
Statistical Analysis in Modeling

Antti Solonen∗, Heikki Haario∗, Marko Laine†

∗ Lappeenranta University of Technology

† Finnish Meteorological Institute

Contents

1 Introduction 3
1.1 Mathematical Models . 3
1.2 Uncertainties in Mathematical Models 5

2 Prequisities 6
2.1 Statistical Measures . 6
2.2 Sample Statistics . 7
2.3 Some distributions . 8
2.4 Generating Gaussian random numbers 9
2.5 General Methods for Generating Random Numbers 11
2.6 Exercises . 13

3 Linear Models 15
3.1 Analyzing Modeling Results . 16
3.2 Design of Experiments . 19
3.3 Exercises . 22

4 Nonlinear Models 24
4.1 Exercises . 32

5 Monte Carlo Methods for Parameter Estimation 35
5.1 Adding Noise to Data . 35
5.2 Bootstrap . 35
5.3 Jack-knife . 36
5.4 Exercises . 36

6 Bayesian Estimation and MCMC 37
6.1 Metropolis Algorithm . 38
6.2 Selecting the Proposal Distribution 44

1

6.3 On MCMC Theory . 46
6.4 Adaptive MCMC . 48

6.4.1 Adaptive Metropolis . 48
6.4.2 Delayed Rejection Adaptive Metropolis 49

6.5 MCMC in practice: the mcmcrun tool 50
6.6 Visualizing MCMC Output . 53
6.7 MCMC Convergence Diagnostics 55
6.8 Exercises . 56

7 Further Monte Carlo Topics 58
7.1 Metropolis-Hastings Algorithm . 58
7.2 Gibbs Sampling . 58
7.3 Component-wise Metropolis . 59
7.4 Metropolis-within-Gibbs . 59
7.5 Importance Sampling . 60
7.6 Conjugate Priors and MCMC Estimation of σ2 60
7.7 Hierarchical Modeling . 63
7.8 Exercises . 63

8 Dynamical State Estimation 64
8.1 General Formulas . 65
8.2 Kalman Filter and Extended Kalman Filter 65
8.3 Ensemble Kalman Filtering . 68
8.4 Particle Filtering . 69
8.5 Exercises . 70

2

1 Introduction

This material is prepared for the LUT course Statistical Analysis in Modeling. The
purpose of the course is to give a practical introduction into how statistics can be
used to quantify uncertainties in mathematical models. The goal is that after the
course the student is able to use modern computational tools, especially different
Monte Carlo and Markov Chain Monte Carlo (MCMC) methods, for estimating the
reliability of modeling results. The material should be accessible with knowledge of
basic engineering mathematics (especially matrix calculus) and basics of statistics,
and the course is therefore suitable for engineering students from different fields.

The course contains a lot of practical numerical exercises, and the software used
in the course is MATLAB. To successfully complete the course, the student should
have basic skills in MATLAB or another platform for numerical computations.

In the course, we will use the MCMC code package written by Marko Laine.
Download the code from http://helios.fmi.fi/~lainema/mcmc/mcmcstat.zip.
Some additional codes that are needed to follow the examples of this document are
provided in the website of the course, download packages utils.zip and demos.zip.

1.1 Mathematical Models

Mathematical modeling is a central tool in most fields of science and engineering.
Mathematical models can be either ’mechanistic’, which are based on principles of
natural sciences, or ’empirical’ where the phenomenon cannot be modeled exactly
and the model is built by inferring relationships between variables directly from the
available data.

Empirical models, also often called ’soft’ models or ’data-driven’ models, are
based merely on existing data, and do not involve equations derived using principles
of natural sciences. That is, we have input variables X and output variables Y,
and we wish to learn the dependency between X and Y using the empirical data
alone. If the input values consist of x–variables x1, ...,xp, the output of y–variables
y1, ...,yq and we have n experimental measurements done, the data values may be
expressed as a design and response matrices,

X =

x1 x2 . . . xp
x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp

 Y =

y1 y2 . . . yq
y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yn1 yn2 . . . ynq

. (1)

Empirical models often result in easier computation, but there can be problems
in interpreting the modeling results. The main limitation of the approach is that
the models can be poorly extended to new situations from which measurements are
not available (extrapolation). An empirical model is often the preferred choice, if a
’local’ description (interpolation) of the phenomenon is enough or if the mechanism
of the phenomenon is not known or too complicated to be modeled in detail. The
methodology used in analyzing empirical model is often called regression analysis.

3

Mechanistic models, also known as ’hard’ models or ’physio-chemical’ mod-
els, are built on first principles of natural sciences, and are often formulated as
differential equations. For instance, let us consider an elementary chemical reaction
A → B → C. The system can be modeled by mass balances, which leads to an
ordinary differential equation (ODE) system

dA

dt
= −k1A

dB

dt
= k1A− k2B

dC

dt
= k2B.

The model building is often more demanding as with empirical models, and also
require knowledge of numerical methods, for instance, for solving the differential
equations. In the example above, we can employ a standard ODE solver for solving
the model equations. For more complex models, for instance computational fluid
dynamics (CFD) models require various more advanced numerical solution methods,
such as Finite Difference (FD) or finite element (FEM) methods.

The benefit of the physio-chemical approach is that it often extends well to new
situations. The mechanistic modeling approach can be chosen if the phenomenon
can understood well enough and if the model is needed outside the region where
the experiments are done.

In a typical modeling project, a mathematical model is formulated first and
data is then collected to verify that the model is able to describe the phenomenon
of interest. The models usually contain some unknown quantities (parameters) that
need to be estimated from the measurements; the goal is to set the parameters so
that the model explains the collected data well. In this course, we will use the
following notation:

y = f(x, θ) + ε, (2)

where y are the obtained measurements and f(x, θ) is the mathematical model that
relates certain control variables x and unknown parameters θ to the measurements.
The measurement error is denoted by ε.

Let us clarify the notation using the chemical reaction model given above. The
unknown parameters θ are the reaction rate constants (k1, k2). The design vari-
ables x in such a model can be measurement time instances and temperatures, for
instance. The measurement vector y can contain, e.g., the measured concentration
of some of the compounds in the reaction. The model f is the solution of the
corresponding components of the ODE computed at measurement points x with
parameter values θ.

Mathematical models are either linear or nonlinear. Here, we mean linearity with
respect to the unknown parameters θ. That is, for instance y = θ0 + θ1x1 + θ2x2
is linear, whereas y = θ1 exp(θ2x) is nonlinear. Most of the classical theory is for
linear models, and linear models often result in easier computations.

4

1.2 Uncertainties in Mathematical Models

Models are simplifications of reality, and therefore model predictions are always
uncertain. Moreover, the obtained measurements, with which the models are cal-
ibrated, are often noisy. The task of statistical analysis of mathematical models
is to quantify the uncertainty in the models. The statistical analysis of the model
happens at the ’model fitting’ stage: uncertainty in the data y implies uncertainty
in the parameter values θ.

Traditionally, point estimates for the parameters are obtained, for example, by
solving a least squares optimization problem. In the least squares approach, we
search for parameter values θ̂ that minimize the sum of squared differences between
the observations and the model:

SS(θ) =
n∑
i=1

[yi − f(xi, θ)]
2. (3)

That is, the least squares estimator is θ̂ = argmin SS(θ). The least squares method
as such does not say anything about the uncertainty related to the estimator, which
this is the purpose of statistical analysis in modeling.

The theory for statistical analysis of linear models is well established, and tra-
ditionally the linear theory is used as an approximation for nonlinear models as
well. However, efficient numerical Monte Carlo techniques, such as Markov Chain
Monte Carlo (MCMC), have been introduced lately to allow full statistical analysis
for nonlinear models. The main goal of this course is to introduce these methods
to the student in a practical manner.

This course starts by reviewing the classical techniques for statistical analysis
of linear and nonlinear models. Then, the Bayesian framework for parameter esti-
mation is presented, together with MCMC methods for performing the numerical
computations. Bayesian estimation and MCMC can be considered as the main topic
of this course.

5

2 Prequisities

In this section, we briefly recall the basic concepts in statistics that are needed in
this course. In addition to the statistics topics given below, the reader should be
familiar with basic concepts in matrix algebra.

2.1 Statistical Measures

In this course, we will need the basic statistical measures: expectation, variance, co-
variance and correlation. The expected value for a random vector x with probability
density function (PDF) p(x) is

E(x) =

∫
xp(x)dx, (4)

where the integral is computed over all possible values of x, in this course typically
of the d-dimensional Euclidean space Rd. The variance of a one-dimensional random
variable x, which measures the amount of variation in the values of x, is defined as
the expected squared deviation of x from its expected value:

Var(x) =

∫
(x− E(x))2p(x)dx. (5)

The standard deviation is defined as the square root of the variance, Std(x) =√
Var(x).
The covariance of two one-dimensional random variables x and y measures how

much the two variables change together. Covariance is defined as

Cov(x, y) = E((x− E(x))(y − E(y))). (6)

The covariance matrix of two random vectors x and y, with dimensions n and m,
gives the covariances of different combinations of elements in the x and y vectors.
The covariances are collected into an n×m covariance matrix, defined as

Cov(x,y) = E((x− E(x))(y − E(y))T). (7)

In this course, the covariance matrix is used to measure the covariances within
the elements of a single random vector x, and we denote the covariance matrix by
Cov(x). The covariance matrix is simply defined as the covariance matrix between
x and itself: Cov(x) = Cov(x,x). The diagonals of the n × n covariance matrix
contain the variances of individual elements of the vector, and off-diagonals give
the covariances between the elements.

The correlation coefficient between two random variables x and y is the normal-
ized version of the covariance, and is defined as

Cor(x, y) =
Cov(x, y)

Std(x)Std(y)
. (8)

For vector quantities, one can form a correlation matrix (similarly as in the covari-
ance matrix), that has ones in the diagonal (correlation of elements with themselves)
and correlation of separate elements in the off-diagonal.

6

2.2 Sample Statistics

To be able to use the statistical measures defined above, we need ways to estimate
the statistics using measured data. Here, we give the sample statistics, which are
unbiased estimators of the above measures in the sense that they approach the true
values of the measures as the number of measurements increases.

Let us consider a n× p matrix of data, where each column contains n measure-
ments for variables x1, ...,xp:

X =

x1 x2 . . . xp
x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp

. (9)

In this course, we need the following sample statistics:

• the sample mean for the kth variable is

x̂k =
1

n

n∑
i=1

xik (10)

• the sample variance of the kth variable is

Var(xk) =
1

n− 1

n∑
i=1

(xik − x̂k)
2 = σ2

k (11)

• the sample standard deviation is

Std(xk) =
√

(Var(xk)) = σk (12)

• the sample covariance between two variables is

Cov(xk, xl) =
1

n− 1

n∑
i=1

(xik − x̄k)(xil − x̄l) := σxkxl (13)

• the sample correlation coefficient between two variables is

Cor(xk, xl) =
σxkxl
σxkσxl

:= ρxkxl (14)

The sample variances and covariances for p variables can be compactly represented
as a sample covariance matrix, which is given as

Cov(X) =

σ2
x1

σx1x2 . . . σx1xp

σx1x2 σ2
x2

...
. . .

σx1xp σ2
xp

 . (15)

7

That is, the variances of the variables are given in the diagonal of the covariance
matrix, and the off-diagonal elements give the individual covariances. Similarly, one
can form a correlation matrix using the relationship of covariance and correlation
given in equation (14), with ones in the diagonal and correlation coefficients between
the variables in the off-diagonal:

Cor(X) =

1 ρx1x2 . . . ρx1xp

ρx1x2 1
...

. . .

ρx1xp 1

 . (16)

Note that here we use partly the same notation for the definition of the statistical
measures and their corresponding sample statistics. In the rest of the course, we will
only need the sample statistics, and in what follows, Var means sample variance,
Cov means sample covariance matrix and so on.

2.3 Some distributions

In this course, we need some basic distributions. The distribution of a random
variable x is characterized by its probability density function (PDF) p(x).

The PDF of the univariate normal (or Gaussian) distribution with mean x0 and
variance σ2 is given by the formula

p(x) =
1√
2πσ

exp

(
−1

2

(
x− x0
σ

)2
)
. (17)

For a random variable x that follows the normal distribution, we write x ∼ N(x0, σ
2).

Let us consider a sum of n univariate random variables, s =
∑n

i=1 x
2
i . The sum

follows the chi-square distribution with n degrees of freedom, which we denote by
s ∼ χ2

n. The density function for the chi-square distribution is

p(s) = 1/(2n/2Γ(n/2))sn/2−1e−s/2. (18)

The most important distribution in this course is the multivariate normal distribu-
tion. The d-dimensional Gaussian distribution is characterized by the d × 1 mean
vector x0 and the d× d covariance matrix Σ. The probability density function is

p(x) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− x0)

TΣ−1(x− x0)

)
, (19)

where |Σ| denotes the determinant of Σ.
Let us consider a zero-mean multivariate Gaussian with covariance matrix Σ.

The term in the exponential can be written as xTΣ−1x = yTy, where y = Σ−1/2x.
Here Σ1/2 and Σ−1/2 denote the ’square roots’ (e.g. Cholesky decompositions) of
the covariance matrix and its inverse, respectively. Using the formula for computing

8

the covariance matrix of a linearly transformed variable, see equation (22) in the
next section, the covariance of the transformed variable can be written as

cov(Σ−1/2x) = Σ−1/2cov(x)(Σ−1/2)T = Σ−1/2Σ(Σ−1/2)T = Σ−1/2Σ1/2(Σ1/2Σ−1/2)T = I,
(20)

where I is the identity matrix. That is, the term xTΣ−1x = yTy is a squared sum
of d independent standard normal variables, and therefore follows the chi-square
distribution with d degrees of freedom:

xTΣ−1x ∼ χ2
d. (21)

This gives us a way to check how well a sampled set of vectors follows a Gaussian
distribution with a known covariance matrix: compute the values xTΣ−1x for each
sample and see how well the statistics of the values follow the χ2

d distribution (see
exercises).

The contours of multivariate Gaussian densities are ellipsoids, where the princi-
pal axes are given by the eigenvectors of the covariance matrix, and the eigenvalues
correspond to the lengths of the axes. Therefore, two-dimensional covariance ma-
trices can be visualized as ellipses. In practice, this can be done with the ellipse

function given in the code package, see help ellipse. In Fig. 2.3 below, ellipses
corresponding to three different covariance matrices are illustrated (the figure is
produced by the program ellipse demo.m).

2 0 2
2

1

0

1

2

2 0 2
2

1

0

1

2

2 0 2
2

1

0

1

2

Figure 1: Ellipses corresponding to the 90% confidence region for three covariance
matrices, diagonal (left), with correlation 0.9 (center) and with correlation −0.7
(right).

2.4 Generating Gaussian random numbers

Later in the course, we need to be able to generate random numbers from multi-
variate Gaussian distributions. A basic strategy is given here. Recall that in the
univariate case, normal random numbers y ∼ N(µ, σ2) are generated by y = µ+σz,
where z ∼ N(0, 1).

