natural sciences. Also
known as ’physiochemical’ or ’physics-based’ or ’hard’ models.

• Empirical: inferring relationships between variables directly from
the available data. Also known as ’data-driven’ or ’soft’ models.

Empirical models try to learn the relationship between input variables
X and output variables Y using the empirical data alone.

X =


x1 x2 . . . xp

x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

 Y =


y1 y2 . . . yq

y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yn1 yn2 . . . ynq

.



Empirical Models

+ Often result in easier computation.

- Possibly problems in interpreting the modeling results.

- Usually poorly extendable to new situations from which
measurements are not available (extrapolation).

+ Often the preferred choice, if a ’local’ description (interpolation) is
enough or if the mechanism is not known or too complicated to be
modeled in detail.

The methodology used in analyzing empirical model is often called
regression analysis.



Mechanistic Models

Built on first principles of natural sciences, and are often formulated as
differential equations. For instance, the elementary chemical reaction
A→ B → C can be modeled as an ODE system

dA

dt
= −k1A

dB

dt
= k1A− k2B

dC

dt
= k2B.

- Model building is often more demanding as with empirical models.

- Require knowledges of numerical methods.

+ Often extends well to new situations.

+ Chosen if the phenomenon is understood well enough and if the
model is needed outside the experimental region.



Combining Models and Data

• Mathematical models must be verified against measured data.

• The models usually contain some unknown parameters that need
to be calibrated from the measurements.

• In this course, we will use the following notation:

y = f(x, θ) + ε,

where y are the obtained measurements and f(x, θ) is the
mathematical model, x are the control (input) varibles, θ the
unknown parameters and ε the measurement error.

• The statistical analysis of the model happens at this ’model
fitting’ stage: uncertainty in the data y implies uncertainty in the
parameter values θ.



Linear vs. Nonlinear Models

• Mathematical models are either linear or nonlinear.

• Here, we mean linearity with respect to the parameters θ.

• That is, for instance y = θ0 + θ1x1 + θ2x
2
2 is linear, whereas

y = θ1 exp(θ2x) is nonlinear.

• Most of the classical theory is for linear models

• Direct formulas can often be developed for linear models, which
results in easier computation.



Parameter Estimation

• Traditionally, point estimates for the parameters are obtained by
solving a least squares (LSQ) optimization problem.

• In LSQ, we search for parameter values θ̂ that minimize the sum
of squared differences between the observations and the model:

SS(θ) =

n∑
i=1

[yi − f(xi, θ)]
2.

• The LSQ method does not say anything about the uncertainty of
the estimator, which this is the purpose of statistical analysis in
modeling.

• The theory for statistical analysis of linear models is well
established, and often used as an approximation for nonlinear
models as well.

• Efficient numerical Monte Carlo techniques have been introduced
lately to allow full statistical analysis for nonlinear models. This
is the main topic of this course.



Prequisities: statistical measures

• The expected value for a random vector x with PDF p(x) is

E(x) =

∫
xp(x)dx.

• The variance of a one-dimensional random variable is

Var(x) =

∫
(x− E(x))2p(x)dx.

• The standard deviation is Std(x) =
√

Var(x).

• The covariance of two random variables x and y measures how
much the two variables change together:

Cov(x, y) = E((x− E(x))(y − E(y))).



Prequisities: statistical measures

• The covariance matrix of two random vectors x and y, with
dimensions n and m, gives the covariances of different
combinations of elements in the x and y vectors. The covariances
are collected into an n×m covariance matrix, defined as

Cov(x,y) = E((x− E(x))(y − E(y))T ).

In this course, the covariance matrix is used to measure the
covariances within the elements of a single random vector x, and
we denote the covariance matrix by Cov(x) = Cov(x,x).

• The correlation coefficient between two random variables x and y
is the normalized version of the covariance:

Cor(x, y) =
Cov(x, y)

Std(x)Std(y)
.

For vector quantities, one can form a correlation matrix (similarly
as in the covariance matrix).



Prequisities: sample statistics

To be able to use the statistical measures defined above, we need ways
to estimate the statistics using measured data. Here, we give the
sample statistics, which are estimators of the above measures.

Let us consider a n× p matrix of data, where each column contains n
measurements for variables x1, ...,xp:

X =


x1 x2 . . . xp

x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

.



Prequisities: sample statistics

• the sample mean for the kth variable: x̂k = 1
n

∑n
i=1 xik

• the sample variance of the kth variable:

Var(xk) =
1

n− 1

n∑
i=1

(xik − x̂k)2 = σ2
k

• the sample STD: Std(xk) =
√

(Var(xk)) = σk

• the sample covariance between two variables:

Cov(xk, xl) =
1

n− 1

n∑
i=1

(xik − x̄k)(xil − x̄l) := σxkxl

• the sample correlation coefficient between two variables:

Cor(xk, xl) =
σxkxl

σxk
σxl

:= ρxkxl



Prequisities: sample statistics

The sample variances and covariances for p variables can be compactly
represented as a sample covariance matrix, which is given as

Cov(X) =


σ2
x1

σx1x2 . . . σx1xp

σx1x2 σ2
x2

...
. . .

σx1xp σ2
xp

 .
Similarly, one can form a correlation matrix using the relationship of
covariance and correlation:

Cor(X) =


1 ρx1x2 . . . ρx1xp

ρx1x2 1
...

. . .

ρx1xp 1

 .
Useful MATLAB commands: mean, var, std, cov, corr, cov2cor.



Prequisities: some distributions

• The PDF of the univariate normal (or Gaussian) distribution with
mean x0 and variance σ2 is

p(x) =
1√
2πσ

exp

(
−1

2

(
x− x0
σ

)2
)
.

For a random variable x that follows the normal distribution, we
write x ∼ N(x0, σ

2).

• The sum of n univariate Gaussian random variables, s =
∑n
i=1 x

2
i ,

follows the chi-square distribution with n degrees of freedom,
which we denote by s ∼ χ2

n.

• The PDF of the d-dimensional Gaussian distribution with mean
vector x0 and covariance matrix Σ is

p(x) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− x0)TΣ−1(x− x0)

)
,

where |Σ| denotes the determinant of Σ.



Visualizing Gaussian Densities as Ellipses

• The contours of multivariate Gaussian densities are ellipsoids,
where the principal axes are given by the eigenvectors of the
covariance matrix, and the eigenvalues correspond to the lengths
of the axes.

• Therefore, two-dimensional covariance matrices can be visualized
as ellipses.

• In practice, this can be done with the ellipse function given in
the code package.

• Check out the demo program ellipse demo.m.



Gaussian Random Numbers: Geometric Interpretation

• Assume that the covariance matrix can be written as a sum of
outer products of n vectors, Σ =

∑n
i=1 aia

T
i .

• Then, the sum y =
∑n
i=1 ωiai, where ωi ∼ N(0, 1), follows the

Gaussian distribution with covariance matrix Σ.

• That is, Gaussian random variables are randomly weighted
combinations of ’basis vectors’ (a1, ...,an).
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Generating Gaussian Random Numbers

• Recall that in the univariate case, normal random numbers
y ∼ N(µ, σ2) are generated by y = µ+ σz, where z ∼ N(0, 1).

• Let us consider a covariance matrix Σ, which we can decompose
into a ’square-root’ form Σ = AAT .

