
Chapter 5

Nonparametric regression and distri-
bution estimation

Nonparametric methods in statistics refer to analysis methods which try to avoid
assuming certain parametric distribution in the model. Usually, the assumption
to be avoided is the normal distribution. As contrary to the name nonparametric
(epäparametrinen), these methods usually have a large number of parameters.
Nonparametric methods are used in all the fields in data-analysis, for example there
is a variety of nonparametric tests available. However, here we mention only two
nonparametric methods — spline regression and kernel density estimation.

5.1 Spline regression and other smoothing techni-
ques

Sometimes the functional form or dependence between explanatory variable(s) and
dependent variable is not interesting in such, only some kind of smooth description
of the behavior. In these cases either direct smoothing of the data or regression
smoothing is searched for.
There are many different data smoothing techniques, from which moving average
or moving median are the most simple ones. In these, the values of yi are replaced
by average (or median) over a smoothing window that holds k observations around
the i’th observation. An example of such smoothings are shown in Fig. 5.1 with
window size of 10. Other, more advanced methods include e.g. LOESS or LOWESS
smoothing.
One more interesting smoothing or nonparametric regression technique is the spline
regression. This method should not be mixed with spline interpolation where all
the variability of the observations is reproduced. In spline regression, a small num-
ber of so-called cubic B-splines that are local third-order polynomials are used as a
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Figure 5.1: Moving average and moving median smoothing to the data.

basis for linear regression. When the spline basis Bj(x) is formed, the sum of these,∑
j βjBj(x) is fitted to the data in least-square sense.

The spline basis functions are distributed to the range of explanatory variables xi

evenly, or preferably to the quantiles of the data. We will not go into details with
B-spline basis derivation, there are suitable material in e.g. Wikipedia or in Numer-
ical Recipies. A spline regression for the data in previous moving average/median
example is shown in Fig. 5.2, together with the cubic spline basis that is distributed
along x to 7 quantiles of the data plus the end-points, 0%, 12.5%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5%, 100%.

For technical reasons, the spline basis if formed with knots where the end-points
are repeated four times in the knot list, so with k quantiles there are k+2× 4 knots
in the basis. With those knots, total of k + 4 splines are available.
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Figure 5.2: Spline basis for 7 quantiles and end-points of the data (left) and fitted
regression spline of the basis functions (right).
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5.2 Kernel estimation

Kernel estimation (ydinestimointi) is a nonparametric method for estimating (con-
tinuous) distribution (pdf) of the data. The methods works for both one-dimensional
or multidimensional data. The result of kernel estimation is not a parametrized
close-formed distribution, but a numerical function that can be used to compute
values of the distribution estimate.
The idea of kernel estimation is quite simple. Every observation xi in the data is
replaced by a kernel function Ki(x; xi, h), and the total kernel estimate is the scaled
sum of kernels:

K(x;x, h) =
1

n

n∑
i

Ki(x;xi, h), (5.1)

where x is the data vector, x the value where the distribution is evaluated, and h is
the smoothing parameter (siloitusparametri).
The choice of the kernel function should not be too critical, any non-negative func-
tion that is symmetric around its maximum and integrates to one should do. One
suitable choice is to use the pdf of normal distribution, with expected value µ = xi

and variance σ2 = h2. So, kernel is

Ki(x;xi, h) =
1√
2πh

exp

(
−(x− xi)

2

2h2

)
. (5.2)

More important than the actual shape of the kernel should be the choice of the
smoothing parameter h. There are different advices, one of such is the method of
Silverman:

h = s

(
4

p+ 2

) 1
p+4

n− 1
p+4 , (5.3)

where p is the dimension of the data. With one-dimensional case the s is simply
the standard deviation of the data. An example of kernel estimation of the density
function for three observations is shown in Fig. 5.3.
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Figure 5.3: Three observations, normal pdf kernels and the kernel density estimate
of the pdf.
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Kernel estimation suits quite well for multidimensional cases, too. For these, a
multidimensional normal distribution pdf can be used as the kernel with covari-
ance matrix h2Ip or even with h2CwhereC is the correlation matrix estimated from
the data. For smoothing parameter h the s in Eq. (5.3) should be computed from
the diagonal elements of the covariance matrix S of the data:

s =

√√√√1

p

p∑
i

Sii. (5.4)

Example for two-dimensional kernel estimate is shown in Fig. 5.4.

Figure 5.4: Two-dimensional observations and kernel estimate for the pdf. On left,
a contour plot of the estimate with the data, on right, 3-D surface plot of the kernel
estimate.
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