It can be shown (see exercises) that the covariance matrix of a random variable
multiplied by a matrix A is

cov(Ax) = Acov(x)AT . (22)

9

This is a useful formula when random variables are manipulated. For instance, let
us consider a covariance matrix Σ, which we can decompose into a ’square-root’
form Σ = AAT . Now, if we take a random variable with cov(x) = I, the covariance
matrix of the transformed variable Ax is

cov(Ax) = Acov(x)AT = AAT = Σ. (23)

This gives us a recipe for generating Gaussian random variables with a given co-
variance matrix:

ALGORITHM: generating zero mean Gaussian random variables y with
covariance matrix Σ

1. Generate standard normal random numbers x ∼ N(0, I).

2. Compute decomposition Σ = AAT .

3. Transform the standard normal numbers with y = Ax.

In practice, the standard normal random numbers in step 1 can be generated using
existing routines built in to programming environments (in MATLAB using the
randn command). The matrix square root needed in step 2 can be computed,
for instance, using the Cholesky decomposition (the chol function in MATLAB).
However, note that any symmetric decomposition Σ = AAT will do. Note that
the approach is analogical to the one-dimensional case, where standard normal
numbers are multiplied with the square root of the variance (standard deviation).
Non-zero Gaussian variables can simply be created by adding the mean vector to the
generated samples. Generating multivariate normal random vectors is demonstrated
in the program randn demo.m

Gaussian random number generation has also an intuitive geometric interpre-
tation. If the covariance matrix can be written as a sum of outer products of n
vectors (a1, ..., an),

Σ =
n∑
i=1

aia
T
i , (24)

it is easy to verify that the sum

y =
n∑
i=1

ωiai, (25)

where ωi are standard normal scalars, ωi ∼ N(0, 1), follows the Gaussian distribu-
tion with covariance matrix Σ. That is, Gaussian random variables can be viewed
as randomly weighted combinations of ’basis vectors’ (a1, ..., an). This interpreta-
tion is illustrated for a two-dimensional case in Fig. 2.4. For an animation, see also
the demo program mvnrnd demo.m.

10

2 1.5 1 0.5 0 0.5 1 1.5 2
5

4

3

2

1

0

1

2

3

4

5

Figure 2: Black lines: two vectors a1 and a2 and the 95% confidence ellipse corre-
sponding to the covariance matrix Σ =

∑2
i=1 aia

T
i . Green lines: weighted vectors

ω1a1 and ω2a2. Red dot: one sampled point y =
∑2

i=1 ωiai.

2.5 General Methods for Generating Random Numbers

In this section, we consider two methods to sample from non-standard distributions,
whose density function is known: the inverse CDF technique and the accept-reject
method. Another important class of random sampling methods, the Markov chain
Monte Carlo (MCMC) methods, is covered separately in Section 6.

Inverse CDF Method

Let us consider a continuous random variable whose cumulative distribution func-
tion (CDF) is F . The inverse CDF method is based on the fact that a random
variable x = F−1(u) where u is sampled from U [0, 1], and F−1 is the inverse func-
tion of F , has the distribution with CDF F . The inverse CDF method can be
visualized so that uniform random numbers are ’shot’ from the y-axis to the CDF
curve and the corresponding points in the x-axis are samples from the correct target,
as illustrated for the exponential distribution in Fig. 2.5.

The inverse CDF method is applicable, if the cumulative distribution function
is invertible. For distributions with non-invertible CDF, other methods need to be
applied. If one has a lot of samples, one can approximate the CDF of the distribution
by computing the empirical CDF function, and generate random variables using
that. In addition, the inverse CDF method is a good way to draw samples from
discrete distributions, where the CDF is essentially a step function.

11

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

Figure 3: Producing samples from the exponential distribution using inverse CDF,
F (x) = 1− exp(−x) and F−1(u) = − ln(1− u).

Accept-Reject Method

Suppose that f is a positive (but non-normalized) function on the interval [a, b],
bounded by M. If we generate a uniform sample of points (xi, ui) on the box [a, b]×
[0,M], the points that satisfy ui < f(xi) form a uniform sample under the graph of
f .

The area of any slice {(x, y)|xl < x < xu, y ≤ f(x)} is proportional to the
number of sampled points in it. So the (normalized) histogram of the points xi
gives an approximation of the (normalized) PDF given by f . The accept-reject
method is illustrated in Fig. 2.5

The method is not restricted to 1D, the interval [a, b] may have any dimension.
We arrive at the following algorithm:

• Sample x ∼ U([a, b]), u ∼ U([0,M]).

• Accept points x for which u < f(x)

So, we have a (very!) straightforward method that, in principle, solves ’all’
sampling problems. However, difficulties arise in practice: how to choose M and
the interval [a, b]. M must be larger that the maximum of f , but too large a value
leads to many rejected samples. The interval [a, b] should contain the support of f
– which generally is unknown. A too large interval again leads to many rejections.
Moreover, uniform sampling in a high dimensional interval is inefficient in any case,
if the support of f only is a small subset of it.

12

5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 2 0 2 4
0

5

10

15

20

25

Figure 4: Left: In accept-reject, points are sampled in the box [a, b]× [0,M] (green
line), and points that fall below the target density function (blue line) are accepted
(black points) and the other points are rejected (red points). Right: the histogram
of the sampled points.

2.6 Exercises

1. Generate random numbers from N(µ, σ2) with µ = 10 and σ = 3. Study how
the accuracy of the empirical mean and standard deviation behaves as the
sample size increases.

2. Generate samples from the χ2
n distribution with n = 2 and n = 20 in three

different ways:

(a) by the definition (computing sums of normal random numbers)

(b) by the inverse CDF method (e.g. using the chi2inv MATLAB function)

(c) directly by the chi2rnd MATLAB function

For each case, create an empirical density function (normalized histogram)
and compare it with the true density function (obtained e.g. by the chi2pdf

MATLAB function).

3. Generate random samples from a zero-centered Gaussian distribution with
covariance matrix

C =

 2 5

5 16

 .

Verify by simulation that approximately a correct amount of the sampled
points are inside the 95% and 99% confidence regions, given by the limits of
the χ2 distribution (use the chi2inv function in MATLAB). Visualize the
samples and the confidence regions as ellipses (use the ellipse function).

4. Show that equation (22) holds.

13

5. Using the Accept–Reject method, generate samples from the (non-normalized)
density

f(x) = e−x
2/2(sin(6x)2 + 3 cos(x)2 sin(4x)2 + 1)

As the dominating density, use a) uniform distributions x ∼ U(−5, 5) and
u ∼ U(0,M) with suitable M b) the density of the N(0, 1) distribution.

14

3 Linear Models

Let us consider a linear model with p variables, f(x, θ) = θ0+θ1x1+θ2x2+. . .+θpxp.
Let us assume that we have noisy measurements y = (y1, y2, ..., yn) obtained at
points xi = (x1i, x2i, ..., xni) where i = 1, ..., p. Now, we can write the model in
matrix notation:

y = Xθ + ε, (26)

where X is the design matrix that contains the measured values for the control
variables, augmented with a column of ones to account for the intercept term θ0:

X =

1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp

 . (27)

For linear models, we can derive a direct formula for the LSQ estimator. It can be
shown (see exercises), that the LSQ estimate, that minimizes SS(θ) = ||y −Xθ||22,
is obtained as the solution to the normal equations XTXθ = XTy:

θ̂ = (XTX)−1XTy. (28)

In practice, it is often numerically easier to solve the system of normal equations
than to explicitly compute the matrix inverse (XTX)−1. In MATLAB, one can use
the ’backslash’ shortcut to obtain the LSQ estimate, theta=X\y, check out the code
example given later in this section.

To obtain the statistics for the estimate, we can compute the covariance matrix
Cov(θ̂). Let us make the common assumption that we have independent and iden-
tically distributed measurement noise with measurement error variance σ2. That
is, we can write the covariance matrix for the measurement as Cov(y) = σ2I, where
I is the identity matrix. Then, we can show (see exercises) that

Cov(θ̂) = σ2(XTX)−1. (29)

The diagonal elements of the covariance matrix give the variances of the estimated
parameters, which are often reported by different statistical analysis tools.

Let us further assume that the measurement errors are Gaussian. Then, we
can also conclude that the distribution of θ̂ is Gaussian, since θ̂ is simply a linear
transformation of a Gaussian random variable y, see equation (28). That is, the
unknown parameter follows the normal distribution with mean and covariance ma-
trix given by the above formulae: θ ∼ N(θ̂, σ2(XTX)−1). That is, the probability
density of the unknown parameter can be written as

p(θ) = K exp

(
−1

2
(θ − θ̂)TC−1(θ − θ̂)

)
, (30)

where K = ((2π)d/2|Σ|1/2)−1 is the normalization constant and C = Cov(θ̂).

15

3.1 Analyzing Modeling Results

In regression models, usually not all possible terms are needed to obtain a good fit
between the model and the data. In empirical models, selecting the terms used is
a problem of its own, and numerous methods have been developed for this model
selection problem.

Selecting the relevant terms in the model is especially important for prediction
and extrapolation purposes. It can be dangerous to employ a ’too fine’ model. As
a general principle, it is often wise to prefer simpler models and drop terms that do
not significantly improve the model performance (A. Einstein: ”a model should be
as simple as possible, but not simpler than that”). Too complex models often result
in ’over-fitting’: the additional terms can end up explaining the random noise in
the data. See exercises for an example of the effect of model complexity.

A natural criterion for selecting terms in a regression model is to drop terms
that are poorly known (not well identified by the data). When we have fitted a
linear model, we can compute the covariance matrix of the unknown parameters.
Then, we can compute the ’signal-to-noise’ ratios for the parameters in the model,
also known as t-values. For parameter θi, the t-value is

ti = θ̂i/std(θ̂i), (31)

where the standard deviations of the estimates can be read from the diagonal of
the covariance matrix given in equation (29). The higher the t-value is, the smaller
the relative uncertainty is in the estimate, and the more sure we are that the term
is relevant in the model and should be included. We can select terms for which the
t-values are clearly separated from zero. As a rule of thumb, we can require that,
for instance, |ti| > 3.

The t-values give an idea of how significant a parameter is in explaining the
measurements. However, it does not tell much about how good the model fits the
observations in general. A classical way to measure the goodness of the fit is the
coefficient of determination, or R2 value, which is written as

R2 = 1−
∑

(yi − f(xi, b̂))2∑
(yi − ȳ)2

. (32)

The intuitive interpretation of the R2 value is the following. Consider the simplest
possible model y = θ0, that is, the data are modeled by just a constant. In this
case, the LSQ estimate is just the empirical mean of the data, θ̂0 = y (see exercises).
That is, the R2 value measures how much better the model fits to the data than
a constant model. If the model is clearly better than the constant model, the R2

value is close to 1.
The R2 value tells how good the model fit is. However, it does not tell anything

about the predictive power of the model, that is, how well the model is able to
generalize to new situations. The predictive power of the model can be assessed,
for instance, via cross-validation techniques. Cross-validation, in general, works as
follows:

1. Leave out a part of the data from the design matrix X and response y.

16

2. Fit the model using the remaining data.

3. Using the fitted model, predict the measurements that were left out.

4. Repeat steps 1-3 so that each response value in y is predicted.

The goodness of the predictions at each iteration can be assessed using the R2

formula. The obtained number is called the Q2 value and it describes the predictive
power of the model better than R2.

Cross-validation is commonly used for model selection. The idea is to test
different models with different terms included and choose the model that gives the
best Q2 value. If the model is either too complex (’over-parameterized’) or too
crude, the model will predict poorly and give a low Q2 value. In practice, the
cross-validation procedure can be carried out by stepwise regression, which can be
implemented in many ways, for instance by

• Forward stepping: test all terms individually, choose the one with highest Q2

value. Continue by testing all remaining terms, together with those already
chosen. On each step, choose the term with highest Q2 value.

• Backward stepping: similarly, but starting with the full model, and dropping,
one by one, the worst term on each iteration step.

Next, we give a short demonstration how linear regression can be computed with
MATLAB and how the model fit and the significance of the parameters can be
assessed.

Code example: linear regression, R2- and t-values

Let us consider fitting the model y = θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ12x1x2 + θ22x

2
2 the

to data given below:
x1 : 100.0 220.0 100.0 220.0 75.1 244.8 160.0 160.0 160.0 75.1 75.1

x2 : 2.0 2.0 4.0 4.0 3.0 3.0 1.5 4.4 3.0 3.0 3.0

y : 25.0 14.0 6.9 5.9 14.1 9.3 18.2 5.6 9.6 14.9 14.8

The MATLAB code for fitting the model is given in lin fit.m. First, we specify

the data matrices and construct the design matrix by computing the second powers
and interaction terms, and augmenting the matrix with a row of ones to account
for the intercept in the model:

% Fitting a linear model to data

clear all; close all; clc;

%%%%% The data:

17

X = [100.0 2.0

220.0 2.0

100.0 4.0

220.0 4.0

75.1 3.0

244.8 3.0

160.0 1.5

160.0 4.4

160.0 3.0

75.1 3.0

75.1 3.0];

Y = [25.0 14.0 6.9 5.9 14.1 9.3 18.2 5.6 9.6 14.9 14.8]’;

n = length(Y); % number of data points

% constructing the design matrix

X2 = [ones(n,1) X X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2];

The LSQ fit is done by solving the normal equations (28), which in practice can be
done with the backslash operator in MATLAB. Then, we estimate the measurement
error variance using the repeated measurements (indices 5, 10 and 11 in the data),
and compute the covariance matrix of the parameters using equation (29):

b = X2\Y; % LSQ fit

% estimating the covariance

repmeas = [5 10 11]; % indices of repeated measurements

sig = std(Y(repmeas)); % sigma estimate

cov_b = sig^2*inv(X2’*X2);

Finally, we take the parameter standard deviations out from the covariance matrix
and compute the t-values for the parameters, and the R2-value for the fit. In
addition, we graph the model fit:

% t-values

std_b = sqrt(diag(cov_b));

t_b = b./std_b

% R2 value

18

yfit = X2*b; % model response

R2 = 1-sum((Y-yfit).^2)/sum((Y-mean(Y)).^2)

% visualizing the fit

plot(1:n,Y,’o’,1:n,yfit); title(’model fit’);

3.2 Design of Experiments

So far, we have assumed that the measurements for the design variables X and the
response y are given. The task of Design of Experiments (DOE) is to figure out
how to choose the experimental variables X so that maximal information about
the unknown parameters θ is obtained with minimal experimental effort. While
the DOE questions deserve a course of their own (at LUT there is one), we briefly
present here some basic experimental design concepts for linear models.

In linear models, assuming i.i.d. measurement error with variance σ2, the covari-
ance matrix of the parameters is Cov(θ̂) = σ2(XTX)−1. That is, the uncertainty in
θ̂ depends on the noise level σ2 and on the design matrix X. The measurement noise
level we cannot control, but the design points X where measurements are obtained
can often be set. This leads to the question of design of experiments: how to choose
X so that maximal information is obtained with minimal number of experiments.
Note that in linear models the uncertainty of the parameters does not depend on
the values of the unknown parameters that we wish to estimate (!). This suggests
that, for linear models, one can derive general, ’case-independent’ theory about how
to choose X. Here, we present the most common design plans for linear models,
without considering the theory behind them.

Different design plans allow the fitting of different kinds of models. That is, the
design of experiments should be selected according to the expected behavior of the
model response:

• 2N design enables the estimation of a model that contains first order terms
and interaction terms. For instance, the two-parameter model y = θ0 +θ1x1 +
θ2x2 + θ12x1x2 can be fitted using a 22 design.

• Central composite design (CCD) allows the estimation of a model that
contains the quadratic terms. In a two-parameter example, we can fit y =
θ0 + θ1x1 + θ2x2 + θ11x

2
1 + θ12x1x2 + θ22x

2
2.