• Now, if we take a random variable with cov(x) = I, the covariance
matrix of the transformed variable Ax is

cov(Ax) = Acov(x)AT = AAT = Σ.

• This gives us a recipe for generating Gaussian random variables
with a given covariance matrix:

1. Generate standard normal random numbers x ∼ N(0, I).
2. Compute decomposition Σ = AAT .
3. Transform the standard normal numbers with y = Ax.

• Code examples: chol demo.m and chi2 demo.m



Prequisities: checking if samples are Gaussian

• Let us consider a zero-mean multivariate Gaussian with
covariance matrix Σ.

• The term in the exponential of the PDF can be written as
xTΣ−1x = yTy, where y = Σ−1/2x. Here Σ−1/2 denotes the
’square root’ (e.g. Cholesky decomposition) of Σ−1.

• Using the formula Cov(Ax) = ACov(x)AT , the covariance of the
transformed variable y can be written as

Cov(Σ−1/2x) = Σ−1/2Cov(x)(Σ−1/2)T = Σ−1/2Σ(Σ−1/2)T = I.

• That is, the term xTΣ−1x = yTy is a squared sum of d normal
variables, and therefore xTΣ−1x ∼ χ2

d.

• One can check how well sampled vectors follow a Gaussian
distribution: compute the values xTΣ−1x and see how well they
follow the χ2

d distribution (see exercises).



General Methods: Inverse CDF

• Let us consider a continuous random variable whose cumulative
distribution function (CDF) is F .

• The inverse CDF method is based on the fact that a random
variable x = F−1(u) where u is sampled from U [0, 1], has the
distribution with CDF F .
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Figure: Producing samples from the exponential distribution using
inverse CDF, F (x) = 1− exp(−x) and F−1(u) = − ln(1− u).



General Methods: Accept-Reject

• Suppose that f is a positive (but non-normalized) function on the
interval [a, b], bounded by M.

• Consider uniform random points (xi, ui) in the ’box’ [a, b]× [0,M ]

• The points that satisfy ui < f(xi) form a uniform sample under
the graph of f .

• The area of any slice {(x, y)|xl < x < xu, y ≤ f(x)} is
proportional to the number of sampled points in it. So the
histogram of the points xi gives an approximation of the PDF
given by f .



General Methods: Accept-Reject

A (very) straightforward algorithm:

1. Sample x ∼ U([a, b]), u ∼ U([0,M ]).

2. Accept points x for which u < f(x)
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Linear Models

• Let us consider a linear model
f(x, θ) = θ0 + θ1x1 + θ2x2 + . . .+ θpxp.

• Assume that we have noisy measurements y = (y1, y2, ..., yn)
obtained at points xi = (x1i, x2i, ..., xni) where i = 1, ..., p.

• Now, we can write the model in matrix notation:

y = Xθ + ε,

where X is the design matrix that contains the measured values
for the control variables, augmented with a column of ones to
account for the intercept term θ0:

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp

 .



Linear Models

• For linear models, we can derive a direct formula for the LSQ
estimator.

• The LSQ estimate, that minimizes SS(θ) = ||y −Xθ||22, is
obtained as the solution to the normal equations XTXθ = XTy:

θ̂ = (XTX)−1XTy.

• To obtain the statistics, we can compute the covariance matrix
Cov(θ̂).

• Assume i.i.d. measurement error: Cov(y) = σ2I.

• Then, we can show (exercise) that

Cov(θ̂) = σ2(XTX)−1.



Linear Models

• Let us further assume that the measurement errors are Gaussian.

• Then, we can also conclude that the distribution of θ̂ is Gaussian,
since θ̂ is simply a linear transformation of a Gaussian random
variable y.

• That is, the unknown parameter follows the normal distribution
with mean and covariance matrix given by the above formulae:
θ ∼ N(θ̂, σ2(XTX)−1).

• The probability density of the unknown parameter can be written
as

p(θ) = K exp

(
−1

2
(θ − θ̂)TC−1(θ − θ̂)

)
,

where K = ((2π)d/2|Σ|1/2)−1 is the normalization constant and

C = Cov(θ̂).



Analyzing Modeling Results

• In regression models, usually not all possible terms are needed to
obtain a good fit between the model and the data → model
selection problem.

• It can be dangerous to employ a ’too fine’ model, too complex
models often result in ’over-fitting’.

• A. Einstein: ”a model should be as simple as possible, but not
simpler than that”.

• A natural criterion for selecting terms in a regression model is to
drop terms that are poorly known (not well identified by the
data).



Analyzing Modeling Results: t-values

• When we have fitted a linear model, we can compute the
covariance matrix of the unknown parameters.

• Then, we can compute the ’signal-to-noise’ ratios for the
parameters in the model, also known as t-values.

• For parameter θi, the t-value is

ti = θ̂i/std(θ̂i),

where the standard deviations of the estimates can be read from
the diagonal of the covariance matrix.

• The higher the t-value is, the smaller the relative uncertainty is in
the estimate, and the more sure we are that the term is relevant
in the model and should be included.

• We can select terms for which the t-values are clearly separated
from zero. As a rule of thumb, we can require that, for instance,
|ti| > 3.



Analyzing Modeling Results: the R2-value

• The t-values do not tell how good the model fits the observations
in general.

• A classical way to measure the goodness of the fit is the coefficient
of determination, or R2 value, which is written as

R2 = 1−
∑

(yi − f(xi, b̂))2∑
(yi − ȳ)2

.

• Consider the simplest possible model y = θ0, that is, the data are
modeled by just a constant. In this case, the LSQ estimate is just
the empirical mean of the data, θ̂0 = y (exercise).

• That is, the R2 value measures how much better the model fits to
the data than a constant model. The better the model fit is, the
closer the R2 value is to 1.



Analyzing Modeling Results: Cross-validation

• The R2 value does not tell about the predictive power of the
model, that is, how well the model is able to generalize to new
situations.

• The predictive power of the model can be assessed, for instance,
via cross-validation:

1. Leave out a part of the data from X and y.
2. Fit the model using the remaining data.
3. Using the fitted model, predict the data that were left out.
4. Repeat steps 1-3 so that each response value in y is

predicted.

• The goodness of the predictions at each iteration can be assessed
using the R2 formula. The obtained number is called the Q2

value.



Analyzing Modeling Results: Cross-validation

• Cross-validation is commonly used for model selection. The idea
is to test different models with different terms included and
choose the model that gives the best Q2 value.

• If the model is either too complex (’over-parameterized’) or too
crude, the model will predict poorly and give a low Q2 value.

• In practice, the cross-validation procedure can be carried out by
stepwise regression, which can be implemented in many ways, for
instance by:

• Forward stepping: test all terms individually, choose the one
with highest Q2 value. Continue by testing all remaining
terms, and choose the one with highest Q2 value at each step.

• Backward stepping: similarly, but starting with the full
model, and dropping, one by one, the worst term on each
iteration step.



Code example: fitting linear models

Let us consider fitting the model
y = θ0 + θ1x1 + θ2x2 + θ11x

2
1 + θ12x1x2 + θ22x

2
2 the to data given

below:

 x1 : 100.0 220.0 100.0 220.0 75.1 244.8 160.0 160.0 160.0 75.1 75.1
x2 : 2.0 2.0 4.0 4.0 3.0 3.0 1.5 4.4 3.0 3.0 3.0
y : 25.0 14.0 6.9 5.9 14.1 9.3 18.2 5.6 9.6 14.9 14.8



The model fitting and analyzing the modeling results is given in the
demo program lin fit.m.



