
Chapter 4

Nonlinear model

4.1 Introduction

Nonlinear model (NLM, epälineaarinen malli) is an extension to linear model where
the systematic part of the model is no longer a linear function Xβ. Generally, NLM
is of form

Yi = f(xi1, . . . , xik; β1, . . . , βp) + ϵi = f(xi;β) + ϵi (4.1)

for i = 1, . . . , n observations, k variables and p parameters. Note that for LM k = p,
but this is not requirement in NLM. In vector form the NLM is

Y = f(X;β) + ϵ, (4.2)

where Y is n×1, X is n×k, β p×1, and ϵ n×1. Function f is vector-valued function
(f(x1;β), . . . , f(xn;β)). In what follows we might shorten f(xi;β) to fi(β) or even to
fi.

4.1.1 Some nonlinear models

Some nonlinear model types are introduced here, but because any (non)linear func-
tion f will introduce NLM, the list is merely just a small set of examples. First of
all, multiplicative model is NLM if errors are additive, i.e.

Yi = β0x
β1

i1 · · · xβk

ik + ϵi (4.3)

Please note that if errors are also multiplicative, the model can be transformed into
linear:

Yi = β0x
β1

i1 · · · xβk

ik e
ϵi ⇒ (4.4)

log(Yi) = log(β0) + β1 log(xi1) + . . .+ βk log(xik) + ϵi (4.5)
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In modeling the degree of linear polarization in atmosphereless Solar System tar-
gets such as asteroids covered with regolith, or dust in comets coma, the so-called
trigonometric model is used. It is defined as

Yi = β1 sin(xi)
β2 cos(xi/2)

β3 sin(xi − β4) + ϵi, (4.6)

where xi is the phase angle and Yi is the degree of linear polarization. The function
is shown in Fig. 4.1(a).
A model for limited growth is shown in Fig. 4.1(b). The model is

Yi = β1 + β2

(
1− e−β3xi

)
+ ϵi, (4.7)

The growth starts from β1 and is limited by β1 + β2. The parameter β3 controls the
speed of growth.
A growth curve can be defined so that it will reach its maximum, but slowly decline
after that. A model that is shown in Fig. 4.1(c) is

Yi = β1 +
β2xi

β3 + xi + β4x2
i

+ ϵi, (4.8)

The growth starts again from β1 and reaches its maximum at
√

β3/β4, but will then
decrease.
One more type of growth curves is the S-type curves such as the logistic function
in Fig. 4.1(d):

Yi =
β1

1 + e−β2(xi−β3)
+ ϵi, (4.9)

where β1 controls the limiting value of the growth, β2 its steepness, and β3 the
location where positive derivative turns into negative.
Many of the NLM’s can be derived as a solution for differential equation, for ex-
ample the growth curves (b) and (d).

4.2 Model estimation

Most of the model estimation and diagnostics are done more or less the same way
as in linear model. The main difference is, that results regarding the distribution
of parameters, i.e. parameter errors, are always asymptotic, and that the model
estimation is a numerical optimization problem. With LM the model estimate is
given in closed form, and results regarding parameter distributions are exact under
the normal assumption.
Let us derive the NLM parameter estimate from the maximum likelihood principle,
although the same result can be reached from the ’minimal least squares’ principle.
Our model, now with normal assumption, is that

ϵi ⊥⊥ ϵj, ϵi ∼ N (0, σ2) , or alternatively (4.10)
Yi ⊥⊥ Yj, Yi ∼ N (fi(β), σ

2)
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Figure 4.1: Four examples of different models in nonlinear regression.

Because the i.i.d observations, the likelihood function for the model is

L(β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
(yi − fi(β))

2

)
(4.11)

We will write the squared residual sum in a shorter form, S(β) =
∑n (yi − fi(β))

2,
and state that the log-likelihood function for the model is

l(β, σ2) = −n

2
log(σ2) − 1

2σ2
S(β) (4.12)

The maximum of the log-likelihood gives the ML estimates for the NLM. Regarding
to parameter vectorβ, we can easily see that estimate b = β̂ must minimize the sum
of squared residuals S(β). When inputting that back to log-likelihood, derivating
with respect to σ2, and searching for root, we find that s2 = σ̂2 = 1

n
S(b).

Contrary to linear model, the estimate b cannot (usually) be expressed in closed
form. The minimization of S(β) must be done numerically. Quite generally a
GaussNewton or LevenbergMarquardt algorithms are used.

4.2.1 Parameter properties

The asymptotic properties of the NLM estimates b and s2 can be found by analyzing
the Hessian matrix of the MLE’s (see Eq. (2.6)). After some cumbersome calculus,
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we can find that for the residual variance we have

s2
as.∼ N

(
σ2,

2σ4

n

)
, (4.13)

and for the actual parameters

b
as.∼ Nn

(
β, σ2

(
F(β)TF(β)

)−1
)
. (4.14)

The matrix F(β) is short for the n×p partial derivative matrix with elements

F(β) =

[
∂fi(β)

∂βj

]
ij

. (4.15)

The tests regarding individual parameters in NLM are done in similar manner than
with LM, only change being that instead of matrix M−1 = (XTX)−1 in LM (see
Eqs. (3.33)–(3.35)) we have matrix M−1 = (F(β)TF(β))−1 in NLM.
The model diagnostics with e.g. residual plots are also done as with LM. The co-
variance matrix of b is even more important than with LM — highly correlated
parameters are hard to estimate with numerical methods. Moving to a different
parametrization might help.
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