Mathematically, the design plans are typically expressed in coded units, where the
center point of the design is moved to the origin and the minimum and maximum
are scaled to the values ±1. If xi denotes the mean value of factor i and ∆i is the
difference between the maximum and minimum values of the experimental region,
the transformation from original units xi to coded units Xi is given by

Xi =
xi − xi
∆i/2

. (33)

19

The coded units give a generic way to present various design plans. In addition,
scaling all variables to the same unit interval often results in more numerically
stable computations.

The 2N design puts measurements in the corners of the experimental region. In
coded units, the design contains all combinations of levels ±1. In addition to the
corners, replicated measurements are usually performed at the center point of the
experimental region to estimate the measurement noise.

The CCD design extends the 2N plan by adding ’One Variable at a Time’
(OVAT) measurements. That is, only the values of one variable are changed at
a time while the others are fixed to the center point value. The OVAT measure-
ments are placed so that they are in a circle centered at the center point with radius√

2 in coded units. The CCD and 2N designs are illustrated for N = 2 in Fig. 5.

1.5 1 0.5 0 0.5 1 1.5
1.5

1

0.5

0

0.5

1

1.5
2N EXPERIMENTS
OVAT EXPERIMENTS

Figure 5: 2N and CCD design plans in coded units.

Let us finally give an example for the case N = 2 (without any repeated mea-
surements at the center point), which yields the following design matrices in coded
units:

X2N =

+1 −1

+1 +1

−1 −1

−1 +1

 XCCD =

+1 −1

+1 +1

−1 −1

−1 +1
√

2 0

−
√

2 0

0
√

2

0 −
√

2

(34)

20

Code example: coded units, 2N and CCD designs

Let us here demonstrate how the most common design plans can be easily created
with MATLAB using coded units, and how we can transform between coded units
and real units. The demo is given in the program doe demo.m and it uses three func-
tions in the utils folder: the code function is used two make transforms between
original and coded units, and twon and composit functions are used to generate
the 2N and CCD design plans (in coded units).

First, we initialize the program and generate two design matrices X1 and X2

that follow the 2N and CCD design plans with 4 replicates at the center point.
The twon and composit functions are called with two inputs: N (the number of
variables) and the number of replicates:

% demonstrating coded units, 2N and CCD designs

clear all; close all;

addpath utils;

% two factors, 4 replications in the center, coded units

X=twon(2,4); % 2N design

X2=composit(2,4); % CCD design

Then, we demonstrate moving from coded units to real units, assuming that the
experimental region of the two variables is x1 ∈ [100, 200] and x2 ∈ [50, 100]. This
is done with the code function, that has three inputs: the design matrix to be
transformed, the minima and maxima for the design variables as a matrix (the
experimental region) and the direction of the transform (−1 means transformation
from coded units to real units, and +1 vice versa):

% moving from coded units to real units

% experimental area: 100<x1<200, 50<x2<100

minmax=[100 50;200 100];

X_real=code(X,minmax,-1);

X2_real=code(X2,minmax,-1);

Finally, we just print the designs in real units and in coded units, which results in
the following output for the 2N design:

21

2N design in coded and real units:

ans =

-1 -1 100 50

1 -1 200 50

-1 1 100 100

1 1 200 100

0 0 150 75

0 0 150 75

0 0 150 75

0 0 150 75

3.3 Exercises

1. This task was originally given in [Forsythe et al. 1977]. The data below de-
scribes how the population of the U.S. has developed from 1900 to 2000.
Fit a kth order polynomial to the data with k = 1, 2, ..., 8 and predict with
each fitted model how the population develops from 2000 to 2020. That is,
first fit a 1st order polynomial y = θ0 + θ1x, then a 2nd order polynomial
y = θ0 + θ1x+ θ2x

2 etc (here x is time).

years after 1900 population (millions)

0 75.995

10 91.972

20 105.711

30 123.203

40 131.669

50 150.697

60 179.323

70 203.212

80 226.505

90 249.633

100 281.422

Hint: use coded variables for fitting to avoid numerical difficulties, that is,
scale the time variable to the interval (−1, 1) (you can use the code function
provided in the code package).

22

2. Show that the LSQ estimate for a constant model y = θ0 is the mean of the
data: θ̂0 = y.

3. Fit a straight line y = θ0+θ1x to the data given below. Compare the residuals
to the standard deviation of the noise level, which you can estimate using the
repeated measurements.

 x : 0.0 1.0 1.0 2.0 1.8 3.0 4.0 5.2 6.5 8.0 10.0

y : 5.00 5.04 5.12 5.28 5.48 5.72 6.00 6.32 6.68 7.08 7.52

4. Show that the formula (29) for the LSQ solution of a linear system holds.

5. Take the model and the data in the code example in Section 3.1. Try reducing
the fitted model by dropping the least relevant terms in the model. Compare
the R2 values of the reduced model and the original model. You can start
with the demo program lin fit.m.

6. Consider the model y = θ1x1 + θ2x2 + ε, where the measurement noise ε ∼
N(0, 1). Assume that the true parameter values are θ = (θ1, θ2) = (1, 2).
Generate synthetic measurements by adding noise to the model solution with
true parameter values, using the design points given below. Estimate θ with
the simulated measurements. Repeat the data generation and estimation 1000
times (or more) and collect the obtained samples for the parameters. Compare
the covariance matrices computed from the samples to the covariance matrix
obtained from theory. Make 1D and 2D visualizations of the results. x1 : 1.0 1.0 2.0 1.8 3.0 4.0 5.2 6.5 8.0 10.0

x2 : 1.0 1.5 2.0 2.0 3.0 4.0 4.9 7.0 7.0 9.0

The above design is an example of a bad design of experiments. Why? Make
a better one: build a design matrix that gives more accurate results with the
same number of experiments (or less).

7. Derive the LSQ estimate and its covariance for the correlated measurement
error case y = Xθ + ε, where ε ∼ N(0,Σ), by minimizing the weighted
least squares expression SS(θ) = (y − Xθ)TΣ−1(y − Xθ). Hint: use the
decomposition Σ−1 = RTR and transform the expression back to a non-
weighted least squares problem SS(θ) = ||ỹ−X̃θ||22 and use the formulas (28)
and (29).

23

4 Nonlinear Models

As seen in the previous section, direct formulas exist for computing LSQ estimates
and their uncertainties for linear models. For nonlinear models, no such direct
methods are available, and one has to resort to numerical methods and different
approximations. The basic strategy, presented next, is to linearize the the nonlinear
model and use the linear theory.

Let us consider a nonlinear model

y = f(x, θ) + ε, (35)

where y are the obtained measurements, f(x, θ) is the model with design variables x
and unknown parameters θ, and the measurement error is denoted by ε. To compute
the LSQ estimate for the parameters, direct formulas are no longer available, and
one has to numerically minimize the sum of squares

l(θ) =
n∑
i=1

[yi − f(xi, θ)]
2. (36)

In practice, for most models one can use standard optimization routines imple-
mented in computational software packages. For the purposes of this course, the
MATLAB gradient-free nonlinear simplex optimizer fminsearch is enough, see the
code examples in the end of this section.

Next, let us see how approximative error analysis can be performed for the
parameters of a nonlinear model, based on linearizing the model at the LSQ estimate
θ̂. The first three terms of the Taylor series expansion for the function SS(θ) at a
point θ̂ can be written as

l(θ) ≈ l(θ̂) +∇l(θ̂)T (θ − θ̂) +
1

2
(θ − θ̂)TH(θ − θ̂), (37)

where ∇ denotes the gradient and H is the Hessian matrix that contains the second
derivatives. The second derivatives, or elements of the Hessian matrix, are

[H]pq =
∂2`(θ̂)

∂θp∂θq
= 2

n∑
i=1

∂f(xi, θ̂)

∂θp

∂f(xi, θ̂)

∂θq
+ 2

n∑
i=1

(f(xi, θ̂)− yi)
∂2f(xi, θ̂)

∂θp∂θq
. (38)

Assuming that the residuals f(xi, θ̂)− yi are small (they are minimized in the LSQ
procedure), the Hessian matrix can be approximated using only first derivatives by
dropping the residual terms:

[H]pq =
∂2`(θ̂)

∂θp∂θq
≈ 2

n∑
i=1

∂f(xi, θ̂)

∂θp

∂f(xi, θ̂)

∂θq
. (39)

The first derivatives can be collected into a matrix that is called the Jacobian matrix
J, which has elements

[J]ip =
∂f(xi; θ)

∂θp
|θ=θ̂, (40)

24

where the notation means that the derivatives are evaluated at the estimate θ̂. Now,
the Hessian approximation can be written in a matrix form:

H ≈ 2JTJ. (41)

Now, inserting this appoximation to the Taylor series expansion above, and noting
that for the LSQ estimate the derivative of the sum of squares is zero, ∇l(θ̂) = 0,
we obtain

l(θ) ≈ l(θ̂) + (θ − θ̂)TJTJ(θ − θ̂). (42)

Let us compare this to the linear case. For linear models, the least squares expression
is

l(θ) = ||y −Xθ||2 = (y −Xθ)T (y −Xθ) = yTy − 2yTXθ + θTXTXθ. (43)

Differentiating the function twice gives the Hessian matrix H = XTX, and the
Taylor series expansion can be written as

l(θ) = l(θ̂) + (θ − θ̂)TXTX(θ − θ̂). (44)

Note that here we have an equality instead of an approximation, since higher order
derivatives and the corresponding terms in the Taylor series expansion are zero.

Now we can compare the nonlinear and linear expressions in equations (42) and
(44). We observe that in the linear approximation used in the nonlinear case, the
Jacobian matrix J assumes the role of the design matrix X in the linear case. That
is, the approximative error analysis for nonlinear models, assuming i.i.d. Gaussian
errors with measurement error variance σ2, is given by the covariance matrix

Cov(θ̂) = σ2(JTJ)−1. (45)

The measurement error σ2 can be estimated using repeated measurements. Often,
however, replicated measurements are not available. In this case, the measurement
noise can be estimated using the residuals of the fit, using the ’perfect model’
assumption that residuals ≈ measurement error. An estimate for the measurement
error can be obtained using the mean square error (MSE):

σ2 ≈MSE = RSS/(n− p), (46)

where RSS (residual sum of squares) is the fitted value of the least squares function,
n is the number of measurements and p is the number of parameters. That is, the
measurement error is computed as the average of the squared residuals, corrected
by the number of estimated parameters. For more comprehensive theory behind
approximation, see any classical statistics text book.

To sum up, we give a MATLAB code example that performs LSQ fitting and
approximative error analysis based on the Jacobian matrix.

25

Code Example: Nonlinear LSQ Fitting and Approximative Error Anal-
ysis

Let us here consider a simple nonlinear model with two parameters, y = θ1(1 −
exp(−θ2x)). The model is used to describe the biological oxygen demand (BOD).
The goal is to estimate the parameters and their uncertainty using the data x =
(1, 3, 5, 7, 9) and y = (0.076, 0.258, 0.369, 0.492, 0.559).

We create two files, the main program bod fit.m and the function bod ss.m

that computes the sum of squares objective function that is minimized. In the
main program, we do some initializations and call the fminsearch optimizer:

%%%%% LSQ fitting with the BOD model

clear all; close all; clc;

b_0 = [1 0.1]; % initial quess for the optimizer

x = (1:2:9)’; % x-data

y = [0.076 0.258 0.369 0.492 0.559]’; % y-data

data = [x,y]; % data matrix

n = length(x); % number of data points

%%%% Get estimate for sigma**2 from the residual Sum of Squares

[bmin,ssmin]=fminsearch(@bod_ss,b_0,[],data);

The fminsearch optimizer takes in the sum of squares function, here defined in the
separate file bod ss.m. The second argument is the initial guess provided for the
optimizer, and the third input contains the options structure with which one can
control the optimizer (set tolerances, maximum number of iterations etc.). Here
we use an empty matrix, which means that the default options are used. After
the options structure, the user can pass some extra variables needed by the target
function; here, we need the data matrix to compute the sum of squares. The
optimized function must return the target function value, and have the optimization
variable as the first input argument, followed by the extra variables (listed after the
options structure in the fminsearch call). That is, here we define the sum of squares
in the form ss=bod ss(theta,data):

function ss=bod_ss(theta,data)

x = data(:,1);

y = data(:,2);

ss = sum((y - theta(1)*(1-exp(-theta(2)*x))).^2);

26

To estimate the uncertainty of the parameters, we use the formula Cov(θ̂) =
σ2(JTJ)−1. The Jacobian here is computed analytically, which can be easily done
for this simple model. Note, however, that usually computing the Jacobian analyt-
ically is difficult, and we need to approximate it numerically. An example of this
follows later in this section.

The measurement error variance σ2 is estimated using the MSE formula (46).
Finally, we print the LSQ estimates, standard deviations and t-values, and plot the
model fit.

%%%% Compute the Jacobian analytically

J = [1-exp(-bmin(2).*x),x.*bmin(1).*exp(-x.*bmin(2))];

%%%% Compute the covariance and print the parameter estimates

sigma2 = ssmin/(n-2); % std of measurument noise estimated by the residuals

C = sigma2*inv(J’*J);

disp(’(theta, std, t-values):’);

[bmin(:) sqrt(diag(C)) bmin(:)./sqrt(diag(C))]

%%%% visualize the fit

xx=linspace(0,10);

yy=bmin(1)*(1-exp(-bmin(2)*xx));

plot(xx,yy,x,y,’ro’);

xlabel(’x’); ylabel(’y=\theta_1(1-exp (\theta_2 x))’);

The parameter estimates found are θ̂ = (0.929, 0.104) and the t-values are 7.776
and 5.331. The figure produced by the code is given in Fig. 6.

Code Example: Parameter Estimation for Dynamical Models

In the example above, we estimated the parameters of a simple algebraic model.
However, most mechanistic models used in practice are given as (a system of)
differential equations for which no analytical solutions are often available. To solve
the model equations and, for instance, compute the LSQ objective function, one has
to use numerical solvers. In this section, we give an example of such a dynamical
model, and demonstrate how model fitting works in practice in such a case.

As an example, let us consider again the chemical reactions A→ B → C, which
can be modeled as an ODE system as follows:

dA

dt
= −k1A (47)

dB

dt
= k1A− k2B (48)

dC

dt
= k2B. (49)

27

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y=
1(1

ex
p

(
2 x

))

Figure 6: The model (blue line) fitted to the data (red circles).

The unknown parameters are the reaction rate coefficients, θ = (k1, k2). The data
y consists of the values of the components A and B:

time A B

1.0 .504 .415

3.0 .217 .594

5.0 .101 .493

7.0 .064 .394

9.0 .008 .309

.

The initial values for the concentrations are A(0) = 1 and B(0) = C(0) = 0.
First, as in the previous example, we write the main program ABCrun.m that sets

the data matrices and the auxiliary variables, performs the LSQ fitting using the
fminsearch optimizer and graphs the fitting results. We define the data structure
that is passed to the sum of squares target function and that contains the data and
initial values for the ODE system, and call the optimizer:

% A --> B --> C demo

clear all; close all; clc;

% the data structure

data.time = 1:2:9;

28

data.ydata = [.504 .415

.217 .594

.101 .493

.064 .394

.008 .309];

data.y0 = [1 0 0];

% calling fminsearch

theta0=[1 1];

[thopt,ssopt]=fminsearch(@ABCss,theta0,[],data);

The sum of squares function ABCss.m computes the model response with given
parameter values and compares it to the data:

function ss=ABCss(theta,data)

time=[0 data.time]; % adding zero to time vector!

ydata=data.ydata;

y0=data.y0;

[t,ymod]=ABCmodel(time,theta,y0);

ymod=ymod(2:end,1:2); % taking A and B, removing initial value

ss=sum(sum((ydata-ymod).^2)); % the total SS

Note that for the ODE solver should start from the time point t = 0, and we
therefore need to add the zero to the beginning of the time data vector, and then
remove the corresponding row from the model response matrix ymod.