Design of Experiments

• So far, we have assumed that the measurements for the input and
output variables X and y are given.

• The task of Design of Experiments (DOE) is to figure out how to
choose X so that maximal information about θ is obtained with
minimal experimental effort.

• In linear models, the covariance matrix of the parameters is
Cov(θ̂) = σ2(XTX)−1.

• That is, the uncertainty in θ̂ depends on the noise level σ2 and on
the design matrix X (not on θ̂).

• This suggests that, for linear models, one can derive general,
’case-independent’ theory about how to choose X.



DOE: 2N and CCD design plans

• Different design plans allow the fitting of different kinds of models:

• 2N design enables the estimation of a model with first order
and interaction terms. For instance, the model
y = θ0 + θ1x1 + θ2x2 + θ12x1x2 can be fitted using a 22

design.

• Central composite design (CCD) allows the estimation
of a model that contains the quadratic terms. In a
two-parameter example, we can fit
y = θ0 + θ1x1 + θ2x2 + θ11x

2
1 + θ12x1x2 + θ22x

2
2.

• Mathematically, the design plans are typically expressed in coded
units, where the center point of the design is moved to the origin
and the minimum and maximum are scaled to the values ±1.



DOE: 2N and CCD design plans

• If xi is the mean value of factor i and ∆i is the difference between
the maximum and minimum values of the experimental region, the
transformation from original units xi to coded units Xi is given by

Xi =
xi − xi
∆i/2

.

• Coded units give a generic way to present various design plans. In
addition, scaling all variables to the same unit interval often
results in more numerically stable computations.

• The 2N design puts measurements in the corners of the
experimental region, containing all combinations of levels ±1.

• The CCD design extends the 2N plan by adding ’One Variable at
a Time’ (OVAT) measurements, where only the value of one
variable is changed at a time while the others are fixed to the
center point value.



DOE: 2N and CCD design plans

1.5 1 0.5 0 0.5 1 1.5
1.5

1

0.5

0

0.5

1

1.5
2N EXPERIMENTS
OVAT EXPERIMENTS

Figure: 2N and CCD design plans in coded units.



DOE: 2N and CCD design plans

The design plans for N = 2 (without replicated measurements):

X2N =


+1 −1
+1 +1
−1 −1
−1 +1

 XCCD =



+1 −1
+1 +1
−1 −1
−1 +1√

2 0

−
√

2 0

0
√

2

0 −
√

2


Check the code example doe demo.m for examples of creating designs
and moving between original and coded units.



Nonlinear Models

• For nonlinear models, no direct formulas are available, and one
has to resort to numerical methods and different approximations.

• Let us consider a nonlinear model y = f(x, θ) + ε

• To compute the LSQ estimate, one has to numerically minimize
the sum of squares

l(θ) =
n∑
i=1

[yi − f(xi, θ)]
2.

• For simple models, one can use standard optimization routines in
computational software packages. For this course, the MATLAB
gradient-free nonlinear simplex optimizer fminsearch is enough.

• Next, let us see how approximative error analysis can be
performed for the parameters of a nonlinear model.



Nonlinear Models

• The first three terms of the Taylor series expansion for l(θ) at a

point θ̂ can be written as

l(θ) ≈ l(θ̂) +∇l(θ̂)T (θ − θ̂) +
1

2
(θ − θ̂)TH(θ − θ̂),

where ∇ denotes the gradient and H is the Hessian matrix.

• The 2nd derivatives, or elements [H]pq of the Hessian matrix, are

∂2`(θ̂)

∂θp∂θq
= 2

n∑
i=1

∂f(xi, θ̂)

∂θp

∂f(xi, θ̂)

∂θq
+2

n∑
i=1

(f(xi, θ̂)−yi)
∂2f(xi, θ̂)

∂θp∂θq
.

• Assuming that the residuals f(xi, θ̂)− yi are small, the Hessian
matrix can be approximated using only first derivatives by
dropping the residual terms:

[H]pq =
∂2`(θ̂)

∂θp∂θq
≈ 2

n∑
i=1

∂f(xi, θ̂)

∂θp

∂f(xi, θ̂)

∂θq
.



Nonlinear Models

• The first derivatives can be collected into a Jacobian matrix J,
which has elements

[J]ip =
∂f(xi; θ)

∂θp
|θ=θ̂.

• Now, the Hessian approximation can be written in a matrix form:

H ≈ 2JTJ.

• Inserting this into the Taylor expansion, and noting that
∇l(θ̂) = 0, we obtain

l(θ) ≈ l(θ̂) + (θ − θ̂)TJTJ(θ − θ̂).



Nonlinear Models

• For linear models, the least squares expression is

l(θ) = ||y−Xθ||2 = (y−Xθ)T (y−Xθ) = yTy−2yTXθ+θTXTXθ.

• Differentiating the function twice gives the Hessian matrix
H = XTX, and the Taylor expansion is

l(θ) = l(θ̂) + (θ − θ̂)TXTX(θ − θ̂).

• Now, compare the nonlinear and linear expressions.

• We observe that the Jacobian matrix J assumes the role of
the design matrix X in the linear case.

• That is, the covariance matrix of θ̂ can be approximated with

Cov(θ̂) = σ2(JTJ)−1.



Estimating σ2

• The measurement error σ2 can be estimated using repeated
measurements.

• Often, however, replicated measurements are not available.

• In this case, the measurement noise can be estimated using the
residuals of the fit, using the assumption that residuals ≈
measurement error.

• An estimate for the measurement error can be obtained using the
mean square error (MSE):

σ2 ≈MSE = RSS/(n− p),

where RSS (residual sum of squares) is the minimum of the least
squares function, n is the number of measurements and p is the
number of parameters.



Code Example: Nonlinear LSQ Fitting and Approximative
Error Analysis

• Let us consider estimating the parameters in a model
y = θ1(1− exp(−θ2x)) using the data x = (1, 3, 5, 7, 9) and
y = (0.076, 0.258, 0.369, 0.492, 0.559).

• We create two files, the main program bod fit.m and the
function bod ss.m that computes the sum of squares objective
function that is minimized.

• We use the fminsearch optimizer, and compute the Jacobian
matrix analytically.

• Check the demo program bod fit.m.



Code Example: Nonlinear LSQ Fitting and Approximative
Error Analysis
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Figure: Left: the model (blue line) fitted to the data (red circles).
Right: the LSQ estimates and two confidence ellipses.



Code Example: LSQ for Dynamical Models

• Let us consider the chemical reactions A→ B → C, which can be
modeled as an ODE system:

dA

dt
= −k1A

dB

dt
= k1A− k2B

dC

dt
= k2B.

• The parameters are the reaction rates, θ = (k1, k2). The data y
consists of the values of A and B:

time A B
1.0 .504 .415
3.0 .217 .594
5.0 .101 .493
7.0 .064 .394
9.0 .008 .309

 .

• The initial values for the concentrations are A(0) = 1 and
B(0) = C(0) = 0.



Code Example: LSQ for Dynamical Models

• Now, the above ODE system needs to be solved inside the least
squares function.

• This can be done with numerical ODE solvers. In MATBAL, we
can use built-in solvers such as ode45. The system is solved in the
function ABCmodel.m.

