Chapter 6

Multivariate methods

Multivariate methods in data-analysis refer to the vast collection of methods that are applied to data with several variables. In principle regression analysis (linear or nonlinear models) with multiple variable data is also a multivariate method, but usually multivariate regression is treated separately. Different clustering, classification, pattern recognition and data reduction methods are in the core of multivariate data-analysis.

6.1 Multivariate distributions

Multivariate distributions are distributions for vector-valued random variables, and multivariate pdf's and cdf's are functions from \mathbb{R}^{n} to positive real axis \mathbb{R}^{+}. Apart from the fact that the variable is multidimensional, they are just like one-dimensional distributions.

With one-dimensional distributions there are plenty of different types of choices available. With multiple dimensions, the multivariate normal distribution governs the field and other choices are rare. With independent variables this is not an issue, since the joint distribution of independent components is the product of the one-dimensional distributions. With just a few components these distributions are often called by the names of the individual components, e.g. gamma-normal distribution for the product distribution of gamma and normal distributed variables.

6.1.1 Multinormal distribution

Multinormal distribution for p-dimensional random vector $\boldsymbol{Y}, \mathcal{N}_{p}$, is parametrized by p-dimensional vector of expected values $\boldsymbol{\mu}$ and $p \times p$-dimensional covariance matrix Σ. The pdf is

$$
\begin{equation*}
\mathrm{f}(\boldsymbol{y} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{p}{2}} \operatorname{det}(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right), \tag{6.1}
\end{equation*}
$$

where $\operatorname{det}(\cdot)$ is the determinant of a matrix.
The covariance matrix Σ has all the information about the dependencies between multinormal variables. Two variables Y_{i} and Y_{j} are independent if $[\boldsymbol{\Sigma}]_{i j}=\sigma_{i j}=$ $\sigma_{j i}=0$. In that case their correlation is also zero. Note that for other than multinormal variables it might be that the (linear) correlation between the variables is zero, but that they are not independent. For normal distribution, however, correlation is equivalent to dependency.

The possible dependency can be generalized to groups of variables. Let us say that the random vector \boldsymbol{Y} constitutes of k components A_{1}, \ldots, A_{k}, and m components B_{1}, \ldots, B_{m}. The random vector, expected value vector and the covariance matrix can be partitioned into submatrices or -vectors:

$$
\left.\begin{array}{c}
\boldsymbol{Y}=\left[\begin{array}{lll}
\boldsymbol{A} & \boldsymbol{B}
\end{array}\right]^{T}=\left[\begin{array}{lll}
A_{1} & \cdots & A_{k}
\end{array} B_{1} \cdots\right.
\end{array} B_{m}\right]^{T} .
$$

Now, if the variables \boldsymbol{A} are all independent of \boldsymbol{B}, it means that $\boldsymbol{\Sigma}_{A B}=\mathbf{0}$. Furthermore, it holds now that $\mathbf{A} \sim \mathcal{N}_{k}\left(\boldsymbol{\mu}_{A}, \boldsymbol{\Sigma}_{A A}\right)$ and similarly for \mathbf{B}. Two examples of pdf's of two-dimensional normal distribution are shown in Fig. 6.1. The variables are independent in the first example, and dependent on the second.

Construction of multinormal distribution

It might be useful to understand how a multinormally distributed variables are formed. First of all, we need p random variables Z_{i} that are independently and normally distributed. Without loss of generality, we can assume at this point that they all are distributed as $Z_{i} \sim \mathcal{N}(0,1)$.

Second, let us have a $p \times p$ matrix of coefficients $c_{i j}, \mathbf{C}$. Third, we need a vector $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right)$. Now we can construct a new random vector \boldsymbol{Y} as

$$
\begin{align*}
& Y_{1}=c_{11} Z_{1}+\ldots+c_{1 p} Z_{p}+\mu_{1} \tag{6.5}\\
& Y_{2}=c_{21} Z_{1}+\ldots+c_{2 p} Z_{p}+\mu_{2} \\
& \vdots \\
& Y_{p}=c_{p 1} Z_{1}+\ldots+c_{p p} Z_{p}+\mu_{p}
\end{align*}
$$

which can be written shorter as

$$
\begin{equation*}
\boldsymbol{Y}=\mathbf{C} \boldsymbol{Z}+\boldsymbol{\mu} \tag{6.6}
\end{equation*}
$$

After this transform \boldsymbol{Y} has multinormal distribution $\boldsymbol{Y} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}=$ CC^{T}.

Figure 6.1: Contour plots (upper row) and 3D plots (lower row) of two-dimensional normal distribution. Distribution on left has no dependence ($\rho=0$) between the variables, while distribution on the right has $\rho=0.75$.