Here, the model response calculation is done with a separate model function
ABCmodel.m that solves the ODE system with the built-in solver ode45:

function [t,y]=ABCmodel(time,theta,y0)

[t,y]=ode45(@ABCode,time,y0,[],theta);

All MATLAB ODE solvers are used in the same way: the first input is the ODE
function that specifies the ODE system that we are solving, followed by the solution
time span and initial values. Then, the user can specify options that control how the

29

ODE solver works (again, empty matrix gives the default options). After options,
the user can list extra variables that are possibly needed by the ODE function (here
the parameter vector).

Finally, we need to implement the ODE function ABCode.m that specifies the
ODE system for the solver. The function takes in the time point, model state and
extra variables (in this order) and returns the derivatives of the system (as a column
vector):

function dy=ABCode(t,y,theta)

% take parameters and components out from y and theta

k1=theta(1); k2=theta(2);

A=y(1); B=y(2);

% define the ODE

dy(1) = -k1*A;

dy(2) = k1*A-k2*B;

dy(3) = k2*B;

dy=dy(:); % make sure that we return a column vector

Back in the main program ABCrun.m, after calling the optimizer, we compute the
model response with the optimal parameter values, and visualize the model fit. The
visualization code that produces Fig. 7 reads as

% visualization: solve model with thopt and compare to data

t=linspace(0,10);

[t,ymod]=ABCmodel(t,thopt,data.y0);

plot(t,ymod); hold on;

plot(data.time,data.ydata,’o’); hold off;

xlabel(’time’); ylabel(’concentration’);

legend(’A’,’B’,’C’);

Code Example: Computing the Jacobian Numerically

In the BOD example given earlier in this section, the Jacobian was computed ana-
lytically to get the approximative statistics for the parameters. In real applications,
this is seldom possible, since the forward model is often given as a numerical solution

30

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nc

en
tra

tio
n

A
B
C

Figure 7: The model (lines) fitted to the data (circles).

to a differential equation, for instance. However, it is straightforward to compute
numerical approximations for the derivatives in the Jacobian matrix, using, for
instance, the two-sided finite difference formula

[J]ip =
∂f(xi, θ)

∂θp
|θ=θ̂ ≈

f(xi; θ + h)− f(xi; θ − h)

2h
, (50)

where h is a small difference added to the pth component of the θ vector. This
finite difference approximation is implemented in the jacob function given in the
utils folder, see help jacob. The function takes in the model function that eval-
uates f(x, θ), the control variable values x and the point θ̂ where the Jacobian is
computed.

An example of the Jacobian calculation is given in the program jacob demo.m,
using the chemical reaction model and data from the previous code example. Here,
the Jacobian and the covariance matrix is computed as follows:

% numerical Jacobian

J=jacob(@ABCmodel,[0 data.time],thopt,[],data.y0);

% covariance estimate

sigma2=ssopt/(10-2);

C=sigma2*inv(J’*J);

31

The empty matrix in the jacob call means that we use the default values for the
finite difference step sizes h (they can be also controlled, check the function help).
Again, the zero point needs to be added to the time vector.

The results are visualized by drawing the 50% and 90% confidence ellipses for
the parameters (the plotting code is not given here, check jacob demo.m). The
figure produced by the program is given in Fig. 8.

0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.16

0.165

0.17

0.175

0.18

0.185

0.19

1

2

LSQ estimate
50% ellipse
90% ellipse

Figure 8: The LSQ estimates and two confidence ellipses.

4.1 Exercises

1. Fit the parameters k, p, y0 of the logistic growth equation,

dy

dt
= ky(p− y) y(0) = y0

to the data

time y

4.44 0.086

8.89 0.87

13.33 1.02

17.8 0.99

22.22 1.01

Compute the approximative covariance matrix of the parameters using the
Jacobian of the model.

32

2. Beer cooling. At time t = 0, a glass of beer is at an initial temperature T0.
Beer will be cooled from outside by water, which has a fixed temperature
Twater = 5 oC. We measure the temperature of the beer at different times and
get the following data: 0 60 120 180 240 300 360 420 480 540 840 1020 1320

31 28 24 20 17.5 15.5 13.5 12 11 10 8 7 6.5

 ,
where the first row is time and the second row is temperature (in Celsius).

Note that the heat transfer takes place both through the glass and via the
air/water surface, and a model for the beer temperature can be written as

dT/dt = −k1(T − Twater)− k2(T − Tair).

The temperature of the surrounding air is constant, Tair = 23 oC. Estimate
the unknown heat transfer coefficients θ = (k1, k2), and compute the approx-
imative covariance matrix of the parameters.

3. Take the chemical reaction ODE system given in equations (47-49). Now, the
reaction rates depend on the temperature T , and the dependency is modeled
using the Arrhenius’ equation

ki(T) = ki,ref exp

(
−Ei
R

(
1

T
− 1

Tref

))
, i = (1, 2), (51)

where ki,ref is the reaction rate at the reference temperature Tref , Ei are the
activation energies, T is the temperature and R = 8.314 is the gas constant.
The goal is to estimate the parameters θ = (k1,ref , E1, k2,ref , E2) using the
two batches of data given below, obtained at temperatures T = 283K and
T = 313K. The reference temperature you can basically choose, use for
instance Tref = 300K. Compute the LSQ estimate for the parameters.

Hints: reasonable starting values for the LSQ optimization are in the magni-
tude ki,ref ≈ 1 and Ei ≈ 104. Note that now your LSQ function should sim-
ulate the model in two different temperatures, with reaction rates computed
with the Arrhenius equation, and compare the simulation to the corresponding
data.

33

T = 282K

time A B

0 1.000 0.000

1 0.504 0.416

2 0.186 0.489

3 0.218 0.595

4 0.022 0.506

5 0.102 0.493

6 0.058 0.458

7 0.064 0.394

8 0.000 0.335

9 0.082 0.309

T = 313K

time A B

0 1.000 0.000

1 0.415 0.518

2 0.156 0.613

3 0.196 0.644

4 0.055 0.444

5 0.011 0.435

6 0.000 0.323

7 0.032 0.390

8 0.000 0.149

9 0.079 0.222

34

5 Monte Carlo Methods for Parameter Estima-

tion

The approximative error analysis for nonlinear models described in the previous sec-
tion can sometimes given misleading results. An alternative way to obtain statistics
for parameter estimates is to use various Monte Carlo (MC) random sampling meth-
ods. Before proceeding to Bayesian estimation and MCMC topics, which is the main
focus of this course, we briefly present several ’classical’ Monte Carlo methods that
one can use to evaluate the uncertainty in θ̂.

5.1 Adding Noise to Data

Uncertainty in the model parameters θ in a model

y = f(x, θ) + ε (52)

is caused by the noise ε. The LSQ fit with given data leads to a single estimated
value θ̂. So, to obtain a distribution for values of θ, a natural idea might be to
generate new data by adding random noise to the existing data and repeatedly fit
different values θ̂ by the new data sets.

This approach is simple to implement and can work well, if the noise is correctly
generated so that it agrees with the true measurement noise. However, often the
structure of the noise is not properly known and generating new data is therefore
questionable. Moreover, for a nonlinear model, a new iterative optimization needs to
be performed after every time new data is generated, which can be time consuming.
The results of the analysis are also dependent on the optimizer settings, like stopping
tolerances.

5.2 Bootstrap

Bootstrapping is a very popular statistical analysis method, in spirit similar to
the above basic MC method of generating new data and repeatedly computing the
LSQ fit. However, in bootstrapping, no new data is generated, but new random
combinations of the existing data are used. The basic idea of bootstrapping is given
as a pseudo-algorithm below.

1. From the existing data x = (x1, ..., xn), y = (y1, ..., yn), sample new data x̃, ỹ
with replacement. In practice, select n indices randomly from 1, ..., n (some
may occur more than once) and choose the data points corresponding to the
chosen indices.

2. Compute the fit using the resampled data x̃, ỹ.

3. Go to step 1, until a desired number of θ samples are obtained.

Bootstrapping suffers from the same problems as the basic MC method of adding
noise to data: it is dependent on the success of the optimization step and is com-
putationally demanding since it requires repeated calls to an optimization routine.

35

Bootstrapping can also run into trouble, if the number of measurements is small:
the resampled data might contain only a few points with which the parameter es-
timation problem is ill-posed (the data does not fix the parameters). To avoid this
problem, bootstrapping is often implemented by resampling residuals instead of the
original data points.

In bootstrapping with residuals, we first find the LSQ fit θ̂ for the model param-
eters, and then compute the residuals ri = yi − f(xi, θ̂) for i = 1, ..., n. Then, in
step 1 of the bootstrap algorithm, we generate a new set of residuals (r̃1, ..., r̃n) by
resampling the original residuals with replacement. Then, new data is generated by
adding the sampled residuals to the fitted model responses: ỹi = f(xi, θ̂) + r̃i, and
this new data is used to compute the model fits in step 2 of the bootstrap algorithm.

5.3 Jack-knife

The jack-knife method is similar to the crossvalidation technique used for model
selection (see Section 3.1), but without the prediction step. The technique can be
used for estimating the variability of parameter estimates. Skipping the details, the
jack-knife works as follows.

1 Leave out part of the data from the matrices X,Y

2 Fit the model parameters using the remaining data

Repeat the steps 1 and 2 so that each observation has been omitted. Compute
estimates for the variability of the parameters.

5.4 Exercises

1. Generate data for the model y = θ1(1 − exp(−θ2x)) + ε, supposing that the
measurement noise is Gaussian (normally distributed) with ε ∼ N(0, σ2),
σ = 0.02, using the parameter values obtained in the code example of Section
4 (θ1 = 0.929, θ2 = 0.104). Repeat the LSQ fitting some 1000 times (or more).
Collect the parameter values and create the histograms for both parameters.
Visualize also the 2-dimensional joint distribution of them, as well as the
spread of the model predictions.

2. Find the distribution of the parameters θ1, θ2 of the model y = θ1(1−exp(−θ2x))
with data x = (1, 3, 5, 7, 9), y = 0.076, 0.258, 0.369, 0.492, 0.559 by using a)
bootstrap b) bootstrap for residuals. (Hint: indices for bootstrapping between
1 and n may be obtained by, e.g., the Matlab command ceil(rand(n,1)*n).
See also the function bootstrp).

3. Fit the model

y =
θ1x

θ2 + x

using the data x = (28, 55, 83, 110, 138, 225, 375) and
y = (0.053, 0.060, 0.112, 0.105, 0.099, 0.122, 0.125). Study the uncertainty of
the solution by bootstrap.

36

6 Bayesian Estimation and MCMC

Let us consider the parameter estimation setting described in the previous chap-
ters. In parameter estimation, parameters θ are estimated based on measurements
y, traditionally using, e.g., a least squares approach. In Bayesian parameter esti-
mation, θ is interpreted as a random variable and the goal is to find the posterior
distribution π(θ|y) of the parameters. The posterior distribution gives the proba-
bility density for values of θ, given measurements y. Using the Bayes’ formula, the
posterior density can be written as

π(θ|y) =
l(y|θ)p(θ)∫
l(y|θ)p(θ)dθ . (53)

The likelihood l(y|θ) contains the measurement error model and gives the probabil-
ity density of observing measurements y given that the parameter value is θ. For
example, using the model y = f(x, θ) + ε and employing a Gaussian i.i.d. error
model, ε ∼ N(0, σ2I), and noting that ε = y − f(x, θ), gives likelihood

l(y|θ) ∝
n∏
i=1

l(yi|θ) ∝ exp

(
− 1

2σ2

n∑
i=1

[yi − f(xi, θ)]
2

)
. (54)

The prior distribution p(θ) contains all existing information about the parameters,
such as simple bounds and other constraints. The integral

∫
l(y|θ)p(θ)dθ in the

denominator is the normalization constant that makes sure that the posterior π(θ|y)
integrates to one.

Different point estimates can be derived from the posterior distribution. The
Maximum a Posteriori (MAP) estimator maximizes π(θ|y) and the Maximum Like-
lihood (ML) estimator maximizes l(y|θ). If the prior distribution is uniform within
some bounds, ML and MAP coincide. With the Gaussian i.i.d. error assumption,
ML coincides also with the classical Least Squares (LSQ) estimate, since minimizing
the sum of squares term SS(θ) =

∑n
i=1[yi − f(xi, θ)]

2 is equivalent to maximizing
l(y|θ) in the equation (54) above.

In principle, the posterior distribution gives the solution to the parameter esti-
mation problem in a fully probabilistic sense. We can find the peak of the probability
density, and determine, for instance, the 95% credibility regions for the parameters.
However, working with the posterior density directly is challenging, since we need
to compute the normalization constant in the Bayes formula, which is the integral∫
l(y|θ)p(θ)dθ. In most cases this cannot be computed analytically, and classical

numerical integration methods also become infeasible, if the number of parameters
is larger than a few. With the so called Markov chain Monte Carlo (MCMC) meth-
ods, statistical inference for the model parameters can be done without explicitly
computing this difficult integral.

MCMC methods aim at generating a sequence of random samples (θ1, θ2, ..., θN),
whose distribution asymptotically approaches the posterior distribution as N in-
creases. That is, the posterior density is not used directly, but samples from the
posterior distribution are produced instead. The Monte Carlo term is used to de-
scribe methods that are based on random number generation. The sequence of

37

samples is generated so that each new point θi+1 only depends on the previous
point θi, and the samples therefore form a Markov Chain. Markov Chain theory
can be used to show that the distribution of the resulting samples approach the
correct target (posterior).

6.1 Metropolis Algorithm

One of the most widely used MCMC algorithms is the random walk Metropolis algo-
rithm introduced already in 1950s in statistical physics literature [Metropolis et al. 1953].
The Metropolis algorithm is very simple: it works by generating candidate param-
eter values from a proposal distribution and then either accepting or rejecting the
proposed value according to a simple rule. The Metropolis algorithm can be written
as follows:

• 1 Initialize by choosing a starting point θ1

• 2 Choose a new candidate θ̂ from a suitable proposal distribution q(.|θn),
that may depend on the previous point of the chain.

• 3 Accept the candidate with probability

α(θn, θ̂) = min

(
1,
π(θ̂)

π(θn)

)
. (55)

If rejected, repeat the previous point in the chain. Go back to step 2.

The Metropolis algorithm assumes a symmetric proposal distribution q, that is,
the probability density of moving from the current point to the proposed point
is the same as moving backwards from the proposed point to the current point:
q(θ̂|θn) = q(θn|θ̂). A simple extension to non-symmetric proposal distributions
is given by the Metropolis-Hastings algorithm, see Section 7.1. In this course we
will use Gaussian proposals which are symmetric, and the Metropolis algorithm is
therefore enough for our purposes.

One can see that in the Metropolis algorithm the candidate points that give a
better posterior density value than the previous point (points where π(θ̂) > π(θn)),
or moves ’upward’ in the posterior density function are always accepted. However,
moves ’downward’ may also be accepted, with probability given by the ratio of the
posterior density values at the previous point and the proposed point. In code level,
the accept-reject step can be implemented by generating a uniform random number
u ∼ U(0, 1) and accepting if u ≤ π(θ̂)/π(θi).