• The ODE solver needs an ODE function that defines the system.
Here, the ODE function is given in ABCode.m.

• The sum of squares is computed in ABCss.m and the main
program is ABCrun.m.

• Here, the Jacobian must be computed numerically. This is
demonstrated in jacob demo.m.



Code Example: LSQ for Dynamical Models
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Figure: Left: the model (lines) fitted to the data (circles). Right: the
LSQ estimates and two confidence ellipses.



Monte Carlo Methods for Parameter Estimation

• The approximative error analysis for nonlinear models described
above can sometimes given misleading results.

• An alternative way to obtain statistics for parameter estimates is
to use various Monte Carlo (MC) random sampling methods.

• Before proceeding to Bayesian estimation and MCMC topics,
which is the main focus of this course, we briefly present several
’classical’ Monte Carlo methods that one can use to evaluate the
uncertainty in θ̂.



Adding Noise to Data

• Uncertainty in the model parameters θ in a model

y = f(x, θ) + ε

is caused by the noise ε.

• The LSQ fit with given data leads to a single estimated value θ̂.

• So, to obtain a distribution of θ, a natural idea is to generate new
data by adding random noise to the existing data and repeatedly
fit different values θ̂.

+ Simple to implement, and can work well, if the noise is correctly
generated so that it agrees with the true measurement noise.

- Often the structure of the noise is not properly known.

- An iterative optimization needs to be performed after every time
new data is generated, which can be time consuming.

- The results are dependent on the optimizer settings.



Bootstrapping

• A very popular statistical analysis method, in spirit similar to the
above ’adding noise to data’ approach.

• No new data is generated, but new random combinations of the
existing data are used.

• The basic idea can be written as a pseudo-algorithm as follows:

1. From the existing data x = (x1, ..., xn), y = (y1, ..., yn),
sample new data x̃, ỹ with replacement. In practice, select n
indices randomly from 1, ..., n and choose the data points
corresponding to the chosen indices.

2. Compute the fit using the resampled data x̃, ỹ.
3. Go to step 1, until a desired number of θ samples are

obtained.

• Suffers from the same problems as the ’adding noise to data’
approach: depends on the success of the optimization step and is
CPU intensive (repeated calls to an optimization routine).



Bayesian Estimation and MCMC

• In Bayesian parameter estimation, θ is interpreted as a random
variable and the goal is to find the posterior distribution π(θ|y) of
the parameters.

• The posterior distribution gives the probability density for values
of θ, given measurements y.

• Using the Bayes’ formula, the posterior density is

π(θ|y) =
l(y|θ)p(θ)∫
l(y|θ)p(θ)dθ ,

where l(y|θ) is the likelihood and p(θ) is the prior distribution.

• The likelihood gives the probability density of observing y given
the parameter value θ, and the prior contains all existing
information about the parameters, such as bound constraints.

• The integral in the denominator is the normalization constant.



Likelihood

• The likelihood function contains the measurement error model.

• Let us consider the model y = f(x, θ) + ε and employ a Gaussian
i.i.d. error model, ε ∼ N(0, σ2I)

• Noting that ε = y − f(x, θ) gives the likelihood

l(y|θ) ∝
n∏
i=1

l(yi|θ) ∝ exp

(
− 1

2σ2

n∑
i=1

[yi − f(xi, θ)]
2

)
.

• That is, the likelihood contains the familiar sum of squares term
SS(θ) =

∑n
i=1[yi − f(xi, θ)]

2.



Point Estimates

• Different point estimates can be derived from the posterior
distribution:

- Maximum a Posteriori (MAP) estimator maximizes π(θ|y).
- Maximum Likelihood (ML) estimator maximizes l(y|θ).

• If the prior distribution is uniform within some bounds, ML and
MAP coincide.

• With the Gaussian i.i.d. error assumption, ML coincides also with
the classical Least Squares (LSQ) estimate.



Bayesian Computation: MCMC

• In principle, the posterior distribution gives the solution to the
parameter estimation problem in a fully probabilistic sense.

• We can find the peak of the probability density, and determine,
for instance, the 95% credibility regions for the parameters.

• However, working with the posterior density directly is
challenging, since we need to compute the normalization constant∫
l(y|θ)p(θ)dθ.

• This often cannot be computed analytically, and classical
numerical integration methods also become infeasible, if the
number of parameters is larger than a few.

• With the Markov chain Monte Carlo (MCMC) methods,
statistical inference for the model parameters can be done without
explicitly computing this difficult integral.



Bayesian Computation: MCMC

• MCMC methods aim at generating a sequence of random samples
(θ1, θ2, ..., θN ), whose distribution asymptotically approaches the
posterior distribution as N increases.

• That is, the posterior density is not used directly, but samples
from the posterior distribution are produced instead.

• The Monte Carlo term is used to describe methods that are based
on random number generation.

• The samples are generated so that each new point θi+1 only
depends on the previous point θi, and the samples therefore form
a Markov Chain.

• Markov Chain theory can be used to show that the samples
approach the correct target (posterior).



The Metropolis Algorithm

• One of the most widely used MCMC algorithms.

• Works by generating candidate parameter values from a proposal
distribution and then either accepting or rejecting the proposed
value according to a simple rule.

• The Metropolis algorithm can be written as follows:

• 1 Initialize by choosing a starting point θ1
• 2 Choose a new candidate θ̂ from a suitable proposal

distribution q(.|θn), that may depend on the previous
point of the chain.

• 3 Accept the candidate with probability

α(θn, θ̂) = min

(
1,

π(θ̂)

π(θn)

)
.

If rejected, repeat the previous point in the chain. Go back
to step 2.



The Metropolis Algorithm

• One can see that the candidate points that give a higher posterior
density value than the previous point (points where π(θ̂) > π(θn))
are always accepted.

• However, moves ’downward’ may also be accepted, with
probability given by the ratio of the posterior density values.

• That is, the algorithm randomly jumps around the peak of the
target, without converging to a single point.

• In code level, the accept-reject step can be implemented by
generating a uniform random number u ∼ U(0, 1) and accepting if

u ≤ π(θ̂)/π(θi).

• Note that we only need to compute ratios of posterior densities,
and the normalization constant (nasty integral) cancels out!



The Metropolis Algorithm

• The problem remaining in the implementation of the Metropolis
algorithm is defining the proposal distribution q.

• The proposal should be chosen so that it is easy to sample from
and ’close’ to the underlying target distribution.

• An unsuitable proposal can lead to inefficient implementation:

- if the proposal is too large, the new candidates mostly miss
the essential support π and are only rarely accepted.

- if the proposal is too small, the new candidates are mostly
accepted, but from a small neighborhood of the previous
point, and the chain moves slowly.



The Metropolis Algorithm
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The Metropolis Algorithm

• In this course, we typically deal with multidimensional continuous
parameter spaces.

• In such a setting, a multivariate Gaussian distribution is a
common choice for a proposal distribution.

• In the commonly used random walk Metropolis algorithm, the
current point in the chain is taken as the center point of the
Gaussian proposal.

• The problem then is to find a suitable proposal covariance matrix
so that its size and the shape (orientation) match well with the
target density.

• The covariance matrix selection problem is discussed in detail a
bit later.



The Metropolis Algorithm

• Our most typical application is MCMC for standard nonlinear
parameter estimation.