The construction of multinormal variables above can be used to create samples of (pseudo)random numbers from multinormal distribution. The creation of standard $(0,1)$ normal random numbers is available in almost all software packages, so it is easy to create sample $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)$. The required covariance matrix should be decompositioned with Cholesky decomposition $\Sigma=\mathbf{C C}^{T}$, or preferably with eigendecomposition (ominaisarvohajotelma) $\boldsymbol{\Sigma}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$, where $\boldsymbol{\Lambda}$ is diagonal matrix of eigenvalues. In the latter case, $\mathbf{C}=\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}$. Now Eq. (6.6) can be directly applied to Z to get the multivariate random sample:

$$
\begin{equation*}
\boldsymbol{Y}=\mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{Z}+\boldsymbol{\mu} \tag{6.7}
\end{equation*}
$$

Because $\boldsymbol{\Lambda}$ is diagonal matrix, the $\boldsymbol{\Lambda}^{1 / 2}$ is simply $\left\lceil\sqrt{\Lambda_{11}} \cdots \sqrt{\Lambda_{p p}}\right\rfloor$.

Mahalanobis distance

The Mahalanobis distance is a generalized distance measure that is suitable for multinormal distributed variables. Let us have an example of two-dimensional
sample from multinormal distribution as in Fig. 6.2. The two variables might measure completely different quantities and thus have different scales. The expectancy of the distribution is at $(100,1)$. Let us say that we have three interesting observations, the red, green and the blue dots in the figure. One might want to know which one is further from the expected value (red dot).

Figure 6.2: Random multinormal sample and Mahalanobis distance.

The expected value (mean) has coordinate $\overline{\boldsymbol{y}}=\left(\overline{y_{1}}, \overline{y_{2}}\right)$. The squared Euclidean distance to mean would be $D_{e}^{2}=(\boldsymbol{y}-\overline{\boldsymbol{y}})^{T}(\boldsymbol{y}-\overline{\boldsymbol{y}})$. In this case, the distances would be about 10 (red), 14 (green), and 1.4 (blue) for the three colored dots. Euclidean distance is clearly a bad measure in this case, since it assumes that both coordinate axes Y_{1} and Y_{2} have the same scale.

An improved version of the distance measure could be constructed if the observations would be normalized (scaled with their standard deviations) before taking the Euclidean distance. However, that procedure would not take into account the evident strong correlation between the variables. After normalization the points would have approximately the same Euclidean distances to mean. Still, based on the gray sample points from the distribution, it would seem that the red point is "more common" and should have smallest distance from mean.

The Mahalanobis distance takes both the scales of the different axis and the correlation into account. The distance is defined as

$$
\begin{equation*}
D_{m}=\left((\boldsymbol{y}-\overline{\boldsymbol{y}})^{T} \mathbf{S}^{-1}(\boldsymbol{y}-\overline{\boldsymbol{y}})\right)^{1 / 2}, \tag{6.8}
\end{equation*}
$$

where S is the sample estimate of the covariance matrix. One can see that the Mahalanobis distance is Euclidean distance that is weighted by the inverse of the covariance. For multinormal sample this is the correct distance measure to be used.

Test of multinormality with Mahalanobis distance

There are a number of tests for multinormality, each focusing on different requirements for a multinormal sample. The Mahalanobis distance can also be used to test the multinormality. It can be shown that the squared Mahalanobis distances of multinormal sample should have the χ^{2}-distribution with p degrees of freedom. The Q-Q plot, as described in Fig. 3.7 and the related text, can be used to graphically check the distribution assumption. Sorted squared distances are plotted on the vertical axis, and quantiles from the $\chi^{2}(p)$-distribution of the squared distances on the horizontal axis. The points should lie close to diagonal line if the sample is from multinormal distribution.

Figure 6.3: Q-Q-plot of the squared Mahalanobis distances against χ^{2}-distribution from the sample in Fig. 6.2

6.2 Principle component analysis

Principle component analysis (PCA, pääkomponenttianalyysi) is one of the most important multivariate methods, especially in natural sciences. In social sciences Factor Analysis (faktorianalyysi) is similar and popular method, but PCA is more 'physical' while there are more possibilities to subjective judgment in factor analysis.
The importance of PCA comes from its wide applicability. PCA can be used in visual analysis, clustering, pattern recognition, exploratory data analysis, variable reduction, searching for dependency structures etc. Furthermore, PCA is quite straightforward to implement and is 'objective' in the sense that it does not need any parameters to be set.
PCA can be understood perhaps the easiest way be a geometrical approach. In Fig. 6.4 (a) there are contour ellipses from two-variate normal distribution. There is correlation between the variables, so the axis of the ellipsoids are not parallel to the coordinate axis. What the PCA does is that is searches for these axis of the contour ellipses and then transforms the data so that the ellipse axis are the new
coordinate vectors. After PCA the new variables (coordinate axis) are uncorrelated, as shown in Fig. 6.4 (b).

