
Chapter 6

Multivariate methods

Multivariate methods in data-analysis refer to the vast collection of methods that
are applied to data with several variables. In principle regression analysis (linear
or nonlinear models) with multiple variable data is also a multivariate method, but
usually multivariate regression is treated separately. Different clustering, classifi-
cation, pattern recognition and data reduction methods are in the core of multi-
variate data-analysis.

6.1 Multivariate distributions

Multivariate distributions are distributions for vector-valued random variables, and
multivariate pdf’s and cdf’s are functions from Rn to positive real axis R+. Apart
from the fact that the variable is multidimensional, they are just like one-dimensional
distributions.
With one-dimensional distributions there are plenty of different types of choices
available. With multiple dimensions, the multivariate normal distribution governs
the field and other choices are rare. With independent variables this is not an is-
sue, since the joint distribution of independent components is the product of the
one-dimensional distributions. With just a few components these distributions are
often called by the names of the individual components, e.g. gamma-normal dis-
tribution for the product distribution of gamma and normal distributed variables.

6.1.1 Multinormal distribution

Multinormal distribution for p-dimensional random vector Y , Np, is parametrized
by p-dimensional vector of expected values µ and p× p-dimensional covariance
matrix Σ. The pdf is

f(y;µ,Σ) = (2π)−
p
2 det(Σ)−

1
2 exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, (6.1)
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where det(·) is the determinant of a matrix.

The covariance matrix Σ has all the information about the dependencies between
multinormal variables. Two variables Yi and Yj are independent if [Σ]ij = σij =

σji = 0. In that case their correlation is also zero. Note that for other than multi-
normal variables it might be that the (linear) correlation between the variables is
zero, but that they are not independent. For normal distribution, however, corre-
lation is equivalent to dependency.

The possible dependency can be generalized to groups of variables. Let us say that
the random vector Y constitutes of k components A1, . . . , Ak, and m components
B1, . . . , Bm. The random vector, expected value vector and the covariance matrix
can be partitioned into submatrices or -vectors:

Y = [AB]T = [A1 · · · Ak B1 · · · Bm]
T (6.2)

µ = [µA µB]
T = [µA1 · · · µAk

µB1 · · · µBm ]
T (6.3)

Σ =

[
ΣAA ΣAB

ΣAB ΣBB

]
(6.4)

Now, if the variables A are all independent of B, it means that ΣAB = 0. Further-
more, it holds now that A ∼ Nk(µA,ΣAA) and similarly for B. Two examples of
pdf’s of two-dimensional normal distribution are shown in Fig. 6.1. The variables
are independent in the first example, and dependent on the second.

Construction of multinormal distribution

It might be useful to understand how a multinormally distributed variables are
formed. First of all, we need p random variables Zi that are independently and
normally distributed. Without loss of generality, we can assume at this point that
they all are distributed as Zi ∼ N (0, 1).

Second, let us have a p×p matrix of coefficients cij , C. Third, we need a vector
µ = (µ1, . . . , µp). Now we can construct a new random vector Y as

Y1 = c11Z1 + . . .+ c1pZp + µ1 (6.5)
Y2 = c21Z1 + . . .+ c2pZp + µ2

...
Yp = cp1Z1 + . . .+ cppZp + µp

which can be written shorter as

Y = CZ + µ (6.6)

After this transform Y has multinormal distribution Y ∼ Np(µ,Σ), where Σ =

CCT .
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Figure 6.1: Contour plots (upper row) and 3D plots (lower row) of two-dimensional
normal distribution. Distribution on left has no dependence (ρ = 0) between the
variables, while distribution on the right has ρ = 0.75.