• Typically, the prior information we have are some bound
constraints for the parameters, and within the bounds we use a
uniform, ’flat’ prior, p(θ) ∝ 1.

• Assuming independent measurement error with a known constant
variance σ2, the posterior density can be written as

π(θ|y) ∝ l(y|θ)p(θ) ∝ exp

(
− 1

2σ2
SS(θ)

)
,

where SS(θ) =
∑n
i=1[yi − f(xi, θ)]

2 is the LSQ function.

• Using this notation, the acceptance ratio reduces to

min

(
1,

π(θ̂)

π(θn)

)
= min

(
1, exp

(
− 1

2σ2

(
SS(θ̂)− SS(θn)

)))
.



The Metropolis Algorithm

• Using these assumptions and this notation, the Metropolis
algorithm with a Gaussian proposal, with covariance matrix C
and initial point θold = θ0, can be written as follows:

1. Generate a candidate value θnew ∼ N(θold,C) and compute
SS(θnew).

2. Accept the candidate if
u < exp

(
− 1

2σ2 (SS(θnew)− SS(θold))
)

where u ∼ U(0, 1).

2.1 If accepted, add θnew to the chain and set θold := θnew and
SS(θold) := SS(θnew).

2.2 If rejected, repeat θold in the chain.

3. Go to step 1 until a desired chain length is achieved.

• This will be the version of the Metropolis algorithm that is mostly
used in this course.



The Metropolis Algorithm

• Note that although we assume here a flat prior, it is easy to add
possible prior information about the parameters.

• In this course, we will mostly use bound constraints as prior
information.

• Implementing simple bound constraints is easy: if the proposed
parameter is out of bounds, it is simply rejected.

• The progress of the Metropolis algorithm is animated in the
mcmcmovie demo program.



The Metropolis Algorithm
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Figure: The path of the Metropolis sampler (blue line), when sampling
a non-Gaussian target with a Gaussian proposal distribution (ellipses).



Code example: implementing the Metropolis algorithm

• Let us consider again model y = θ1(1− exp(−θ2x)) with data
x = (1, 3, 5, 7, 9), y = (0.076, 0.258, 0.369, 0.492, 0.559).

• We first compute the LSQ estimate by minimizing the sum of
squares, and use that as the starting point for MCMC.

• A spherical proposal covariance C = αI is used, where α controls
the size of the proposal distribution.

• The measurement error variance is estimated from the residuals
using the MSE formula.

• The code is given in two files, the main program bod mcmc.m and
the sum of squares objective function bod ss.m.



Code example: implementing the Metropolis algorithm
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Predictive Distributions

In addition to finding the distribution of the model parameters, the
MCMC results can be used to simulate the distribution the model
predictions, the predictive distribution.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x

y=
1(1

ex
p 

(
2 x

))
MODEL PREDICTION DISTRIBUTION & DATA



Selecting the Proposal Covariance Matrix

• A good starting point for selecting C is to use the approximation
obtained via linearization: C = σ2(JTJ)−1.

• This proposal can better match with the orientation of the target
distribution:
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Selecting the Proposal Covariance Matrix

• In addition to orientation, scale of the proposal distribution is
important.

• Theory has been developed for the optimal scaling of the proposal
covariance matrix for Metropolis algorithm.

• For Gaussian targets, an efficient scaling factor is sd = 2.42/d,
where d is the dimension of the problem.

• This result can be used as a rule of thumb also for non-Gaussian
targets.

• That is, utilizing the Jacobian-based covariance matrix, we can
use proposal covariance matrix C = sdσ

2(JTJ)−1.

• A code example of the Jacobian-based proposal is given in
bod mcmc2.m.



Selecting the Proposal Covariance Matrix
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On MCMC Theory: Ergodicity

• A central concept in MCMC theory is ergodicity, which
guarantees the correctness of an MCMC algorithm in the sense
that the Law of Large Numbers (LLN) holds.

• LLN: the averages computed from the MCMC samples approach
the correct expected value as the number of samples increases.

• Formally: let π be the target density. An MCMC algorithm is
said to be ergodic if, for an arbitrary function f : Rd → R and
initial parameter value θ0, it holds that

lim
n→∞

1

n+ 1
(f(θ0) + f(θ1) + . . .+ f(θn)) =

∫
Rd

f(θ)π(θ)dθ,

where (θ0, ..., θn) are the samples produced by the MCMC
algorithm.

• It can be shown, for instance, that the Metropolis algorithm
described above is ergodic.



On MCMC Theory: Ergodicity

• The theorem simply states that the sampled values asymptotically
approach the theoretically correct ones.

• Note the role of the function f . If f is the characteristic function
of a set A, i.e. f(θ) = 1 if θ ∈ A, f(θ) = 0 otherwise, then the
right hand side of the equation gives the probability measure of A,
while the left hand side gives the frequency of ’hits’ to A by the
sampling.

• But f might also be the model prediction f(x, θ). The theorem
then states that the values calculated at the sampled parameters
correctly gives the distribution of the model predictions, also
known as the predictive distribution.



Adaptive MCMC

• The bottleneck in MCMC computations is usually selecting a
proposal distribution.

• The covariance matrix using the linearization of the model is a
good starting point, but does not always lead to efficient sampling.

• The purpose of adaptive MCMC methods is to tune the proposal
’on the run’ as the sampling proceeds, using the information of the
previously sampled points.

• In the Adaptive Metropolis (AM) algorithm, the proposal
covariance matrix is taken to be the empirical covariance matrix
computed from the history.

• Note that now the sampled points depend on the earlier history of
the chain, and the chain is therefore no longer Markovian.

• However, it can be shown that the AM algorithm gives correct
(ergodic) results.



AM Algorithm

• In AM, if we have sampled points (θ0, ..., θn−1), we propose the
next candidate using Cn = sdCov(θ0, . . . , θn−1) + εId.

• Here sd is the scaling factor and ε > 0 is a regularization
parameter that ensures that the proposal covariance matrix is
positive definite.

• In practice, ε can often be chosen to be very small or set to zero.

• In the beginning of the sampling, a positive definite initial
covariance C0 is chosen.

• A time index n0 > 0 defines the length of the initial
non–adaptation period, after which the empirical covariance
matrix is used:

Cn =

{
C0, n ≤ n0
sdCov(θ0, . . . , θn−1) + sdεId, n > n0.



AM Algorithm

• The initial proposal covariance C0 needs to be specified.

• A good starting point is often the approximative error analysis
given by the linearization of the model.

• That is, we can use the scaled Jacobian-based covariance matrix
as the initial proposal: C0 = sdσ

2(JTJ)−1.

• However, in most simple cases, it is enough to use a simple (e.g.
diagonal) C0 that is small enough so that the sampler gets
moving, and let the adaptation tune the proposal.

• The empirical covariance matrix does not have to be recomputed
every time, since recursive formulas exist.



AM Algorithm

• The covariance matrix Cn satisfies the recursive formula

Cn+1 =
n− 1

n
Cn+

sd
n

(
nθn−1θ

T

n−1 − (n+ 1)θnθ
T

n + θnθ
T
n + εId

)
,

• The mean θn also has an obvious recursive formula.

• Only the expression θnθ
T
n /n is ’new’ in the update formula, all the

rest depends on previous mean values.

• So the effect of adaptation goes down as 1/n; this is often called
diminishing adaptation: in the long run, AM goes back to usual
non-adaptive sampling.