Figure 6.4: Sketch of the PCA in geometrical interpretation.

6.2.1 Implementing principle component transform

The PCA can be implemented quite easily in a computing environment where there are tools for matrix algebra and for eigenvalue decomposition. The data matrix Y has n rows, one for each observation, and p columns for the variables. First the data matrix needs to be centered or standardized. If the data is only centered, the method is based on the covariances, and if standardized, it is based on the correlations.

The correct method can be chosen based on the quantities and scales the variables are measuring. If all the variables measure the same quantity, and we want to preserve the information that is in the variances of the variables, we should choose the covariance method. The centering of the data is done using the mean vector $\overline{\boldsymbol{y}}$ which holds the mean values over the observations for each variable, i.e.

$$
\begin{equation*}
\overline{\boldsymbol{y}}=\left(\bar{y}_{1}, \ldots, \bar{y}_{p}\right)=\frac{1}{n}\left(\sum_{i}^{n} y_{i 1}, \ldots, \sum_{i}^{n} y_{i p}\right) . \tag{6.9}
\end{equation*}
$$

The centered data matrix \mathbf{X} is computed from \mathbf{Y} by:

$$
\begin{equation*}
\mathbf{X}=\mathbf{Y}-\mathbf{1}_{n, p} \operatorname{diag}(\overline{\boldsymbol{y}}), \tag{6.10}
\end{equation*}
$$

where $\mathbf{1}_{n, p}$ is $n \times p$ matrix full of ones, and $\operatorname{diag}(\cdot)$ is an operator that constructs a diagonal matrix of the values.
However, if the variables measure different quantities and their variances cannot be compared with each other, we should choose the correlation method and use the standardized data matrix. In standardization the centered data is further divided by standard deviations, variable by variable. This can be formulated with the diagonal matrix of inverses of standard deviations, $[\mathbf{V}]_{i i}=1 / s_{i i}$ as

$$
\begin{equation*}
\mathrm{X}^{*}=\mathbf{X} \mathbf{V} \tag{6.11}
\end{equation*}
$$

The rest of the PCA procedure identical to correlation and covariance methods, so we use symbol \mathbf{X} for both the cases. Next, the sample estimate to covariance matrix S is needed. If (and only if) the data matrix is centered, as with X here, the sample covariance matrix can be computed as

$$
\begin{equation*}
\mathbf{S}=\frac{1}{n-1} \mathbf{X}^{T} \mathbf{X} \tag{6.12}
\end{equation*}
$$

If \mathbf{X} was standardized, \mathbf{S} is actually correlation matrix.
Third step is to compute the eigenvalue decomposition of S. Eigenvalue decomposition is such that

$$
\begin{equation*}
\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T} \tag{6.13}
\end{equation*}
$$

where \mathbf{U} is the $p \times p$ matrix of eigenvectors, and $\boldsymbol{\Lambda}$ is the diagonal matrix of eigenvalues. Finally, the data is transformed into PCA space by

$$
\begin{equation*}
\mathbf{Z}=\mathbf{X} \mathbf{U} \tag{6.14}
\end{equation*}
$$

An example of PCA transform in shown in Fig. 6.5.

Figure 6.5: Example of PCA transform to 500 observations from two-dimensional multinormal distribution. Original observations are in subfigure (a), and data in PCA space in (b).

6.2.2 Interpretation of principal components

As can be seen from Eq. (6.14), PCA is a linear transform. If \boldsymbol{u}_{j} 's are the eigenvectors in $\mathbf{U}=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{p}\right]$, and \mathbf{x}_{i} is the row in centered (standardized) data matrix, the value of j th new PCA variable for observation i is

$$
\begin{equation*}
z_{i j}=\boldsymbol{x}_{i}^{T} \boldsymbol{u}_{j}=x_{i 1} u_{1 j}+\ldots+x_{i p} u_{p j} \tag{6.15}
\end{equation*}
$$

In that context, the eigenvectors \boldsymbol{u}_{j} are the new coordinate basis, and map the original variables to the PCA space. The eigenvectors are often called loadings. Large absolute values in $u_{k j}$ mean that original variable k has large impact, loading, to PCA variable j. Therefore by plotting eigenvectors one can visually inspect how the original variables influence the PCA variables.
The eigenvalues, i.e. the diagonal values in Λ are the variances of the data in the PCA space. The PCA will preserve the total variance of the data, i.e.

$$
\begin{equation*}
\sum_{j}^{p}[\boldsymbol{\Lambda}]_{j j}=\sum_{j}^{p}[\mathbf{S}]_{j j} \tag{6.16}
\end{equation*}
$$

In PCA based on the standardized data matrix the total correlation is preserved, so $\sum_{j}^{p}[\boldsymbol{\Lambda}]_{j j}=p$.