Note that in the Metropolis algorithm we only need to compute ratios of pos-
terior densities. In the calculation of the ratio, the normalization constant (nasty
integral) cancels out. This is what makes MCMC computationally feasible in mul-
tidimensional parameter estimation problems.

The problem remaining in the implementation of the Metropolis algorithm is
defining the proposal distribution q. The proposal should be chosen so that it is
easy to sample from and as ’close’ to the underlying target distribution (posterior)
as possible. An unsuitable proposal can lead to inefficient implementation:

38

• if the proposal is too large, the new candidates mostly miss the essential
support π, they are chosen at points where π ' 0 and only rarely accepted.

• if the proposal is too small, the new candidates mostly are accepted, but from
a small neighborhood of the previous point. So the chain moves only slowly,
and may, in finite number of steps, not cover the target π.

In Fig. 9 below, MCMC chains for a single parameter with 3 different proposal
sizes are given, illustrating how the effect of the proposal distribution is visible in
the resulting samples.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.7

0.8

0.9

1

Figure 9: Examples of MCMC chains for one parameter. The upper picture tells
that the proposal is too wide - the chain stays still for long periods. The lowest
picture presents narrow proposal - the sampler explores the distribution slowly. The
chain in the middle shows good ’mixing’.

In this course, we typically deal with multidimensional continuous parameter
spaces. In such a setting, a multivariate Gaussian distribution is a common choice
for a proposal distribution. In the commonly used random walk Metropolis algo-
rithm, the current point in the chain is taken as the center point of the Gaussian
proposal. The problem then is to find a suitable covariance matrix so that the
size and the shape (orientation) of the proposal matches as well as possible with
the target density (posterior) to produce efficient sampling. The covariance matrix
selection issue is discussed in the next section.

The form of the posterior density depends on the case. Our most typical appli-
cation is MCMC for standard nonlinear parameter estimation. Typically, the prior

39

information we have are some bound constraints for the parameters, and within the
bounds we use a uniform, ’flat’ prior, p(θ) ∝ 1. Assuming in addition independent
measurement error with a known constant variance σ2, the posterior density can be
written as

π(θ|y) ∝ l(y|θ)p(θ) ∝ exp

(
− 1

2σ2
SS(θ)

)
, (56)

where SS(θ) =
∑n

i=1[yi−f(xi, θ)]
2 is the sum of squares function that we minimize

when the LSQ estimate is computed. Using this notation, the acceptance ration in
the Metropolis algorithm reduces to

α(θn, θ̂) = min

(
1,
π(θ̂)

π(θn)

)
= min

(
1, exp

(
− 1

2σ2

(
SS(θ̂)− SS(θn)

)))
. (57)

Using these assumptions and this notation, the Metropolis algorithm with a multi-
variate Gaussian proposal distribution, with covariance matrix C and initial point
θold = θ0, can be written as follows:

1. Generate a candidate value θnew ∼ N(θold,C) and compute SS(θnew).

2. Accept the candidate if u < exp
(
− 1

2σ2 (SS(θnew)− SS(θold))
)

where u ∼
U(0, 1).

• If accepted, add θnew to the chain and set θold := θnew and SS(θold) :=
SS(θnew).

• If rejected, repeat θold in the chain.

3. Go to step 1 until a desired chain length is achieved.

This will be the version of the Metropolis algorithm that is mostly used in this
course. For details about generating multivariate Gaussian random vectors, check
Section 2.4. Note that although we assume here a flat prior, it is easy to add
possible prior information about the parameters. In this course, we will mostly use
bound constraints as prior information: for instance in chemical reaction modeling,
reaction rate constants must be positive. Implementing simple bound constraints
is easy: if the proposed parameter is out of bounds, it is simply rejected.

The progress of the Metropolis algorithm is animated in the mcmcmovie program
for a two-dimensional non-gaussian ’banana-shaped’ target distribution. A snapshot
of the algorithm after 150 iterations is given in Fig. 10: the sampler starts from a
poor initial point, eventually finds the target distribution and starts moving around
the target.

Next, we will give a short MATLAB example how the Metropolis algorithm can
be implemented.

Code example: implementing the Metropolis algorithm

Let us consider again the BOD example given in Section 4. That is, we fit the model
y = θ1(1−exp(−θ2x)) to data x = (1, 3, 5, 7, 9), y = (0.076, 0.258, 0.369, 0.492, 0.559).

40

3 2 1 0 1 2 3
10

8

6

4

2

0

2

149: accepted 50%

Figure 10: The path of the Metropolis sampler (blue line), when sampling a non-
Gaussian target (contours given by black lines) with a Gaussian proposal distribu-
tion (ellipses).

We first compute the LSQ estimate by minimizing the sum of squares, and use the
estimate as the starting point for the MCMC algorithm. A spherical proposal co-
variance C = αI is used, where α controls the size of the proposal distribution. The
measurement error variance is estimated from the residuals using the MSE formula
(46).

The code is given in two files, the main program bod mcmc.m and the sum of
squares objective function bod ss.m. We start the main program as before by
performing some initializations and minimizing the sum of squares:

%%%%% Metropolis MCMC algorithm

clear all; close all; clc;

b_0 = [1 0.1]; % initial quess for the optimizer

x = (1:2:9)’; % x-data

y = [0.076 0.258 0.369 0.492 0.559]’; % y-data

data = [x,y]; % data matrix

n = length(x); % number of data points

%%%% Get the LSQ estimate and estimate sigma**2 from the residuals

[bmin,ssmin]=fminsearch(@bod_ss,b_0,[],data);

41

sigma2 = ssmin/(n-2);

Then, we initialize the MCMC run, define (here just by hand) the covariance matrix
of the proposal distribution and start the MCMC loop. Finally, we display the
acceptance rate (fraction of accepted values) and graph the MCMC chains.

%%%% Generate the MCMC chain

nsimu = 20000;

npar = 2;

chain = zeros(nsimu,npar);

% spherical proposal covariance, try different scales!

qcov = 0.5e-3*eye(2);

R = chol(qcov); % the Cholesky ’square root’ of qcov

%%%% initializations

oldpar = bmin(:)’; % start the MCMC chain from the LSQ point

chain(1,:) = oldpar;

rej = 0; % n of rejected so far ...

%%%% Evaluate the SS at the starting point, and start the chain:

ss = bod_ss(oldpar,data);

SS=zeros(1,nsimu); SS(1) = ss;

%%%% start the simulation loop

for i=2:nsimu

newpar = oldpar+randn(1,npar)*R; % proposed new point

ss2 = ss; % old SS

ss1 = bod_ss(newpar,data); % new SS

ratio = min(1,exp(-0.5*(ss1-ss2)/sigma2));

if rand(1,1) < ratio

chain(i,:) = newpar; % accept

oldpar = newpar;

ss = ss1;

else

chain(i,:) = oldpar; % reject

rej = rej+1;

ss = ss2;

end

SS(i) = ss; %collect SS values

end

% display the acceptance rate

42

disp(’Acceptance rate’);

accept = 1 - rej./nsimu

%%%% Visualization part

figure(1);

subplot(2,1,1);

plot(chain(:,1),’.’);

ylabel(’\theta_1’);

subplot(2,1,2);

plot(chain(:,2),’.’);

ylabel(’\theta_2’); xlabel(’MCMC step’);

figure(2);

plot(chain(:,1),chain(:,2),’.’);

xlabel(’\theta_1’); ylabel(’\theta_2’);

axis tight;

The graphics produced by the program are given in Fig. 11. One can see that
the MCMC method reveals a non-Gaussian, ’banana-shaped’ posterior distribution,
which is typical for nonlinear models. From the path of the sampler one can see that
the mixing of the chain is not optimal. This is caused by the poorly chosen proposal
covariance matrix: here we take a spherical covariance matrix, which ignores the
correlations between the parameters visible in the posterior plots. A better choice
would be a covariance matrix that is tilted so that it better matches the posterior
distribution. Selecting the proposal covariance is discussed in more detail in the
next section.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.8

1

1.2

1.4

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.05

0.1

0.15

0.2

0.25

2

MCMC step
0.7 0.8 0.9 1 1.1 1.2 1.3

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

1

2

Figure 11: Left: the path of the MCMC sampler for both parameters. Right: the
posterior distribution of the parameters.

43

One can see from this example that the basic Metropolis algorithm is very
straightforward to implement in a programming environment: the MCMC loop
itself only requires a few lines of code.

In addition to finding the distribution of the model parameters, the MCMC
results can be used to simulate the distribution of any function of the parameters.
For instance, one can study how the parameter uncertainty affects the model pre-
dictions simply by simulating the model with different possible parameter values
given by MCMC. In this exampe, this predictive distribution can be computed and
visualized with the following lines of code, which outputs Fig. 12:

% predictive distribution

xx = linspace(0,40,50)’;

c=1;

for i=1:10:nsimu;

ypred(:,c) = chain(i,1)*(1-exp(-chain(i,2)*xx));

c=c+1;

end

yfit=bmin(1)*(1-exp(-bmin(2)*xx));

figure(3);

plot(xx,ypred,’g-’,x,y,’ro’,xx,yfit,’k-’);

xlabel(’x’); ylabel(’y=\theta_1(1-exp (\theta_2 x))’);

title(’MODEL PREDICTION DISTRIBUTION & DATA’);

6.2 Selecting the Proposal Distribution

Selecting the proposal distribution is one of the main factors that affects the per-
formance of an MCMC algorithm. In our typical setting, selecting the proposal
means specifying the covariance matrix C of the multivariate Gaussian proposal
distribution.

A good starting point for selecting C is to use the approximation of the covari-
ance matrix obtained via linearization of the model, which was developed in Section
4. That is, we perform a Gaussian approximation of the posterior distribution at the
LSQ estimate and choose the proposal covariance matrix C = σ2(JTJ)−1. This pro-
posal can better match with the orientation of the target distribution, as illustrated
for the previous example in Fig. 13.

In addition to orientation, scale of the proposal distribution is important. The-
ory has been developed for the optimal scaling of the proposal covariance matrix
for the random walk Metropolis algorithms, see e.g. [Gelman et al. 1996]. It has
been found that for Gaussian targets, an efficient scaling is sd = 2.42/d, where d is
the dimension of the problem (number of parameters). This result can be used as a

44

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x

y=
1(1

ex
p

(
2 x

))

MODEL PREDICTION DISTRIBUTION & DATA

Figure 12: The predictive distribution of the model fit and prediction computed
from the MCMC samples (green lines), the LSQ fit (black line) and the data points
(red circles).

rule of thumb also for non-Gaussian targets. That is, utilizing the Jacobian-based
covariance matrix, we can use proposal covariance matrix C = sdσ

2(JTJ)−1.
Next, we demonstrate how using the approximative covariance matrix affects

the MCMC results in our simple example case.

Code example: Jacobian-based proposal covariance

Again, we take the model y = θ1(1 − exp(−θ2x)) with data x = (1, 3, 5, 7, 9),
y = (0.076, 0.258, 0.369, 0.492, 0.559). Now we take the proposal covariance matrix
to be C = sdσ

2(JTJ)−1, where the Jacobian matrix is computed analytically. Note
that usually it is cumbersome to compute the Jacobian analytically, and a numerical
approximation for the Jacobian is used instead, as demonstrated in a code example
in Section 4.

The main program is given in bod mcmc2.m and the sum of squares function is
the same as earlier, bod ss.m. In the main program, we now compute the proposal
covariance differently:

%%%% Compute the Jacobian analytically

J = [1-exp(-bmin(2).*x),x.*bmin(1).*exp(-x.*bmin(2))];

scale = (2.4/sqrt(npar))^2; % ’optimal’ scaling

qcov = scale*sigma2*inv(J’*J); % proposal covariance

45

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.05

0.1

0.15
2

1

Figure 13: Posterior distribution obtained by MCMC (blue dots) and the 95%
confidence ellipse corresponding to the proposal covariance C = σ2(JTJ)−1 (red
line).

Otherwise, the MCMC code stays the same. The effect of the Jacobian-based
proposal can be seen in the resulting plots, see Fig. 14. The mixing of the chain is
improved a lot, compared to the spherical proposal in Fig. 11.

6.3 On MCMC Theory

The goal of this course is to be a practical introduction to statistical analysis meth-
ods, and therefore we will not go into the details of the theory behind MCMC
methods. Here we simply give some central theoretical results that have been de-
veloped.

A central concept in MCMC theory is ergodicity, which guarantees the correct-
ness of an MCMC algorithm in the sense that the Law of Large Numbers holds,
and the averages computed from the MCMC samples approach the correct expected
value as the number of samples increases. Formally, ergodicity is defined as follows.
Let π be the density function of the target distribution in the d-dimensional Eu-
clidean space Rd. An MCMC algorithm is said to be ergodic if, for an arbitrary
bounded and measurable function f : Rd → R and initial parameter value θ0 that
belongs to the support of π, it holds that

lim
n→∞

1

n+ 1
(f(θ0) + f(θ1) + . . .+ f(θn)) =

∫
Rd

f(θ)π(θ)dθ, (58)

46

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.8

1

1.2

1.4

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.05

0.1

0.15

0.2

0.25

2

MCMC step

Figure 14: The path of the MCMC sampler for the two parameters with proposal
covariance matrix C = sdσ

2(JTJ)−1.

where (θ0, ..., θn) are the samples produced by the MCMC algorithm. It can be
shown, for instance, that the Metropolis algorithm described above is ergodic.

Intuitively, ergodicity (typically) means that, for a function that depends both
on time and space, the time average at a fixed point in space equals the space
average at a given time point. Here, the ’time’ average – the left hand side of the
above equation – is obtained via the discrete sampling by the algorithm, the ’space’
average – the right hand side – by the integration over the probability distribution.
The theorem simply states that the sampled values asymptotically approach the
theoretically correct ones.

Note the role of the function f . If f is the characteristic function of a set A,
i.e. f(θ) = 1 if θ ∈ A, f(θ) = 0 otherwise, then the right hand side of the equation
gives the probability measure of A, while the left hand side gives the frequency of
’hits’ to A by the sampling.

But f might also be the model prediction f(x, θ) made with parameter values
θ. The theorem then states that the values calculated at the sampled parameters
correctly gives the distribution of the model predictions, also known as the predictive
distribution. An example of visualizing the predictive distribution was given in the
code example earlier in this section, see Fig. 12.

More theoretical results can be derived for the convergence of MCMC. For in-
stance, the ergodic theorem does not say about the rate of convergence, which is
given by the Central Limit Theorem (CLT). For more details of MCMC convergence
results, see MCMC text books, for instance [Brooks et al. 2011].

47

6.4 Adaptive MCMC

The bottleneck in MCMC computations is usually selecting a proposal distribution
that matches well with the target distribution. The proposal covariance matrix
using the linearization of the model discussed in the previous section is a good
starting point, but does not always lead to efficient sampling. For instance, some of
the parameters might be badly identified by the available data, which can result in a
nearly singular Jacobian matrix and inefficient sampling. The purpose of adaptive
MCMC methods is to tune the proposal ’on the run’ as the sampling proceeds,
using the information of the previously sampled points.

A simple way to implement adaptive MCMC is to simply compute the empirical
covariance matrix of the points sampled so far, using equation (16), and use that
as a proposal covariance matrix. Note that now the sampled points depend on the
earlier history of the chain, not just the previous point, and the chain is therefore
no longer Markovian. However, if the adaptation is based on an increasing part
of the history, so that the number of previous points that is used to compute the
empirical covariance matrix increases constantly as the sampling proceeds, it can
be shown that the algorithm gives correct (ergodic) results, see [Haario et al. 2001].