• This form of adaptation can proved to be ergodic, but the same
adaptation with a fixed update length for the covariance is not
ergodic.



AM Algorithm

• The choice of the length of the burn-in period n0 is free.

• The adaptation might not be efficient if done at each time step,
and one should adapt only at given time intervals.

• Finally, the AM algorithm as a pseudocode:

- Choose the lenght of the chain N and initialize θ1 and C1.
- For k = 1, 2, ..., N

* Perform the Metropolis step, using proposal N(θk,Ck).
* Update Ck+1 = Cov(θ1, ..., θk).

• One may compute the covariance by the whole chain (θ1, ..., θk) or
by an increasing part of it, for instance (θk/2, ..., θk).



Delayed Rejection Adaptive Metropolis

• In the Metropolis algorithm, a candidate move θ̃k is generated
from a proposal distribution q1(·|θk).

• In the Delayed Rejection (DR) algorithm, upon rejection, a second

stage move θ̃
(2)
k is proposed from a proposal distribution q2.

• The second stage proposal is allowed to depend on what we have
just proposed and rejected: q2(·|θk, θ̃k).

• An ergodic chain is created, if the second stage proposal is
accepted with suitably modified acceptance probability (details
skipped here).

• The process of delaying rejection can be iterated to try sampling
from further proposals.

• We often use only a 2-stage version, where the 2nd stage proposal
is a downscaled version of the first stage proposal (upon rejection,
we try a new candidate value closer to the current point).



Delayed Rejection Adaptive Metropolis

• The delayed rejection method can be combined with the adapting
proposal covariance matrix.

• This algorithm is called Delayed Rejection Adaptive Metropolis
(DRAM).

• The algorithm can be implemented in various ways, but we often
use a the following simple implementation:

- The proposal at the 1st stage of DR is adapted just as in
AM: the covariance matrix C1

n is computed from the points
of the sampled chain, no matter at which stage of DR these
points have been accepted in the sample path.

- The covariance Ci
n of the proposal for the i-th stage

(i = 2, ...,m) is computed as a scaled version of the proposal
of the first stage, Ci

n = γiC
1
n, with fixed scaling factors γi.



MCMC in practice: the mcmcrun tool

• In this course we use a MATLAB code package that makes it easy
to run MCMC analyses.

• The code is written by Marko Laine, and it can be downloaded
from http://helios.fmi.fi/ lainema/mcmc/.

• The toolbox provides a unified interface for specifying models, and
implements the AM and DRAM methods.

• Let us demonstrate the toolbox by considering again the simple
BOD model y = θ1(1− exp(−θ2x)) with data x = (1, 3, 5, 7, 9),
y = (0.076, 0.258, 0.369, 0.492, 0.559).

• The main program for running the MCMC analysis is
bod mcmcrun.m. The code uses the same sum of squares function
bod ss.m as before.

• The MCMC is run with the mcmcrun function, and the results are
visualized with mcmcplot, see lecture notes for details.



Visualizing MCMC Output

• Previously we have plotted the output as two dimensional
distribution plots and one dimensional ’chain’ plots that give the
sample paths for each parameter.

• In addition to these, one can obviously approximate the one
dimensional marginal distributions, for instance, by histograms.

• In the mcmcplot function, one can give the format of the
visualization: ’chain’ gives the chain plot, ’pairs’ draws the
2D marginal distributions and ’hist’ gives histograms.

• The target density can be approximated based on the obtained
samples also by the kernel density estimation technique.



Visualizing MCMC Output

• In kernel density estimation, the density is approximated by a
sum of certain kernel functions, which are centered at the sampled
parameter values.

• The kernel function can be, for instance, the density function of
the normal distribution.

• The width and the orientation of the Gaussian kernel functions
can be controlled via the covariance matrix.

• Kernel density estimation is implemented in the mcmcplot

function.

• One can add density lines to the two dimensional marginal plots
by using the function as
mcmcplot(chain,inds,names,’pairs’,smo,rho), where smo

gives the width of the kernel and rho gives the orientation
(correlation).



Visualizing MCMC Output
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Visualizing MCMC Output

• In addition to visualizing the parameter posterior, we are often
interested in the predictive distribution.

• Predictive distributions can be visualized simply by simulating the
prediction model with different parameter values and drawing the
prediction curves.

• Another way is to compute, for instance, 50% and 95% envelopes
for the predictions.

• The MCMC package contains functions for visualizing predictive
distributions:

- mcmcpred simulates the model responses and computes
different confidence envelopes.

- mcmcpredplot draws the envelopes

• Check the demo program bod mcmcrun pred.m.



Visualizing MCMC Output
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MCMC Convergence Diagnostics

• Usually, one can simply visually inspect the chains to see how well
the chain is mixing and if the sampler has reached its stationary
distribution.

• However, various formal diagnostic methods have been developed
to study if the sampler has converged.

• In code package, the chainstats function can be used to
compute some basic statistics of the chain.

• A useful way to visualize how well the chain is mixing is to plot
the autocorrelation function (ACF) of the parameter chains.

• The ACF tells how much, on average, samples that are k steps
apart correlate with each other.



MCMC Convergence Diagnostics

• In MCMC methods, subsequent points correlate with each other
since the next point depends on the previous point.

• The further apart the samples are in the chain, the less they
correlate.

• The ACF can be visualized with the mcmcplot using the plotting
mode ’acf’.
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Gibbs Sampling

• In the Metropolis algorithm presented above, candidate values for
all parameters are proposed at the same time.

• Sometimes, especially in high-dimensional problems, it may be
difficult to find a good multivariate proposal distribution for all
parameters simultaneously.

• The idea in Gibbs sampling is to reduce the sampling to one
dimensional distributions.

• Each parameter is sampled in turn, while the other parameters
are kept fixed.



Gibbs Sampling

• In more detail, the parameter vector (θ1, θ2, ..., θp) is updated in
sweeps, by updating one coordinate at a time.

• This may be done if the 1D conditional distributions
π(θi|θ1, ..., θi−1, θi+1, ..., θp) are known.

• In many cases these reduce to simple known densities which are
easy to sample from.

• But often the conditional distributions are not known, and they
must be approximated by computing ’sufficiently’ many values in
the 1D directions.

• Gibbs pseudocode:

- for k=1,...,N

- for i=1,...,p
sample θki from the 1D conditional distribution
π(θi|θ1, ..., θi−1, θi+1, ..., θp).



Gibbs Sampling

• Note that there is no accept-reject procedure here and the point
taken from the 1D distribution is always accepted.

• But the creation of the 1D (approximative) distribution may
require several evaluations of the objective function.

• If the 1D distribution for θk is not known, it must be
approximatively created.

• This may be done by evaluating π(θi|θ1, ..., θi−1, θi+1, ..., θp) with
respect to the coordinate i a given number of times.

• The computed values can be used to create an empirical CDF.

• The new value for θki can then be sampled from the empirical
distribution by using the inverse CDF method.



Component-wise Metropolis

• Instead of sampling directly from the one-dimensional conditional
distributions, as in Gibbs sampling, one can perform
component-wise Metropolis sampling.

• The proposal for each component is, for instance, a normal
distribution with a given variance, separate for each coordinate.