The construction of multinormal variables above can be used to create samples of
(pseudo)random numbers from multinormal distribution. The creation of stan-
dard (0, 1) normal random numbers is available in almost all software packages, so
it is easy to create sample Z = (Z1, . . . , Zp). The required covariance matrix should
be decompositioned with Cholesky decomposition Σ = CCT , or preferably with
eigendecomposition (ominaisarvohajotelma) Σ = UΛUT , where Λ is diagonal ma-
trix of eigenvalues. In the latter case, C = UΛ1/2. Now Eq. (6.6) can be directly
applied to Z to get the multivariate random sample:

Y = UΛ1/2Z + µ. (6.7)

Because Λ is diagonal matrix, the Λ1/2 is simply
⌈√

Λ11 · · ·
√

Λpp

⌋
.

Mahalanobis distance

The Mahalanobis distance is a generalized distance measure that is suitable for
multinormal distributed variables. Let us have an example of two-dimensional
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sample from multinormal distribution as in Fig. 6.2. The two variables might mea-
sure completely different quantities and thus have different scales. The expectancy
of the distribution is at (100, 1). Let us say that we have three interesting obser-
vations, the red, green and the blue dots in the figure. One might want to know
which one is further from the expected value (red dot).
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Figure 6.2: Random multinormal sample and Mahalanobis distance.

The expected value (mean) has coordinate y = (y1, y2). The squared Euclidean
distance to mean would be D2

e = (y−y)T (y−y). In this case, the distances would
be about 10 (red), 14 (green), and 1.4 (blue) for the three colored dots. Euclidean
distance is clearly a bad measure in this case, since it assumes that both coordinate
axes Y1 and Y2 have the same scale.

An improved version of the distance measure could be constructed if the observa-
tions would be normalized (scaled with their standard deviations) before taking
the Euclidean distance. However, that procedure would not take into account the
evident strong correlation between the variables. After normalization the points
would have approximately the same Euclidean distances to mean. Still, based on
the gray sample points from the distribution, it would seem that the red point is
”more common” and should have smallest distance from mean.

The Mahalanobis distance takes both the scales of the different axis and the corre-
lation into account. The distance is defined as

Dm =
(
(y − y)T S−1 (y − y)

)1/2
, (6.8)

where S is the sample estimate of the covariance matrix. One can see that the Ma-
halanobis distance is Euclidean distance that is weighted by the inverse of the co-
variance. For multinormal sample this is the correct distance measure to be used.
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Test of multinormality with Mahalanobis distance

There are a number of tests for multinormality, each focusing on different require-
ments for a multinormal sample. The Mahalanobis distance can also be used to
test the multinormality. It can be shown that the squared Mahalanobis distances
of multinormal sample should have the χ2-distribution with p degrees of freedom.
The Q-Q plot, as described in Fig. 3.7 and the related text, can be used to graph-
ically check the distribution assumption. Sorted squared distances are plotted on
the vertical axis, and quantiles from the χ2(p)-distribution of the squared distances
on the horizontal axis. The points should lie close to diagonal line if the sample is
from multinormal distribution.
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Figure 6.3: Q-Q-plot of the squared Mahalanobis distances against χ2-distribution
from the sample in Fig. 6.2

6.2 Principle component analysis

Principle component analysis (PCA, pääkomponenttianalyysi) is one of the most im-
portant multivariate methods, especially in natural sciences. In social sciences Fac-
tor Analysis (faktorianalyysi) is similar and popular method, but PCA is more ’phys-
ical’ while there are more possibilities to subjective judgment in factor analysis.
The importance of PCA comes from its wide applicability. PCA can be used in
visual analysis, clustering, pattern recognition, exploratory data analysis, variable
reduction, searching for dependency structures etc. Furthermore, PCA is quite
straightforward to implement and is ’objective’ in the sense that it does not need
any parameters to be set.
PCA can be understood perhaps the easiest way be a geometrical approach. In
Fig. 6.4 (a) there are contour ellipses from two-variate normal distribution. There
is correlation between the variables, so the axis of the ellipsoids are not parallel
to the coordinate axis. What the PCA does is that is searches for these axis of the
contour ellipses and then transforms the data so that the ellipse axis are the new
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coordinate vectors. After PCA the new variables (coordinate axis) are uncorrelated,
as shown in Fig. 6.4 (b).