6.4.1 Adaptive Metropolis

In the Adaptive Metropolis (AM) algorithm of [Haario et al. 2001], the proposal is
taken to be Gaussian, centered at the current point, and the proposal covariance
matrix is taken to be the empirical covariance matrix computed from the history.
More precisely, if we have sampled points (θ0, ..., θn−1), we propose the next candi-
date using the covariance Cn = sdCov(θ0, . . . , θn−1) + εId, where sd is the scaling
factor and ε > 0 is a regularization parameter that ensures that the proposal co-
variance matrix stays positive definite. In practice, ε can often be chosen to be very
small or even set to zero.

In order to start the adaptation procedure, an arbitrary strictly positive definite
initial covariance C0 is chosen, according to a priori knowledge (which may be quite
poor). A time index n0 > 0 defines the length of the initial non–adaptation period,
which is often called the burn-in period in the literature, after which we use the
empirical covariance matrix as the proposal. Thus, we let

Cn =

 C0, n ≤ n0

sdCov(θ0, . . . , θn−1) + sdεId, n > n0.

The initial proposal covariance C0 needs to be specified. A good starting point is
often the approximative error analysis given by the linearization of the model. That
is, we can use the scaled Jacobian-based covariance matrix as the initial proposal:
C0 = sdσ

2(JTJ)−1. However, in most simple cases, it is enough to use a simple
(e.g. diagonal) C0 that is small enough so that the sampler gets moving, and let
the adaptation tune the proposal.

The empirical covariance matrix does not have to be recomputed every time,
since recursive formulas exist. The empirical covariance matrix determined by

48

points θ0, . . . ,θk ∈ Rd can be written in the form (check the details yourself)

Cov(θ0, . . . , θk) =
1

k

(
k∑
i=0

θiθ
T
i − (k + 1)θk θ

T

k

)
,

where θk = 1
k+1

∑k
i=0 θi is the empirical mean and the elements θi ∈ Rd are consid-

ered as column vectors. The covariance matrix Cn satisfies the recursive formula

Cn+1 =
n− 1

n
Cn +

sd
n

(
nθn−1θ

T

n−1 − (n+ 1)θnθ
T

n + θnθ
T
n + εId

)
,

which permits the calculation of the covariance update with little computational
cost (the mean, θn, also has an obvious recursive formula). Moreover, only the
expression θnθ

T
n /n is ’new’ in the update formula, all the rest depends on previous

mean values. So the effect of adaptation goes down as 1/n; this is often called
diminishing adaptation: in the long run, AM goes back to usual non-adaptive sam-
pling, since new sampled points affect the proposal less and less as the sampling
proceeds. This form of adaptation can proved to be ergodic. Note that the same
adaptation, but with a fixed update length for the covariance, is not ergodic.

The choice for the length of the initial non–adaptive portion of the simulation,
n0, is free. The larger it is, the longer it takes for adaptation to start. It has been
found that the adaptation might not be efficient if done at each time step, and one
should adapt only at given time intervals. This form of adaptation improves the
mixing properties of the algorithm, especially for high dimensions.

Finally, we can present the AM algorithm as the following pseudocode:

• Choose the lenght of the chain N and initialize θ1 and C1 - for example, choose
the θ1 given by a LSQ fitting and take C1 as the approximative covariance
calculated at θ1 by linearization.

• For k = 1, 2, ..., N

– Perform the Metropolis step, using proposal N(θk,Ck).

– Update Ck+1 = Cov(θ1, ..., θk).

The algorithm may be implemented in several variations. One may compute the
covariance by the whole chain (θ1, ..., θk) or by an increasing part of it, for instance
(θk/2, ..., θk). The covariance may also be updated only after a given number of
steps k, instead of every step.

The AM algorithm performs well in a large variety of problems. In addition to
AM, other more advanced adaptive MCMC methods have been developed. Next,
we present one adaptive method that has turned out to be efficient in practice, the
Delayed Rejection Adaptive Metropolis (DRAM) algorithm [Haario et al. 2006].

6.4.2 Delayed Rejection Adaptive Metropolis

In the regular Metropolis algorithm, a candidate move, θ̃k, is generated from a pro-
posal distribution q1(·|θk) with the usual acceptance probability. In the Delayed

49

Rejection (DR) algorithm [Mira 2001], upon rejection, instead of repeating the pre-

vious value in the chain, θk+1 = θk, a second stage move θ̃
(2)
k is proposed from a

(possibly) different proposal distribution q2. The second stage proposal is allowed
to depend not only on the current position of the chain but also on what we have
just proposed and rejected: q2(·|θk, θ̃k).

An ergodic chain is created, if the second stage proposal is accepted with suitably
modified acceptance probability (details skipped here). The process of delaying
rejection can be iterated to try sampling from further proposals. In practice, we
often use only a 2-stage version, where the second stage proposal is a downscaled
version of the first stage proposal. That is, upon rejection, we try a new candidate
value closer to the current point.

The delayed rejection method can be combined with the adapting proposal co-
variance matrix. This algorithm, introduced in [Haario et al. 2006], is called De-
layed Rejection Adaptive Metropolis (DRAM). The algorithm can be implemented
in various ways, but we often use a the following simple implementation:

• The proposal at the first stage of DR is adapted just as in AM: the covariance
matrix C1

n for the Gaussian proposal is computed from the points of the sam-
pled chain, no matter at which stage of DR these points have been accepted
in the sample path.

• The covariance Ci
n of the proposal for the i-th stage (i = 2, ...,m) is always

computed as a scaled version of the proposal of the first stage, Ci
n = γiC

1
n,

with fixed scaling factors γi.

6.5 MCMC in practice: the mcmcrun tool

In this course we use a MATLAB code package that makes it easy to run MCMC
analyses. The code package is written by Marko Laine, and it can be downloaded
from http://helios.fmi.fi/~lainema/mcmc/. The toolbox provides a unified
interface for specifying models, and implements, in addition to the basic Metropolis
algorithm, the adaptive AM and DRAM methods described in the previous section.
In this section, we will demonstrate the use of the toolbox using an example. This
simple example demonstrates only the main features of the toolbox. For more
documentation, see the web page and the appendix of the doctoral thesis of the
author of the code [Laine 2008]. See also help mcmcrun for a short description of
how the package is used.

Let us again consider the simple BOD model y = θ1(1− exp(−θ2x)) with data
x = (1, 3, 5, 7, 9), y = (0.076, 0.258, 0.369, 0.492, 0.559). The main program for
running the MCMC analysis is bod mcmcrun.m. The code uses the same sum of
squares function bod ss.m as before.

To begin with, we set the data matrices and perform the LSQ fitting, as before,
and add the mcmcstat folder that contains the toolbox files to the MATLAB path:

%%%% MCMCRUN toolbox demo

50

clear all, close all;

addpath mcmcstat; % adding the mcmc package to the path

b_0 = [1 0.1];

x = (1:2:9)’; n = length(x);

y = [0.076 0.258 0.369 0.492 0.559]’;

data = [x,y]; % observations

%%%% Get estimate for sigma2 from the residual Sum of Squares

[bmin,ssmin]=fminsearch(@bod_ss,b_0,[],data);

sigma2 = ssmin/(n-2);

Then, we start to specify the input structures needed by the mcmcrun function.
The function needs four inputs: model, data, params and options. The model

structure is used to define the sum of squares function and the measurement error
variance. The sum of squares function must be implemented in the form that takes
the parameter vector as the first argument and the data structure as the second
argument and returns the sum of squares value: in our case, the function is defined
as ss=bod ss(theta,data), see the file bod ss.m. In this case, the model structure
is written as

%%%% the MCMC part

model.ssfun=@bod_ss; % SS function

model.sigma2=sigma2; % measurement error variance

Next, we define the params structure, that defines the parameter names, their
starting values and possible minimum and maximum limits (in this order). The
structure is given as a cell array, which in our case takes the following form:

% the parameter structure: name, init.val, min, max

params = {

{’\theta_1’,bmin(1),-Inf,Inf}

{’\theta_2’,bmin(2),-Inf,Inf}

};

51

That is, we start the MCMC sampling from the LSQ estimate, and do not specify
any bounds for the parameters. Note that MATLAB can interpret LaTex and it is
therefore easy to include mathematical expressions in the text.

Let us next specify the options structure, that controls how the MCMC sampler
works. For instance, the number of samples, the (initial) proposal covariance matrix,
the sampling method, and the adaptation interval for adaptive methods can be
given via the options structure. In this case, we run the DRAM method for 20000
iterations, starting with a small proposal covariance 0.01I and performing covariance
adaptation at every 100th step:

% MCMC options

options.nsimu = 20000; % number of samples

options.qcov = 0.01*eye(2); % (initial) proposal covariance

options.method = ’dram’; % method: DRAM

options.adaptint = 100; % adaptation interval

At this point, we have everything we need to call the mcmcrun function. The function
gives out a results structure and the sampled chain, and takes in the structures just
defined:

% calling MCMCRUN

[results,chain] = mcmcrun(model,data,params,options);

The results can be visualized using the mcmcplot function included in the package,
see help mcmcplot. Here we want two figures: one that draws the chain paths and
one that plots the two-dimensional parameter distribution:

% visualizing the results using MCMCPLOT

figure(1);

mcmcplot(chain,[],results.names);

figure(2);

mcmcplot(chain,[],results.names,’pairs’);

The code produces the plots given in Fig. 15, which are rather similar to the ones
obtained earlier with the self coded Metropolis algorithm. Note that the adaptation
has lead to a suitable proposal covariance matrix and the mixing of the chain is
good.

52

0.8

1

1.2

1.4

1.6
1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0.05

0.1

0.15

0.2

0.25
2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0.06

0.08

0.1

0.12

0.14

0.16

2

1

Figure 15: Left: the path of the MCMC sampler for both parameters. Right: the
posterior distribution of the parameters.

6.6 Visualizing MCMC Output

The output of the MCMC algorithm can be visualized in many ways. Previously in
this section we have plotted the output as two dimensional distribution plots and
one dimensional ’chain’ plots that give the sample paths for each parameter, see
Fig. 11. In addition to these, one can obviously approximate the one dimensional
marginal distributions, for instance, by histograms. In the mcmcplot function, one
can give the format of the visualization as a parameter, ’chain’ gives the chain
plot, ’pairs’ draws the two dimensional marginal distributions and ’hist’ gives
histograms.

The target density can be approximated based on the obtained samples also by
the kernel density estimation technique. In kernel density estimation, the density
is approximated by a sum of certain kernel functions, which are centered at the
sampled parameter values. The kernel function can be, for instance, the density
function of the normal distribution. The width and the orientation of the Gaussian
kernel functions can be controlled via the covariance matrix. The wider the kernel
is, the smoother density estimate we get, but a too wide kernel gives poor results,
especially for the tails of the distribution.

Kernel density estimation is implemented in the mcmcplot function. One can
add density lines to the two dimensional marginal plots by using the function as
mcmcplot(chain,inds,names,’pairs’,smo,rho), where smo gives the width of
the kernel and rho gives the orientation (correlation coefficient). If the orientation
parameter is not given, a correlation coefficient computed from the MCMC samples
is used. In the BOD example used throughout this document, the pairs plots with
density estimates with kernel width 1 can be obtained as follows:

mcmcplot(chain,[],results.names,’pairs’,1);

53

In Fig. 16 below, the pairs plots are illustrated for two different values for the kernel
width parameter. One can see that the kernel width affects the smoothness of the
density estimates. Note that the function draws the 50% and the 95% confidence
regions calculated based on the density estimation, and also estimates of the one
dimensional marginal densities.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.05

0.1

0.15

2

1
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.05

0.1

0.15

2
1

Figure 16: Pairs plots with two different width parameters for kernel density esti-
mation.

In addition to visualizing the parameter posterior distribution, we are often
interested in the predictive distribution, i.e., what is the uncertainty of the model
predictions. Predictive distributions can be visualized simply by simulating the
prediction model with different parameter values and drawing the prediction curves,
as was demonstrated in Fig. 12.

The MCMC package contains also functions for visualizing predictive distribu-
tions. The function mcmcpred simulates the model responses and computes different
confidence envelopes for the predictions. The mcmcpredplot function can then be
used to visualize the predictive distribution. In the BOD example, the following
code can be used:

bodmod=@(x,th) th(1)*(1-exp(-th(2)*x)); % bod model function

xx = linspace(0,40)’; % x vector for plotting

out=mcmcpred(results,chain,[],xx,bodmod,500); % model predictions

mcmcpredplot(out); % the predictive distr.

That is, the mcmcpred function takes in the results and chain variables produced
by the mcmcrun function, the (optional) chain for the error variance (here empty ma-
trix), the control variables with which the model is simulated (here the time vector),
the model function, and the number of predictions computed. The MCMC analysis
with predictive distributions is given in the demo program bod mcmcrun pred.m.
The program produces the figure given in Fig. 17.

54

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

m
od

el
 re

sp
on

se

Figure 17: The data (red dots), the median of the predictions (black line) and the
50%, 95% and 99% confidence envelopes for the predictions (grey areas).

6.7 MCMC Convergence Diagnostics

Usually, one can simply visually inspect the chains to see how well the chain is
mixing and if the sampler has reached its stationary distribution. However, var-
ious formal diagnostic methods have been developed to study if the sampler has
converged. In the mcmcstat code package, the chainstats function can be used
to compute some basic statistics of the chain. For the BOD example, the function
prints the following table:

>> chainstats(chain,results)

MCMC statistics, nsimu = 20000

mean std MC_err tau geweke

\theta_1 0.9615 0.13414 0.0048443 35.481 0.99295

\theta_2 0.1027 0.018925 0.00055183 26.766 0.98571

That is, we get the mean and the standard deviation of the chain. In addition
we get an estimate of the Monte Carlo standard error of the mean of the param-
eters, the integrated autocorrelation time and the Geweke convergence diagnostic,
respectively. Check MCMC textbooks for details of these statistics.

55

A useful way to visualize how well the chain is mixing is to plot the autocor-
relation function (ACF) of the parameter chains. The ACF tells how much, on
average, samples that are k steps apart correlate with each other. In MCMC meth-
ods, subsequent points correlate with each other since the next point depends on
the previous point. The further apart the samples are in the chain, the less they
correlate. The ACF can be visualized with the mcmcplot using the plotting mode
’acf’. In the BOD case, the ACF for steps k = 1, ..., 100 can be plotted as follows:

mcmcplot(chain,[],results.names,’acf’,100);

The code produces the autocorrelation plots for both parameters, given in Fig. 18.
One can see that the autocorrelation goes towards zero, and reaches the zero level
at around k = 80. This means roughly that taking every 80th member of the
chain results in uncorrelated samples. The ACF plot is often used to compare the
efficiency of MCMC schemes: the faster the autocorrelation goes to zero the better.

0

0.5

1
Parameter 1: 1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
Parameter 2: 2

Figure 18: The autocorrelation function for two parameters.

6.8 Exercises

In the exercises below, you can use your own MCMC implementation, or use the
mcmcrun tool demonstrated in the previous section.

1. Use the Metropolis MCMC algorithm to find the distribution of the parame-
ters (θ1, θ2) of the model

y =
θ1x

θ2 + x
(59)

56

with y = (0.053, 0.060, 0.112, 0.105, 0.099, 0.122), x = (28, 55, 110, 138, 225, 375).
Study the impact of different proposal distributions (non-correlated Gaussian
with different variances, a Gaussian with covariance computed by a previ-
ously sampled chain, covariance as calculated by the Jacobian of the LSQ fit).
Visualize the parameter distributions and the predictive distribution.