• When sampling the i:th coordinate θit (i = 1, . . . , d) of the t:th
state θt we apply the standard 1-dimensional Metropolis step:

1. Sample zi from 1D proposal qit ∼ N(θit−1, v
i) centered at

previous point with variance vi.
2. Accept the candidate point zi with probability

min

(
1,

π(θ1t , . . . , θ
i−1
t , zi, θi+1

t−1, . . . , θ
d
t−1)

π(θ1t , . . . , θ
i−1
t , θit−1, θ

i+1
t−1, . . . , θ

d
t−1)

)
,

in which case set θit = zi, and otherwise θit = θit−1.



Importance Sampling

• Importance sampling is a Monte Carlo method for approximating
integrals of form

Ep(f) =

∫
f(x)p(x)dx.

• A straightforward way would be to sample points x1, ..., xm from
p(x) and approximate the expectation by

Ep(f) ≈ f̄m =
1

m

m∑
j=1

f(xj).

• Suppose we cannot sample directly from p(x), but we do know
g(x) (such that g(x) > 0 if p(x) > 0) from which we can sample.



Importance Sampling

• Let us write the expectation as

Ef (p) =

∫
f(x)

p(x)

g(x)
g(x)dx.

• We can sample from g(x) and approximate the expected value as

f̄m =
1

m

m∑
j=1

f(xj)
p(xj)

g(xj)
=

1

m

m∑
j=1

f(xj)w(xj).

• The function g is referred to as the importance function and w as
the importance weight.

• The function g should be chosen so that it mimics the distribution
p, and is easy to sample from.



Conjugate Priors and MCMC Estimation of σ2

• In our typical applications, the likelihood distribution reads as

l(y|θ) = (2πσ2)−n/2 exp

(
− 1

2σ2
SS(θ)

)
.

• We need to specify the value for the measurement error variance
σ2.

• Previously, we have given a fixed value for σ2, estimated from the
residuals of the model fit or from repeated measurements.

• We can also regard σ2 as a random variable and treat it in a
Bayesian way by sampling it along with the model parameters in
the MCMC algorithm.



Conjugate Priors and MCMC Estimation of σ2

• We often have a rather good idea about the level of the
measurement error, and we therefore would like to specify a prior
distribution for it.

• A computationally convenient choice for the prior is obtained
using the conjugacy property.

• If we set the prior so that the posterior is of the same form as the
prior, the prior is called a conjugate prior.

• Looking at the Gaussian likelihood and considering it as a
function of σ2 (with fixed θ), we see that the inverse variance
1/σ2 has a Gamma type distribution.

• The conjugate prior for the Gamma distribution is also Gamma.
That is, if we specify a Gamma prior for 1/σ2, the conditional
posterior p(σ−2|y, θ) will also be Gamma distributed.



Conjugate Priors and MCMC Estimation of σ2

• More specifically, the prior for σ−2 can be defined as

σ−2 ∼ Γ(
n0
2
,
n0
2
S2
0),

where S2
0 gives the mean value for σ2 and n0 defines how accurate

we think the value S2
0 is. The higher n0 is, the more peaked the

prior distribution is around S2
0 .
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Conjugate Priors and MCMC Estimation of σ2

• With the conjugate prior, we can derive a Gamma posterior for
the conditional posterior for the error variance, p(σ−2|y, θ).

• Skipping the details, the conditional posterior for σ−2 is

p(σ−2|y, θ) = Γ(
n0 + n

2
,
n0S

2
0 + SS(θ)

2
).

• Now we have an analytical expression for the conditional
distribution of σ−2, and we can build a Gibbs sampler that
samples θ and σ2 in turn:

1. Sample a new θ value from p(θ|σ−2,y)
2. Sample a new σ2 value from p(σ−2|y, θ)

• In the mcmcrun code, σ sampling can be turned on by setting
options.updatesigma = 1. See bod mcmcrun sig.m for a demo.



Dynamical State Estimation

• Besides estimating the static parameters θ, one is often interested
in estimating the dynamically changing state of the system.

• As time proceeds, new measurements become available, that can
be used to update the state estimates.

• The state estimation problem: at time k, estimate the system
state xk using previous observations y1:k = (y1, ...,yk), when the
model and observation equations are given as

xk = M(xk−1) + εpk
yk = K(xk) + εok,

where M is the evolution model and K is the observation model.
The terms εpk and εok represent the model error and the
observation error.



Dynamical State Estimation

• In dynamical state estimation problems, measurements are
obtained in real-time and the state estimate needs to be updated
after the measurements are obtained.

• This can be achieved by applying the Bayes’ formula sequentially:

1. The prior is given by evolving the state from the previous
time step using the model M (prediction step)...

2. ... the prior is updated with the likelihood of the
measurement (update step) to get the posterior ...

3. ... which is evolved with the model and used as the prior in
the next time step.

• Repeating this procedure allows ’on-line’ estimation of model
states.



Dynamical State Estimation

Dynamical state estimation techniques are needed in many
applications:

• Target tracking: estimate the position and velocity of an object.
For instance, the Global Positioning System (GPS) uses state
estimation techniques (extended Kalman filtering).

• Combining accelerometer and gyroscope data to compute the
orientation, position and velocity of a gaming device.

• Process tomography: estimate the dynamically changing
concentrations of different compounds in a pipe by combining fluid
dynamics and chemistry models with tomographic measurements.

• Numerical Weather Prediction (NWP): estimate the state of the
weather by correcting the previous prediction with different kinds
of observations (ground based, satellite etc.) to allow real-time
weather predictions.

• ...



Dynamical State Estimation: General Formulas

• The filtering methods aim at estimating the marginal distribution
of the states p(xk|y1:k).

• In the prediction step, the distribution of the state is moved with
the dynamical model to the next time step:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

• When the new observation yk is obtained, the model state is
updated using the Bayes’ rule:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1).

• The above calculation is repeated for all time steps.



Dynamical State Estimation: General Formulas

p(yk|xk)

xk = M(xk−1) + εp
k

yk = K(xk) + εo
k

evolution model prior posterior 

observation model 

likelihood 

p(xk−1|y1:k−1)

posterior 

observation model 

likelihood 

p(yk−1|xk−1)

yk−1 = K(xk−1) + εo
k−1

p(xk|y1:k−1) p(xk|y1:k)

Different state estimation methods can be derived, depending on the
assumptions of the form of the state distribution, the likelihood and
the techniques used to evolve the uncertainty of the state in time.



Dynamical State Estimation: General Formulas

1) Current state distribution



Dynamical State Estimation: General Formulas

2) Predict: move the state distribution with the model



Dynamical State Estimation: General Formulas

3) New observations become available



Dynamical State Estimation: General Formulas

4) Update the state estimate with the new observations



Dynamical State Estimation: General Formulas

5) Predict forward



Kalman Filter and Extended Kalman Filter

• The Kalman filter (KF) is meant for situations, where the model
is linear and the model and observation errors are assumed to be
zero mean Gaussians.

• The extended Kalman filter (EKF) is its extension to nonlinear
situations, where the model is linearized and the KF formulas are
applied.

• To derive the KF formulas, let us first consider the linear model
y = Ax with Gaussian prior and Gaussian likelihood.

• Note that now the unknown is denoted by x instead of θ.



Linear LSQ with Gaussian Prior and Likelihood

• The posterior distribution is π(x|y) ∝ p(y|x)p(x), where the
likelihood and prior are

p(x) ∝ exp

(
−1

2
(x− xp)

TP−1(x− xp)

)
p(y|x) ∝ exp

(
−1

2
(y −Ax)TR−1(y −Ax)

)
,

where xp is the prior mean and P and R are model error and
measurement error covariance matrices.