6.2.3 Principal component analysis in variable reduction

One of the applications of PCA is in variable or dimensionality reduction or data compression. The fact that the PCA variables are uncorrelated makes this possible. Unnecessary PCA variables can be removed without affecting the remaining variables. The variances of the PCA variables is used to judge which variables are "unnecessary".
Usually the procedure that computes eigenvalues and -vectors already sorts them so that the first eigenvalue is the largest and so forth. The eigenvectors are also sorted because the order of values and vectors must match. If this is not done by the procedure, one should do this manually. So, eigenvalues must be sorted so that $\Lambda_{[1]} \geq \Lambda_{[2]} \geq \cdots \geq \Lambda_{[p]}$. The same ordering must then be applied for eigenvectors, $\mathbf{U}=\left[\boldsymbol{u}_{[1]} \boldsymbol{u}_{[2]} \cdots \boldsymbol{u}_{[p]}\right]$.
If there are correlations between the original variables, it is often so that the total variance in the data is redistributed with PCA variables so that the first few PCA variables make up almost all the total variance. The interpretation is that the first few PCA variables with large variances are the "real signal" and the rest of the PCA variables with variances close to zero are "random noise". Variable reduction is based on this.
The portion c of total variance that is reproduced with the first k PCA variables is derived with

$$
\begin{equation*}
c=\frac{\sum_{j}^{k} \Lambda_{j}}{\sum_{j}^{p} \Lambda_{j}} \tag{6.17}
\end{equation*}
$$

Usually the limit for c is set close to 100%, to 95% or 99% for example. When the first k PCA variables can reproduce the required portion, the variable reduction is done by forming $\mathbf{U}^{*}=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{k}\right]$, i.e. taking only the first k eigenvectors and dropping out the rest. The reduced data \mathbf{Z}^{*} in PCA space is received by $\mathbf{Z}^{*}=\mathbf{X} \mathbf{U}^{*}$. The reduced matrix has now only k variables. If the PCA variable reduction is
successful, the reduced number of variables k can be significantly smaller than the original number of variables p.
One application for PCA variable reduction is the visualization of high-dimensional data. If the first two or three PCA variables can reproduce a large portion of the total variance, the data can be visualized in 2D or 3D plots in the reduced PCA space. Another is in classification or clustering problems. While PCA is not itself optimized for classification, it can find structures in the data that can be both visualized in low dimensions, and used in classification. An example of this is shown in Fig. 6.6.

Figure 6.6: PCA example from Wikipedia. A PCA scatterplot of haplotypes calculated for 37 Y-chromosomal STR markers from 354 individuals. PCA has successfully found linear combinations of the different markers, that separate out different clusters corresponding to different lines of individuals' Y-chromosomal genetic descent.

6.3 Other multivariate methods

We will not go through multivariate (MV) methods apart from principle component analysis. The algorithms tend to be more complicated so the methods could only be introduced here without details. I will only briefly make some notes on the other methods.

Both classification and clustering are among the most important MV methods. The difference between classification and clustering is that in clustering the number of
groups is not known beforehand, and its estimation is one of the tasks in clustering. In classification the groups or classes where data is to be designed is known beforehand.

Classification problems have, in general, two main tasks where different approaches can be applied. First of all, a distance measure must be derived between MV observations. As was already seen in Sec. "Mahalanobis distance", the standard Euclidean distance with MV data is not always the optimal one. Mahalanobis or Manhattan distances can perform better. Euclidean distance can be used after the data is suitably transformed. The PCA transform can be used for that, although it is not designed with classification purposes in mind. The Linear Discriminant Analysis is a transform that is closely related to PCA, but designed for classification.
After the distance measure is decided, the actual classification to one of the preassigned groups must be done. There are, again, different choices of methods. Classification by the shortest distance to group center is the most straightforward method. The so-called linear classifier or Naïve Bayes classifier are methods to be considered also. The k nearest neighbor method is simple nonparametric classification scheme if training data is available. If training data with known classes is available, a cross-validation should be performed to asses the error rate of the classifier. Pattern recognition or machine learning are also more or less classification problems, and nonlinear methods such as neural networks are sometimes applied in addition to beforementioned techniques.

Clustering differs from classification in the sense that the possible classes of observations are not known beforehand. Again, consideration should be applied to the distance measure or the transformation of data before the actual clustering. The clustering algorithm works by choosing groups for each observation by minimizing a chosen measure of "group conformance" while maximizing the difference between groups in some sense. This is usually done for different number of groups, and the recommend number of groups is chosen so that it optimizes the ratio between "within-group" and "between-groups" variances.