1 2 3
Y1

0.5

1.0

1.5

2.0

2.5

Y2

HaL

-2 -1 0 1 2
PCA1

-1.0

-0.5

0.0

0.5

1.0

PCA2

HbL

Figure 6.4: Sketch of the PCA in geometrical interpretation.

6.2.1 Implementing principle component transform

The PCA can be implemented quite easily in a computing environment where there
are tools for matrix algebra and for eigenvalue decomposition. The data matrix
Y has n rows, one for each observation, and p columns for the variables. First
the data matrix needs to be centered or standardized. If the data is only centered,
the method is based on the covariances, and if standardized, it is based on the
correlations.
The correct method can be chosen based on the quantities and scales the variables
are measuring. If all the variables measure the same quantity, and we want to
preserve the information that is in the variances of the variables, we should choose
the covariance method. The centering of the data is done using the mean vector y
which holds the mean values over the observations for each variable, i.e.

y = (y1, . . . , yp) =
1

n
(

n∑
i

yi1, . . . ,
n∑
i

yip). (6.9)

The centered data matrix X is computed from Y by:

X = Y − 1n,p diag(y), (6.10)

where 1n,p is n×p matrix full of ones, and diag(·) is an operator that constructs a
diagonal matrix of the values.
However, if the variables measure different quantities and their variances cannot
be compared with each other, we should choose the correlation method and use
the standardized data matrix. In standardization the centered data is further di-
vided by standard deviations, variable by variable. This can be formulated with
the diagonal matrix of inverses of standard deviations, [V]ii = 1/sii as

X∗ = XV (6.11)
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The rest of the PCA procedure identical to correlation and covariance methods, so
we use symbol X for both the cases. Next, the sample estimate to covariance matrix
S is needed. If (and only if) the data matrix is centered, as with X here, the sample
covariance matrix can be computed as

S =
1

n− 1
XT X, (6.12)

If X was standardized, S is actually correlation matrix.
Third step is to compute the eigenvalue decomposition of S. Eigenvalue decompo-
sition is such that

S = UΛUT , (6.13)
where U is the p×p matrix of eigenvectors, and Λ is the diagonal matrix of eigen-
values. Finally, the data is transformed into PCA space by

Z = XU. (6.14)

An example of PCA transform in shown in Fig. 6.5.
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Figure 6.5: Example of PCA transform to 500 observations from two-dimensional
multinormal distribution. Original observations are in subfigure (a), and data in
PCA space in (b).

6.2.2 Interpretation of principal components

As can be seen from Eq. (6.14), PCA is a linear transform. Ifuj’s are the eigenvectors
in U = [u1 · · · up], and xi is the row in centered (standardized) data matrix, the
value of jth new PCA variable for observation i is

zij = xT
i uj = xi1u1j + . . .+ xipupj (6.15)

6-7



In that context, the eigenvectors uj are the new coordinate basis, and map the orig-
inal variables to the PCA space. The eigenvectors are often called loadings. Large
absolute values in ukj mean that original variable k has large impact, loading, to
PCA variable j. Therefore by plotting eigenvectors one can visually inspect how
the original variables influence the PCA variables.
The eigenvalues, i.e. the diagonal values in Λ are the variances of the data in the
PCA space. The PCA will preserve the total variance of the data, i.e.

p∑
j

[Λ]jj =

p∑
j

[S]jj (6.16)

In PCA based on the standardized data matrix the total correlation is preserved, so∑p
j [Λ]jj = p.