2. Take the model and data from exercise 1 in Section 4. Estimate the param-
eters using MCMC and compare the results to the classical, Jacobian-based
analysis.

3. Take the model and data from exercise 2 in Section 4. Estimate the parameters
using MCMC. Visualize the uncertainty in the parameters.

4. Take the model and data from exercise 3 in Section 4. Estimate the parameters
using MCMC. Visualize the uncertainty in the parameters and in the model
response.

5. To study a chemical reaction A+B −→ C the concentration of the component
A was analyzed in a case where the reaction was started with the initial values
A = 0.054, B = 0.106 at t = 0. The data below was obtained

time A

426 0.0351

1150 0.0222

1660 0.0186

3120 0.0124

The reaction rate was written in the form k = θAn1Bn2 . Write an ODE system
for the kinetics. Fit the unknown parameters θ, n1, n2 to the data. Study, by
MCMC runs, to which extent the parameters are identifiable by this data.
Hint: start by fixing one or both of the 2 parameters n1, n2 to integer values
1 or 2. Be prepared to have some numerical difficulties!

57

7 Further Monte Carlo Topics

7.1 Metropolis-Hastings Algorithm

In the Metropolis algorithm presented in Section 6.1, the proposal distribution was
assumed to be symmetric, that is, for two parameter values θ1 and θ2 we have
q(θ2|θ1) = q(θ1|θ2), where q(θ2|θ1) denotes the density for proposing a move from
θ1 to θ2. However, the algorithm can be extended for non-symmetric proposal
distributions, which was developed in [Hastings 1970].

In practice, the algorithm is otherwise the same as the Metropolis algorithm,
but the acceptance probability is slightly modified to account for the non-symmetry.
In the Metropolis-Hastings algorithm (MH), the probability of accepting the move
from θn to θ̂ is given by

α(θn, θ̂) = min

(
1,
π(θ̂)q(θn|θ̂)
π(θn)q(θ̂|θn)

)
. (60)

Comparing to the acceptance probability of the Metropolis algorithm in equation
(55), one can see that the only difference is the inclusion of the ratio of the proposal
densities, q(θn|θ̂)/q(θ̂|θn).

In this course, the MH algorithm has little practical relevance, since we use
symmetric Gaussian proposal in the example cases.

7.2 Gibbs Sampling

In the Metropolis algorithm presented above, candidate values for all parameters
are proposed at the same time. However, sometimes, especially in high-dimensional
problems, it may be difficult to find a good multivariate proposal distribution for all
parameters simultaneously. The idea in Gibbs sampling is to reduce the sampling to
one dimensional distributions: each parameter is sampled in turn, while the other
parameters are kept fixed.

In more detail, the parameter vector (θ1, θ2, ..., θp) is updated in sweeps, by up-
dating one coordinate at a time. This may be done if the 1–dimensional conditional
distributions π(θi|θ1, ..., θi−1, θi+1, ..., θp) are known. In many cases these reduce to
simple known densities which are easy to sample from. Often, however – in non-
linear problems – the conditional distributions are not known, and they must be
approximated by computing ’sufficiently’ many values in the 1D directions.

Gibbs sampling as a pseudocode that creates a chain of length N can be written
as follows:

• for k=1,...,N

– for i=1,2,...,p

sample θki from the 1D conditional distribution π(θi|θ1, ..., θi−1, θi+1, ..., θp).

Note that there is no accept-reject procedure here and the point taken from the
1D distribution is always accepted, but the creation of the 1D (approximative) dis-
tribution may require several evaluations of the objective function, if the conditional
distributions do not assume any known simple form.

58

If the 1D distribution for θk is not known, it must be approximatively created.
This may be done by evaluating π(θi|θ1, ..., θi−1, θi+1, ..., θp) with respect to the
coordinate i a given number of times. The computed values can then be used
to create an empirical CDF. The new value for θki can then be sampled from the
empirical distribution by using the inverse CDF method: sample a random point
uniformly on [0, 1] and compute the inverse of the above empirical CDF at that
point.

7.3 Component-wise Metropolis

Instead of sampling directly from the one-dimensional conditional distributions, as
in Gibbs sampling, one can perform component-wise Metropolis sampling. The
proposal distribution of each component is, for instance, a normal distribution with
the present point as the center point and with a given variance, separate for each
coordinate. The coordinates are updated in loops, similarly as in Gibbs sampling.

Let again π(θ) denote the density of our target distribution in a d dimensional
Euclidean space, typically a posterior density distribution which we can evaluate
up to a normalizing constant. The sequence (θ0, θ1, . . .) denotes the full states of
the Markov process, that is, we consider a new state updated as soon as all the
d coordinates (or components) of the state have been separately updated. When
sampling the i:th coordinate θit (i = 1, . . . , d) of the t:th state θt we apply the
standard 1-dimensional Metropolis step:

1. Sample zi from 1-dimensional normally distributed proposal distribution qit ∼
N(θit−1, v

i) centered at previous point with variance vi.

2. Accept the candidate point zi with probability

min

(
1,

π(θ1t , . . . , θ
i−1
t , zi, θi+1

t−1, . . . , θ
d
t−1)

π(θ1t , . . . , θ
i−1
t , θit−1, θ

i+1
t−1, . . . , θ

d
t−1)

)
,

in which case set θit = zi, and otherwise θit = θit−1.

Note that, after a full loop over the coordinates, obtaining a changed value for
θt typically is more likely than in standard Metropolis - since each coordinate may
separately be accepted with a reasonable high probability. On the other hand, the
CPU time needed for each coordinate loop increases with the dimension d.

The idea of proposal adaptation can be also extended to the single component
sampling. This gives the Single Component Adaptive Metropolis (SCAM) method
developed in [Haario et al. 2005], which can be useful in higher dimensional prob-
lems.

7.4 Metropolis-within-Gibbs

The component-wise Metropolis and Gibbs sampling algorithms can be combined:
some coordinates may be updated by Gibbs sampling and some with Metropolis
accept-reject steps. This approach is sometimes called Metropolis-within-Gibbs
sampling. For coordinates that assume simple forms so that the direct sampling is

59

easy, Gibbs sampling may be preferable, and in other cases one can apply Metropolis
steps.

7.5 Importance Sampling

Importance sampling is a Monte Carlo method for approximating integrals of form

Ep(f) =

∫
f(x)p(x)dx, (61)

that is, computing expectations of a function f(x) with respect to a distribution
given by the density function p(x). A straightforward way would be to sample points
x1, ..., xm from the distribution given by p(x) and approximate then the expectation
by the average

Ep(f) ≈ f̄m =
1

m

m∑
j=1

f(xj). (62)

Suppose that we can not (or it is ’expensive’) sample directly from p(x), but we do
know a density function g(x) such that g(x) > 0 if p(x) > 0, and sampling from the
density g(x) is easier. By the identity

Ef (p) =

∫
f(x)

p(x)

g(x)
g(x)dx (63)

(where we take the integrand as zero if both p and g vanish) we may sample from
g(x) and approximate the expected value as

f̄m =
1

m

m∑
j=1

f(xj)
p(xj)

g(xj)
=

1

m

m∑
j=1

f(xj)w(xj). (64)

The function g is referred to as the importance function and w as the importance
weight. The function g should be chosen so that it mimics the distribution p, and
is easy to sample from. Naturally, the main problem here is how to find a proper
importance function for each problem.

7.6 Conjugate Priors and MCMC Estimation of σ2

In our typical applications, the likelihood distribution reads as

l(y|θ) = (2πσ2)−n/2 exp

(
− 1

2σ2
SS(θ)

)
, (65)

where SS(θ) =
∑n

i=1[yi − f(xi, θ)]
2 is the sum of squares function. In practice,

we need to specify the value for the measurement error variance σ2. Previously,
we have given a fixed value for σ2, estimated from the residuals of the model fit
or from repeated measurements. However, instead of fixing σ2 to a specific point
estimate, we can also regard σ2 as a random variable and treat it in a Bayesian way
by sampling it along with the model parameters in the MCMC algorithm.

60

We often have a rather good idea about the level of the measurement error, and
we therefore would like to specify a prior distribution for it. A computationally
convenient choice for the prior is obtained using the conjugacy property. If we set
the prior so that the posterior is of the same form as the prior, the prior is called a
conjugate prior.

Looking at the Gaussian likelihood (65), and considering it as a function of σ2

(with fixed θ), we see that the inverse variance 1/σ2 has a Gamma type distribution
(check, e.g., Wikipedia for the density function of the Gamma distribution). The
conjugate prior for the Gamma distribution is also Gamma. That is, if we specify
a Gamma prior for 1/σ2, the conditional posterior p(σ−2|y, θ) will also be Gamma
distributed. More specifically (check, e.g., [Gelman et al. 1996] for details), the
prior for σ−2 can be defined as

σ−2 ∼ Γ(
n0

2
,
n0

2
S2
0). (66)

That is, we define the prior for the measurement error variance with two parameters,
n0 and S2

0 . This parameterization is chosen because the prior parameters are easy
to interpret: S2

0 gives the mean value for σ2 and n0 defines how accurate we think
the value S2

0 is. The higher n0 is, the more peaked the prior distribution is around
S2
0 , and the more informative the prior is. In Fig. 19 below, the prior density for
σ2 is illustrated.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

20 n0 = 1
n0 = 10
n0 = 50

S0
2 = 0.1

Figure 19: Prior densities for error variance with S2
0 = 0.1 and different values for

n0.

With the conjugate prior, we can derive a Gamma posterior for the conditional
posterior for the error variance, p(σ−2|y, θ). Without going into the details (try to
work them out yourself), the conditional posterior for σ−2 posterior can be written
as

p(σ−2|y, θ) = Γ(
n0 + n

2
,
n0S

2
0 + SS(θ)

2
). (67)

61

Now we have an analytical expression for the conditional distribution of σ−2, and
we can build a Gibbs sampler that first samples θ as usual and then samples a new
value for σ2 from the above density by iterating the following steps:

1. Sample a new θ value from p(θ|σ−2,y)

2. Sample a new σ2 value from p(σ−2|y, θ)

The mcmcrun tool used in this course contains the σ2 sampling feature presented
above. Next, we give a code example of how this works.

Code example: σ2 sampling via mcmcrun

This demo uses again the BOD model y = θ1(1 − exp(−θ2x)) with data x =
(1, 3, 5, 7, 9), y = (0.076, 0.258, 0.369, 0.492, 0.559). The program is given in bod mcmcrun sig.m,
which is only a slight modification to bod mcmcrun.m presented earlier (where σ2

was fixed). In the mcmcrun code, the σ2 sampling is turned on using the options

structure by setting

options.updatesigma = 1; % sample sigma2 too

The conjugate prior is controlled with two parameters, n0 and S2
0 , which can be

set in the model structure. If they are not set, the defaults will be used (n0 = 1
and the model.sigma2 value for S2

0). Here, we use the previously calculated MSE
estimate as S2

0 and n0 = 5:

model.S20=sigma2; % prior for sigma2

model.N0=5; % prior accuracy for sigma

Other than these lines, the MCMC part of the code remains the same. However,
in the call to mcmcrun, we now take an extra output variable, the s2chain that
contains the sampled σ2 values. In addition, we can also take the chain of sum of
squares values out from the function:

% calling MCMCRUN

[results,chain,s2chain,sschain] = mcmcrun(model,data,params,options);

In the visualization part of the code, which gives Fig. 20, we plot the sampled σ2

chain and compute the histogram of the samples:

62

% visualizing the results using MCMCPLOT

figure(1);

mcmcplot(s2chain);

title(’\sigma^2 chain’);

figure(2);

mcmcplot(s2chain,[],[],’hist’);

title(’\sigma^2 histogram’);

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

0.2

0.4

0.6

0.8

1

1.2
x 10 3 2 chain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10 3

2 histogram

Figure 20: Left: the MCMC chain for σ2. Right: the histogram from σ2 samples.

7.7 Hierarchical Modeling

This section is under construction.

7.8 Exercises

1. Consider the task of calculating the tail probability P (X > M), where X ∼
N(0, 1) and M = 4.5. Compare two Monte Carlo approaches:

(a) the basic MC approach, where you sample numbers from N(0, 1) and
calculate the fraction of points satisfying X > M .

(b) the importance sampling approach with the exponential distribution with
density g(x) = exp(−(x−M)) as the importance function.

2. Take task 1 from Section 6.8 and apply conjugate prior sampling for the error
variance σ2. Compare the posterior distributions obtained with a fixed σ2 and
by letting σ2 vary.

63

8 Dynamical State Estimation

Besides model parameter estimation, where the goal is to estimate static parameters
θ, one is often interested in estimating the dynamically changing state of the system.
For instance, in our chemical reaction examples, the model state is the vector of
concentrations for different compounds. In many problems, the state of the system is
not known and can be observed only partially. As time proceeds, new measurements
become available, that can be used to update the state estimates.

Here the state estimation problem is formulated as follows. At discrete times k,
estimate the system state xk using previous observations y1:k = (y1, ...,yk), when
the model and observation equations are given as

xk = M(xk−1) + εpk (68)

yk = K(xk) + εok. (69)

In the above system, M is the evolution model that evolves the state in time and
K is the observation model that maps the state to the observations. Error terms εpk
and εok represent the model error and the observation error, respectively.

In dynamical state estimation problems, measurements are obtained in real-time
and the state estimate needs to be updated after the measurements are obtained.
This can be achieved by applying the Bayes’ formula sequentially. The prior is
given by evolving the posterior of the model state from the previous time step using
the model M (prediction step). The obtained prior is updated with the likelihood
of the measurement (update step) to get the posterior, which is evolved with the
model and used as the prior in the next time step. Repeating this procedure allows
’on-line’ estimation of model states.

Dynamical state estimation techniques are needed in many important applica-
tions in various different fields. Examples of applications include, for example

• Target tracking: estimate the position and velocity of an object using a model
for the dynamics and (possibly indirect) observations of the target. For in-
stance, the Global Positioning System (GPS) uses state estimation techniques
(extended Kalman filtering).

• Combining accelerometer and gyroscope data to compute the orientation, po-
sition and velocity of an object (such as a gaming device).

• Non-stationary inverse problems, for instance process tomography: estimate
the dynamically changing concentrations of different compounds in a pipe by
combining fluid dynamics and chemistry models with tomographic measure-
ments [Seppänen 2009].

• Numerical Weather Prediction (NWP): estimate the state of the current weather
by correcting the previous prediction with different kinds of observations
(ground based, satellite etc.) to allow real-time weather predictions.

• ...

64

8.1 General Formulas

In general terms, the sequential state estimation, also known as filtering, works as
follows. The filtering methods aim at estimating the marginal distribution of the
states p(xk|y1:k) given the measurements obtained until the current time. In the
prediction step, the whole distribution of the state is moved with the dynamical
model to the next time step:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (70)

When the new observation yk is obtained, the model state is updated using the
Bayes’ rule, with (70) as the prior:

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (71)

This posterior is used inside integral (70) in the next prediction step. The term
p(xk|xk−1) includes the evolution model and describes the probability of having
state xk at time k, given that the state was xk−1 at the previous time step. The
idea of sequential state estimation is illustrated in Figure 21.

p(yk|xk)

xk = M(xk−1) + εp
k

yk = K(xk) + εo
k

evolution model prior posterior

observation model

likelihood

p(xk−1|y1:k−1)

posterior

observation model

likelihood

p(yk−1|xk−1)

yk−1 = K(xk−1) + εo
k−1

p(xk|y1:k−1) p(xk|y1:k)

Figure 21: Two iterations of sequential state estimation at times k − 1 and k. The
prior is given by the model, which is combined with the observation to get the
posterior. The posterior is further propagated to be the prior for the next time
point.