• Maximizing the posterior is equivalent to minimizing the negative
log-likelihood

−2 log(π(x|y)) = (y−Ax)TR−1(y−Ax)+(x−xp)TP−1(x−xp).



Linear LSQ with Gaussian Prior and Likelihood

• Let decomposed the covariance matrices into P−1 = KTK and
R−1 = LTL.

• Then, we can write the least squares expression as

(y −Ax)TLTL(y −Ax) + (x− xp)
TKTK(x− xp)

= (Ly − LAx)T (Ly − LAx) + (Kx−Kxp)
T (Kx−Kxp).

• We continue by combining both terms into one expression:

−2 log(π(x|y)) = (ỹ − Ãx)T (ỹ − Ãx),

where

ỹ =

(
Ly
Kxp

)
Ã =

(
LA
K

)
.



Linear LSQ with Gaussian Prior and Likelihood

• That is, we have transformed the problem into a least squares
problem with identity I as the error covariance matrix.

• This can be solved with the LSQ formulas: x̂ = (ÃT Ã)−1ÃT ỹ
and Cov(x̂) = (ÃT Ã)−1.

• Switching back to the original notation, theLSQ solution θ̂ and its
covariance matrix C are

x̂ = (ATR−1A + P−1)−1(ATR−1y + P−1xp)

C = (ATR−1A + P−1)−1.

• These formulas are similar to the previously obtained LSQ
formulas, but here we have the prior center point xp and
covariance matrix P present.



The Kalman Filter

• Let us now consider the linear state space model

xk = Mkxk−1 + εpk
yk = Kkxk + εok,

where the model error and observation error are assumed to be
zero mean Gaussian with covariance matrices Qk and Rk.

• The idea of filtering is to estimate the state vector xk for time
steps k = 1, 2....

• Let us assume that we have at time step k − 1 obtained a state
estimate xest

k−1 with covariance matrix Cest
k−1.

• The prior center point for the next time step k is given by the
model prediction:

xpk = Mkx
est
k−1.



The Kalman Filter

• The covariance of the prediction is computed using the
assumption that the state vector and model error are statistically
independent:

Cp
k = Cov(Mkx

est
k−1 + εpk) = MT

kC
est
k−1Mk + Qk.

• This Gaussian with mean xpk and covariance matrix Cp
k is used as

the prior, which is updated with the new measurement vector yk.

• The negative log-posterior for the state vector at time step k is

(xk − xpk)T (Cp
k)−1(xk − xpk) + (yk −Kkxk)TR−1k (yk −Kkxk),

which is just the linear least squares problem with Gaussian prior
and Gaussian likelihood discussed in the previous section.



The Kalman Filter

• For computational reasons, the KF formulas are usually written in
the following form, which can be obtained via direct but
somewhat non-trivial matrix manipulations (exercise):

Gk = Cp
kK

T
k (KkC

p
kK

T
k + Rk)−1

xest
k = xpk + Gk(yk −Kkx

p
k)

Cest
k = Cp

k −GkKkC
p
k.

• In the above formulas, Gk is called the Kalman gain matrix.



The Kalman Filter

To sum up, we write the Kalman filter as an algorithm:

1. Prediction: move the state estimate xest
k−1 and its covariance

Cest
k−1 in time

1.1 Compute xpk = Mkx
est
k−1.

1.2 Compute Cp
k = MkC

est
k−1M

T
k + Qk.

2. Update: combine the prior xpk with observations yk

2.1 Compute the Kalman gain Gk = Cp
kK

T
k (KkC

p
kK

T
k + Rk)−1.

2.2 Compute the state estimate xest
k = xpk + Gk(yk −Kkx

p
k).

2.3 Compute the covariance estimate Cest
k = Cp

k −GkKkC
p
k.

3. Increase k and go to step 1.



The Extended Kalman Filter

• The extended Kalman filter (EKF) is an extension of the Kalman
filter to the case where the evolution and/or observation model
are nonlinear.

• The EKF directly uses the Kalman filter formulas by replacing
the model and operators with linearizations:
Mk = ∂M(xest

k−1)/∂x and Kk = ∂K(xpk)/∂x.

• For small scale models, the linearizations can be computed
numerically, using finite differences.



Ensemble Kalman Filtering

• In ensemble filtering, the uncertainty in the state xk is represented
as N samples, here denoted as sk = (sk,1, sk,2, ..., sk,N ).

• In the ensemble Kalman filter (EnKF), the covariances in EKF
are replaced with the sample covariances calculated from the
ensemble.

• The sample covariance can be written as Cov(sk) = XkX
T
k , where

Xk = ((sk,1 − sk), (sk,2 − sk), ..., (sk,N − sk)) /
√
N − 1.

• The sample mean is denoted by sk.



Ensemble Kalman Filtering

Using this notation, the EnKF algorithm can be formulated as follows:

1. Prediction: move the state estimate and covariance in time

1.1 Move ensemble forward and perturb members with model
error:
spk,i =M(sest(k−1),i) + epk,i, i = 1, ..., N .

1.2 Calculate sample mean spk and covariance Cp
k = XkX

T
k .

2. Update: combine the prior with observations

2.1 Compute the Kalman gain Gk = Cp
kK

T
k (KkC

p
kK

T
k + Cεok

)−1.
2.2 Update ensemble members

sestk,i = spk,i + Gk(yk −Kks
p
k,i + eok,i).

2.3 Calculate state estimate as the sample mean: xest
k = sestk .

3. Increase k and go to step 1.

In the above algorithm, vectors epk,i and eok,i are realizations of the

model and observation errors εpk and εok.



Particle Filtering

• The Kalman filtering methods described above assume a Gaussian
form for the filtering distributions.

• Particle filtering (PF) methods do not rely on any assumptions
about the form of the target.

• PF methods, often also called sequential Monte Carlo (SMC)
methods, are based on sequential application of importance
sampling.

• Let us describe the state estimate at time k − 1 with samples
sest(k−1,i), where i = 1, ..., N .

• In PF, the forward model p(xk|xk−1) is used to move the particles
forward to obtain the predicted particles spk,i.



Particle Filtering

• The predicted particles are considered to be samples from the
prior distribution at time step k

• The prior distribution is considered as the importance function for
sampling from the posterior.

• That is, the importance weight for particle i at time k becomes

wk,i =
π(spk,i|yk)

p(spk,i)
=
p(yk|spk,i)p(s

p
k,i)

p(spk,i)
= p(yk|spk,i).

• Thus, the weights for the particles can be computed directly using
the likelihood.

• The predicted particles that hit closer to the observation get a
larger weight.

• Once the importance weights are obtained, the posterior particles
sestk,i are sampled with replacement from the prior particles in
proportion to the importance weights.



Particle Filtering

The particle filter implemented in this way is called the Sequential
Importance Resampling (SIR) algorithm:

1. Move the particles forward: spk,i ∼ p(sk,i|sest(k−1,i)), with
i = 1, ..., N .

2. Compute the importance weights wk,i = p(yk|spk,i), with
i = 1, ..., N

3. Resample with replacement in proportion to the importance
weights to obtain the posterior particles sestk,i.

4. Increase k and go to step 1.