6.2.3 Principal component analysis in variable reduction

One of the applications of PCA is in variable or dimensionality reduction or data
compression. The fact that the PCA variables are uncorrelated makes this possi-
ble. Unnecessary PCA variables can be removed without affecting the remaining
variables. The variances of the PCA variables is used to judge which variables are
”unnecessary”.
Usually the procedure that computes eigenvalues and -vectors already sorts them
so that the first eigenvalue is the largest and so forth. The eigenvectors are also
sorted because the order of values and vectors must match. If this is not done by
the procedure, one should do this manually. So, eigenvalues must be sorted so that
Λ[1] ≥ Λ[2] ≥ · · · ≥ Λ[p]. The same ordering must then be applied for eigenvectors,
U = [u[1] u[2] · · · u[p]].
If there are correlations between the original variables, it is often so that the total
variance in the data is redistributed with PCA variables so that the first few PCA
variables make up almost all the total variance. The interpretation is that the first
few PCA variables with large variances are the ”real signal” and the rest of the
PCA variables with variances close to zero are ”random noise”. Variable reduction
is based on this.
The portion c of total variance that is reproduced with the first k PCA variables is
derived with

c =

∑k
j Λj∑p
j Λj

. (6.17)

Usually the limit for c is set close to 100 %, to 95 % or 99 % for example. When the
first k PCA variables can reproduce the required portion, the variable reduction
is done by forming U∗ = [u1 · · · uk], i.e. taking only the first k eigenvectors and
dropping out the rest. The reduced data Z∗ in PCA space is received by Z∗ = XU∗.
The reduced matrix has now only k variables. If the PCA variable reduction is
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successful, the reduced number of variables k can be significantly smaller than the
original number of variables p.
One application for PCA variable reduction is the visualization of high-dimensional
data. If the first two or three PCA variables can reproduce a large portion of the
total variance, the data can be visualized in 2D or 3D plots in the reduced PCA
space. Another is in classification or clustering problems. While PCA is not itself
optimized for classification, it can find structures in the data that can be both visu-
alized in low dimensions, and used in classification. An example of this is shown
in Fig. 6.6.

Figure 6.6: PCA example from Wikipedia. A PCA scatterplot of haplotypes calcu-
lated for 37 Y-chromosomal STR markers from 354 individuals. PCA has success-
fully found linear combinations of the different markers, that separate out different
clusters corresponding to different lines of individuals’ Y-chromosomal genetic de-
scent.

6.3 Other multivariate methods

We will not go through multivariate (MV) methods apart from principle compo-
nent analysis. The algorithms tend to be more complicated so the methods could
only be introduced here without details. I will only briefly make some notes on the
other methods.
Both classification and clustering are among the most important MV methods. The
difference between classification and clustering is that in clustering the number of
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groups is not known beforehand, and its estimation is one of the tasks in cluster-
ing. In classification the groups or classes where data is to be designed is known
beforehand.
Classification problems have, in general, two main tasks where different approaches
can be applied. First of all, a distance measure must be derived between MV ob-
servations. As was already seen in Sec. ”Mahalanobis distance”, the standard Eu-
clidean distance with MV data is not always the optimal one. Mahalanobis or Man-
hattan distances can perform better. Euclidean distance can be used after the data
is suitably transformed. The PCA transform can be used for that, although it is not
designed with classification purposes in mind. The Linear Discriminant Analysis
is a transform that is closely related to PCA, but designed for classification.
After the distance measure is decided, the actual classification to one of the pre-
assigned groups must be done. There are, again, different choices of methods.
Classification by the shortest distance to group center is the most straightforward
method. The so-called linear classifier or Naïve Bayes classifier are methods to be
considered also. The k nearest neighbor method is simple nonparametric classifi-
cation scheme if training data is available. If training data with known classes is
available, a cross-validation should be performed to asses the error rate of the clas-
sifier. Pattern recognition or machine learning are also more or less classification
problems, and nonlinear methods such as neural networks are sometimes applied
in addition to beforementioned techniques.
Clustering differs from classification in the sense that the possible classes of ob-
servations are not known beforehand. Again, consideration should be applied to
the distance measure or the transformation of data before the actual clustering.
The clustering algorithm works by choosing groups for each observation by min-
imizing a chosen measure of ”group conformance” while maximizing the differ-
ence between groups in some sense. This is usually done for different number of
groups, and the recommend number of groups is chosen so that it optimizes the
ratio between ”within-group” and ”between-groups” variances.
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