Different state estimation methods can be derived, depending on the assump-
tions of the form of the state distribution, the likelihood and the techniques used
to evolve the uncertainty of the state in time. Some of the most common methods
are introduced in what follows.

8.2 Kalman Filter and Extended Kalman Filter

The Kalman filter (KF) is meant for situations, where the model is linear and the
model and observation errors are assumed to be zero mean Gaussians with given
covariance matrices. The extended Kalman filter (EKF) is its extension to nonlinear
situations, where the model is linearized and the KF formulas are applied.

65

Linear Least Squares with Gaussian Prior and Gaussian Likelihood

To derive the KF formulas, let us first consider the linear model y = Ax with
Gaussian prior and Gaussian likelihood. Note that now the unknown is denoted
by x instead of θ. The posterior distribution is π(x|y) ∝ p(y|x)p(x), where the
likelihood and prior are

p(x) ∝ exp

(
−1

2
(x− xp)

TP−1(x− xp)

)
(72)

p(y|x) ∝ exp

(
−1

2
(y −Ax)TR−1(y −Ax)

)
. (73)

Here xp is the prior mean and P and R are model error and measurement error
covariance matrices, respectively. Maximizing the posterior density is equivalent
to minimizing the negative log-likelihood, which is (ignoring the normalizing con-
stants)

−2 log(π(x|y)) = (y −Ax)TR−1(y −Ax) + (x− xp)
TP−1(x− xp). (74)

Previously, we have derived the LSQ estimate and its covariance matrix for linear
systems without the prior term (x− xp)

TP−1(x− xp). Here, we attempt to do the
same for the above more general expression.

Let us assume that the inverses of the covariance matrices can be symmetrically
decomposed into P−1 = KTK and R−1 = LTL (for instance, using the Cholesky
decomposition). Note that such decomposition can always be done, since covariance
matrices (and their inverses) are, by definition, positive definite. Then, we can write
the least squares expression as

−2 log(π(x|y)) = (y −Ax)TLTL(y −Ax) + (x− xp)
TKTK(x− xp) (75)

= (Ly − LAx)T (Ly − LAx) + (Kx−Kxp)
T (Kx−Kxp).(76)

We continue by combining both terms into one expression, and write

−2 log(π(x|y)) = (ỹ − Ãx)T (ỹ − Ãx), (77)

where

ỹ =

 Ly

Kxp

 Ã =

 LA

K

 . (78)

That is, we have transformed the problem into a least squares problem with identity
I as the error covariance matrix. This can be solved with the formulas developed
in Section 3: x̂ = (ÃT Ã)−1ÃT ỹ and cov(x̂) = (ÃT Ã)−1. Switching back to the
original notation, the terms X̃T X̃ and X̃T ỹ in the above formulas become

ÃT Ã = ATLTLA + KTK = ATR−1A + P−1 (79)

ÃT ỹ = ATLTLy + KTKxp = ATR−1y + P−1xp. (80)

66

That is, the LSQ solution θ̂ and its covariance matrix, denoted here by C, have the
expressions

x̂ = (ATR−1A + P−1)−1(ATR−1y + P−1xp) (81)

C = (ATR−1A + P−1)−1. (82)

These formulas are very similar to the previously obtained linear least squares
formulas (28) and (29), but here we have the prior center point xp and covariance
matrix P included.

The Kalman Filter

Let us now consider the state space model given in equations (68-69). Let us assume
that both the evolution and observation models are linear, given at time step k as
matrices Mk and Kk, and write

xk = Mkxk−1 + εpk (83)

yk = Kkxk + εok. (84)

The model error and observation error are assumed to be zero mean Gaussian with
covariance matrices Qk and Rk, respectively.

The idea of filtering is essentially to estimate the state vector xk for time steps
k = 1, 2.... In practice this is done by applying the Bayes’ rule sequentially so
that the prediction from the previous time step is considered as the prior, which is
updated with the new measurements that become available.

To be more precise, let us assume that we have at time step k − 1 obtained a
state estimate xest

k−1 with covariance matrix Cest
k−1. The prior center point for the

next time step k is given by the model prediction:

xpk = Mkx
est
k−1. (85)

The covariance of the prediction (prior) is computed using the assumption that the
state vector and model error are statistically independent:

Cp
k = Cov(Mkx

est
k−1 + εpk) = MT

kC
est
k−1Mk + Qk. (86)

This Gaussian with mean xpk and covariance matrix Cp
k is used as a prior, which is

updated with the new measurement vector yk. The negative log-posterior distribu-
tion for the state vector at time step k can be written as

−2 log(π(xk)) = (xk−xpk)
T (Cp

k)
−1(xk−xpk) + (yk−Kkxk)

TR−1k (yk−Kkxk), (87)

which is just the linear least squares problem with Gaussian prior and Gaussian
likelihood discussed in the previous section. That is, for time step k, the estimate
and its covariance can be computed using the formulas (81-82).

However, for computational reasons, the Kalman filter formulas are usually writ-
ten in the following form, which can be obtained via direct but somewhat non-trivial
matrix manipulations (see exercises):

Gk = Cp
kK

T
k (KkC

p
kK

T
k + Rk)

−1 (88)

xest
k = xpk + Gk(yk −Kkx

p
k) (89)

Cest
k = Cp

k −GkKkC
p
k. (90)

67

In the above formulas, Gk is called the Kalman gain matrix. To sum up, we can
write the Kalman filter as an algorithm as follows:

1. Prediction: move the state estimate xest
k−1 and its covariance Cest

k−1 in time

(a) Compute xpk = Mkx
est
k−1.

(b) Compute Cp
k = MkC

est
k−1M

T
k + Qk.

2. Update: combine the prior xpk with observations yk

(a) Compute the Kalman gain Gk = Cp
kK

T
k (KkC

p
kK

T
k + Rk)

−1.

(b) Compute the state estimate xest
k = xpk + Gk(yk −Kkx

p
k).

(c) Compute the covariance estimate Cest
k = Cp

k −GkKkC
p
k.

3. Increase k and go to step 1.

The Extended Kalman Filter

The extended Kalman filter (EKF) is an extension of the Kalman filter to the case
where the evolution and/or observation model are nonlinear. The EKF directly uses
the Kalman filter formulas in the nonlinear case by replacing the nonlinear model
and observation operators in the covariance computations with linearizations: Mk =
∂M(xest

k−1)/∂x and Kk = ∂K(xpk)/∂x. For small scale models, the linearizations can
be computed numerically, using finite differences.

8.3 Ensemble Kalman Filtering

In ensemble filtering, the uncertainty in the state estimate xk is represented as N
samples instead of a covariance matrix, here denoted as sk = (sk,1, sk,2, ..., sk,N).
The first ensemble filtering method was the ensemble Kalman filter (EnKF), see,
for instance, [Evensen 2004]. The EnKF essentially replaces the state covariance
matrices in EKF with the sample covariance calculated from the ensemble. The
sample covariance can be written as Cov(sk) = XkX

T
k , where

Xk = ((sk,1 − sk), (sk,2 − sk), ..., (sk,N − sk)) /
√
N − 1. (91)

The sample mean is denoted by sk. Using this notation, the EnKF algorithm can
be formulated as follows:

1. Prediction: move the state estimate and covariance in time

(a) Move ensemble forward and perturb members with model error:
spk,i =M(sest(k−1),i) + epk,i, i = 1, ..., N .

(b) Calculate sample mean spk and covariance Cp
k = XkX

T
k .

2. Update: combine the prior with observations

(a) Compute the Kalman gain Gk = Cp
kK

T
k (KkC

p
kK

T
k + Cεok

)−1.

68

(b) Update ensemble members sestk,i = spk,i + Gk(yk −Kks
p
k,i + eok,i).

(c) Calculate state estimate as the sample mean: xest
k = sestk .

3. Increase k and go to step 1.

In the above algorithm, vectors epk,i and eok,i are realizations of the model and ob-
servation errors εpk and εok, respectively.

The ensemble Kalman Filter is simple to implement and it does not require
linearization of the forward model. In addition, the computations are trivially
parallelizable, since the N forward model evaluations can be run in parallel. Lately,
ensemble Kalman filtering has become an active research topic in large scale filtering
problems, such as atmospheric data assimilation, and numerous variants of the basic
EnKF scheme have been developed.

8.4 Particle Filtering

The Kalman filtering methods described in the above sections assume a Gaussian
form for the filtering distributions. Particle filtering methods are fully statistical
state estimation methods in the sense that they do not rely on any assumptions
about the form of the target, and all inference is carried out by Monte Carlo sam-
pling. Particle filtering methods, often also called sequential Monte Carlo (SMC)
methods, are based on sequential application of the importance sampling method
described in Section 7.5.

Let us describe the state estimate at time k − 1 with samples sest(k−1,i), where

i = 1, ..., N . In particle filtering, the forward model p(xk|xk−1) is used to move
the particles forward to obtain the predicted particles, or prior particles spk,i. The
predicted particles are considered to be samples from the prior distribution at time
step k, and the prior distribution is considered as the importance function for
sampling from the posterior. That is, the importance weight for particle i at time
k becomes

wk,i =
π(spk,i|yk)
p(spk,i)

=
p(yk|spk,i)p(spk,i)

p(spk,i)
= p(yk|spk,i). (92)

That is, the importance weights for the particles can be computed directly using
the likelihood function. Intuitively, predicted particles that hit closer to the next
observation get a larger weight than points that do not predict the observation that
well.

Once the importance weights are obtained, the posterior particles sestk,i are sam-
pled with replacement from the prior particles in proportion to the importance
weights. That is, the prior particles that match the observations well are repeated
many times in the posterior particles, and the less likely particles are discarded.

The particle filter implemented in this way is called the Sequential Importance
Resampling (SIR) algorithm. The SIR method can be written as an algorithm as
follows:

1. Move the particles forward: spk,i ∼ p(sk,i|sest(k−1,i)), with i = 1, ..., N .

2. Compute the importance weights wk,i = p(yk|spk,i), with i = 1, ..., N

69

3. Resample with replacement in proportion to the importance weights to obtain
the posterior particles sestk,i .

4. Increase k and go to step 1.

Note that the particle filter is here described using general forms for the evolution
and observation models, and not particularly for the additive state space model
given in equations (68-69). This is the way particle filtering is usually written in
the literature, and it emphasizes that no assumptions of the forms of the densities
are assumed. Naturally, the additive model can be used here as well: then, in
step 1 above, the particle evolution would be computed as in the EnKF, spk,i =
M(sest(k−1),i) + epk,i where epk,i are realizations of the model error.

While particle filtering does not contain simplifying assumptions of the under-
lying densities, and therefore in principle gives correct results as the number of
particles N increases, it has its problems and it can be cumbersome to use it in
practice. For instance, the number of particles required to get accurate estimates
grows fast as a function of the dimension of the state vector. Therefore, the par-
ticle filtering method is not very attractive in high-dimensional problems, and the
methods based on, e.g., Gaussian approximations, are often more effective. Another
known problem in particle filtering is the possible degeneration of the importance
weights: there is a risk that all the weight is put into one sample, which can yield
poor filtering results. Many strategies have been developed to overcome these is-
sues. Currently, however, the applicability of particle filtering is limited to small
dimensional state estimation problems.

8.5 Exercises

1. An object is moving on (x1, x2) plane. We have noisy observations of the
position of the object at different time points. The observations are obtained
with time interval ∆t = 1. The goal is to estimate the location and the
velocity with the Kalman Filter.

(a) Write the model and observation equations by assuming that the velocity
is constant within each time interval.

(b) Implement the Kalman Filter using the measurements given in the file
observations.dat. Use (x1, x2) = (10, 10) and velocity (1, 0) as the ini-
tial point. Test the effect of different scales for the model error covariance
matrix and for the measurement error covariance matrix.

2. The famous Lorenz equation ODE system

dx

dt
= a(y − x)

dy

dt
= x(b− z)− y

dz

dt
= xy − cz

70

is a simple prototype of chaotic dynamics (that is seen, for instance, in weather
systems). In the file lor3data.dat, observations for the components x and y
are given. The file is organized so that the first column gives the measurement
time instances and the following columns are noisy observations for x and y.

Choose a filtering method and implement it to estimate the states (x, y, z) at
different time points. Use initial values x(0) = y(0) = z(0) = 1 and parameter
values a = 10, b = 28, c = 8/3.

To see how accurate your filter is, compare the state estimates to the true
state values given in the file lor3truth.dat. The first column of the file
gives the time instances and the following columns are the true values for x,
y and z used to generate the data.

In your filter, use the true measurement error variance σ2 = 0.1I that was
used to generate the observations. Study different scales for the model error
covariance matrix and see how it affects the accuracy of the filter. In addi-
tion, if you choose a Monte Carlo filtering method, study how the number of
ensemble members (or particles) affects the accuracy.

3. Starting from the least squares formulas (81-82), derive the Kalman filter for-
mulas (88-90). Hint: use the Sherman-Morrison-Woodbury matrix inversion
lemma (check e.g. Wikipedia).

71

References

[Brooks et al. 2011] Brooks S., Gelman A., Jones G.L., Meng X., 2011. Handbook of
Markov Chain Monte Carlo. Chapman & Hall / CRC, USA.

[Evensen 2004] Evensen G., 2007. Data assimilation: The ensemble Kalman filter.
Springer, Berlin.

[Forsythe et al. 1977] Forsythe G.E., Malcom M.A., Moler C.B., 2009. Computer Meth-
ods for Mathematical Computations. Prentice-Hall series in automatic computation.

[Gelman et al. 1996] A. Gelman, G. O. Roberts, and W. R. Gilks. Efficient Metropolis
jumping rules. Bayesian Statistics, 5, 599607, 1996.

[Gelman et al. 1996] Gelman A., Carlin J., Stern H. and Rubin D., 2004. Bayesian Data
Analysis, Second Edition. London, Great Britain: Chapman Hall.

[Haario et al. 2001] Haario H., Saksman E. and Tamminen J., 2001. An Adaptive
Metropolis Algorithm. Bernoulli, 7(2), pages 223-242.

[Haario et al. 2005] Haario H., Saksman E. and Tamminen J., 2005. Componentwise
adaptation for high dimensional MCMC. Comput. Stat., 20(2), pages 265273.

[Haario et al. 2006] Haario H., Laine M, Mira A., Saksman E., 2006. DRAM: Efficient
adaptive MCMC. Stat. Comput., 16, pages 339–354.

[Hastings 1970] Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov
Chains and Their Applications. Biometrika 57 (1): 97109.

[Laine 2008] Laine M., 2008. Adaptive MCMC Methods with Applications in Environ-
mental and Geophysical Models. Finnish Meteorological Institute Contributions, 69.

[Metropolis et al. 1953] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H.
and Teller E., 1953. Equations of State Calculations by Fast Computing Machines.
Journal of Chemical Physics, 21(6), pages 1087–1092.

[Mira 2001] Mira A., 2001. On Metropolis-Hastings algorithms with delayed rejection.
Metron, LIX(34), pages 231–241.

[Seppänen 2009] Seppänen A., Voutilainen A., Kaipio J.P. State estimation in process
tomography – reconstruction of velocity fields using EIT. Inverse Problems, 25(8),
2009.

72

